化工进展 ›› 2023, Vol. 42 ›› Issue (1): 321-335.DOI: 10.16085/j.issn.1000-6613.2022-0519
收稿日期:
2022-03-30
修回日期:
2022-06-15
出版日期:
2023-01-25
发布日期:
2023-02-20
通讯作者:
刘洋
作者简介:
刘洋(1988—),女,博士,工程师,研究方向为含氟润滑材料及含氟衍生物。E-mail:mwyl123@sina.com。
LIU Yang(), ZHAO Heng, LI Qian, XIN Hu, LI Xingtao
Received:
2022-03-30
Revised:
2022-06-15
Online:
2023-01-25
Published:
2023-02-20
Contact:
LIU Yang
摘要:
全氟聚醚(PFPE)聚合物具有极低的表面张力、低摩擦系数、优异的润滑性能和良好的疏水疏油性能,被广泛用作航空航天、核工业、真空、电子等领域的润滑材料以及合成功能复合材料的反应中间体。近年来,基于PFPE聚合物的含氟功能复合材料在一些新兴领域受到广泛关注。本文首先介绍了PFPE聚合物在润滑材料领域最新的研究进展,重点阐述了目前PFPE润滑剂在抗磨、防锈和PFPE基础油抗爬移方面存在的不足,并分析了其原因;其次概述了PFPE聚合物在功能涂层、含氟聚氨酯材料、氟橡胶以及类玻璃(Vitrimers)材料方面的研究进展和应用前景,并介绍了一些含氟功能复合材料的制备工艺;最后展望了PFPE聚合物未来的研究重点和发展趋势,旨在为拓宽PFPE聚合物的应用领域,开发高附加值的PFPE衍生产品提供思路。
中图分类号:
刘洋, 赵恒, 李倩, 辛虎, 李杏涛. 全氟聚醚聚合物及其功能复合材料的研究进展[J]. 化工进展, 2023, 42(1): 321-335.
LIU Yang, ZHAO Heng, LI Qian, XIN Hu, LI Xingtao. Research progress of perfluoropolyether polymers and functional composites[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 321-335.
样品 | 摩擦系数 | 磨斑直径/mm |
---|---|---|
PFPE | 0.097 | 0.392 |
PFPE+2%全氟聚醚醇 | 0.095 | 0.352 |
PFPE+2%全氟聚醚酸 | 0.110 | 0.429 |
PFPE+2%全氟聚醚酰胺 | 0.116 | 0.294 |
PFPE+2% F | 0.073 | 0.303 |
表1 四种摩擦改进剂的抗磨性能对比
样品 | 摩擦系数 | 磨斑直径/mm |
---|---|---|
PFPE | 0.097 | 0.392 |
PFPE+2%全氟聚醚醇 | 0.095 | 0.352 |
PFPE+2%全氟聚醚酸 | 0.110 | 0.429 |
PFPE+2%全氟聚醚酰胺 | 0.116 | 0.294 |
PFPE+2% F | 0.073 | 0.303 |
类别 | 接触角/(°) | ||
---|---|---|---|
水 | 二碘甲烷 | 十六烷 | |
PET膜 | 68.8 | 32.3 | 2.5 |
PET膜+涂层 | 112.4 | 96.6 | 77.9 |
表2 PFPE-BP涂层的不同液体接触角对比
类别 | 接触角/(°) | ||
---|---|---|---|
水 | 二碘甲烷 | 十六烷 | |
PET膜 | 68.8 | 32.3 | 2.5 |
PET膜+涂层 | 112.4 | 96.6 | 77.9 |
液体 | 表面张力/mN·m-1 | 接触角/(°) | 滚动角/(°) |
---|---|---|---|
水 | 72.3 | 108 | 45 |
甘油 | 64 | 103 | 60 |
二碘甲烷 | 50.8 | 90 | 18 |
乙二醇 | 47.7 | 97 | 22 |
二甲基甲酰胺 | 37.1 | 80 | 20 |
菜籽油 | 35 | 80 | 45 |
二甲苯 | 28.9 | 68 | 28 |
甲苯 | 28.4 | 66 | 23 |
二氯甲烷 | 26.5 | 61 | 12 |
四氢呋喃 | 26.4 | 63 | 22 |
乙酸乙酯 | 23.9 | 55 | 15 |
正癸烷 | 23.8 | 57 | 21 |
异丙醇 | 23 | 52 | 18 |
甲醇 | 22.7 | 61 | 18 |
乙醇 | 22.1 | 55 | 14 |
硅油 | 22 | 60 | 50 |
辛烷 | 21.6 | 46 | 27 |
正己烷 | 18.4 | 28 | 19 |
表3 不同液体在全疏涂层上的接触角和滚动角对比
液体 | 表面张力/mN·m-1 | 接触角/(°) | 滚动角/(°) |
---|---|---|---|
水 | 72.3 | 108 | 45 |
甘油 | 64 | 103 | 60 |
二碘甲烷 | 50.8 | 90 | 18 |
乙二醇 | 47.7 | 97 | 22 |
二甲基甲酰胺 | 37.1 | 80 | 20 |
菜籽油 | 35 | 80 | 45 |
二甲苯 | 28.9 | 68 | 28 |
甲苯 | 28.4 | 66 | 23 |
二氯甲烷 | 26.5 | 61 | 12 |
四氢呋喃 | 26.4 | 63 | 22 |
乙酸乙酯 | 23.9 | 55 | 15 |
正癸烷 | 23.8 | 57 | 21 |
异丙醇 | 23 | 52 | 18 |
甲醇 | 22.7 | 61 | 18 |
乙醇 | 22.1 | 55 | 14 |
硅油 | 22 | 60 | 50 |
辛烷 | 21.6 | 46 | 27 |
正己烷 | 18.4 | 28 | 19 |
样品 | PFPE乙二醇(摩尔分数)/% | 分子量(Mn) | 摩擦系数 | 接触角/(°) | 击穿电压/V | |
---|---|---|---|---|---|---|
水 | 油 | |||||
PU | 0 | 41084 | 0.149±0.005 | 74.7 | 91.1 | 2.7198±0.0570 |
co-FPU20 | 20 | 42084 | 0.148±0.007 | 75.9 | 91.1 | 3.3680±0.2943 |
co-FPU50 | 50 | 20543 | 0.132±0.001 | 97.0 | 90.9 | 3.1286±0.0188 |
FPU100 | 100 | 45877 | 0.095±0.005 | 102.7 | 92.1 | 3.1696±0.1586 |
表4 不同氟含量的FPU的性能参数
样品 | PFPE乙二醇(摩尔分数)/% | 分子量(Mn) | 摩擦系数 | 接触角/(°) | 击穿电压/V | |
---|---|---|---|---|---|---|
水 | 油 | |||||
PU | 0 | 41084 | 0.149±0.005 | 74.7 | 91.1 | 2.7198±0.0570 |
co-FPU20 | 20 | 42084 | 0.148±0.007 | 75.9 | 91.1 | 3.3680±0.2943 |
co-FPU50 | 50 | 20543 | 0.132±0.001 | 97.0 | 90.9 | 3.1286±0.0188 |
FPU100 | 100 | 45877 | 0.095±0.005 | 102.7 | 92.1 | 3.1696±0.1586 |
样品 | PFPE二元醇用量(摩尔分数)/% | 水接触角/(°) | 硬段(质量分数)/% | 拉伸强度/MPa | 断裂伸长率/% | 起始分解温度/℃ |
---|---|---|---|---|---|---|
PU | 0 | 74.4 | 50 | 8.32 | 325.02 | 310 |
FPU1 | 15.57 | 102.1 | 50 | 30.22 | 3.98 | 286.6 |
FPU2 | 22.35 | 97.9 | 40 | 16.60 | 15.16 | 286.7 |
FPU3 | 31.84 | 97.9 | 30 | 10.04 | 43.45 | 278.6 |
表5 不同膜的水接触角及力学性能参数
样品 | PFPE二元醇用量(摩尔分数)/% | 水接触角/(°) | 硬段(质量分数)/% | 拉伸强度/MPa | 断裂伸长率/% | 起始分解温度/℃ |
---|---|---|---|---|---|---|
PU | 0 | 74.4 | 50 | 8.32 | 325.02 | 310 |
FPU1 | 15.57 | 102.1 | 50 | 30.22 | 3.98 | 286.6 |
FPU2 | 22.35 | 97.9 | 40 | 16.60 | 15.16 | 286.7 |
FPU3 | 31.84 | 97.9 | 30 | 10.04 | 43.45 | 278.6 |
样品 | Tg /℃ | 抗张强度 /MPa | 杨氏模量 /MPa | 折射率@523nm |
---|---|---|---|---|
100%PFMMD① | 135 | 12.1 | 8.5 | 1.333 |
95%PFMMD+5%PFPE① | 131 | 18.0 | 6.1 | 1.329 |
90%PFMMD+10%PFPE① | 125 | 17.4 | 4.2 | 1.328 |
表6 poly(PFMMD)膜材料的物性参数
样品 | Tg /℃ | 抗张强度 /MPa | 杨氏模量 /MPa | 折射率@523nm |
---|---|---|---|---|
100%PFMMD① | 135 | 12.1 | 8.5 | 1.333 |
95%PFMMD+5%PFPE① | 131 | 18.0 | 6.1 | 1.329 |
90%PFMMD+10%PFPE① | 125 | 17.4 | 4.2 | 1.328 |
1 | DEMIR T, WEI L Y, NITTA N, et al. Toward a long-chain perfluoroalkyl replacement: Water and oil repellency of polyethylene terephthalate (PET) films modified with perfluoropolyether-based polyesters[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 24318-24330. |
2 | BONGIOVANNI R, MEDICI A, ZOMPATORI A, et al. Perfluoropolyether polymers by UV curing: Design, synthesis and characterization[J]. Polymer International, 2012, 61(1): 65-73. |
3 | 颜志光, 杨正宇. 合成润滑剂[M]. 北京: 中国石化出版社, 1996. |
YAN Zhiguang, YANG Zhengyu. Synthetic lubricant[M]. Beijing: China Petrochemical Press, 1996. | |
4 | 王金清, 任嗣利, 杨生荣. 全氟聚醚润滑剂及其摩擦学特性研究[J]. 润滑与密封, 2002, 27(2): 18-21. |
WANG Jinqing, REN Sili, YANG Shengrong. Study on PFPE lubricants and their tribological characteristics[J]. Lubrication Engineering, 2002, 27(2): 18-21. | |
5 | BONNEAUD C, HOWELL J, BONGIOVANNI R, et al. Diversity of synthetic approaches to functionalized perfluoropolyalkylether polymers[J]. Macromolecules, 2021, 54(2): 521-550. |
6 | HELLMAN P T, GSCHWENDER L, SNYDER C E. A review of the effect of metals on the thermo-oxidative stability of perfluoropolyalkylether lubricants[J]. Journal of Synthetic Lubrication, 2006, 23(4): 197-210. |
7 | YIN Qiwen, XUE Wei, BAI Yanyun, et al. Micellization and aggregation properties of sodium perfluoropolyether carboxylate in aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2016, 42: 63-68. |
8 | DEMIR C T, WEI L Y, LUZINOV I. Perfluoropolyether-based oleophobic additives: Influence of molecular weight distribution on wettability of polyethylene terephthalate films[J]. Journal of Fluorine Chemistry, 2021, 244: 109747. |
9 | HE Yifeng, SUN Hongwei, LIU Xinyang. Preparation and rheological properties of vacuum lubricating grease[J]. China Petroleum Processing and Petrochemical Technology, 2021, 23(1): 120-126. |
10 | JONES D A, FREDERICK R A. Flammability characterization of a polysulfide based ramjet fuel[J]. Journal of Energetic Materials, 2022, 40(2): 170-181. |
11 | WEI L Y, CALISKAN T D, TU S D, et al. Highly oil-repellent thermoplastic boundaries via surface delivery of CF3 groups by molecular bottlebrush additives[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 38626-38637. |
12 | 冯裕智. 有机硅改性全氟聚醚涂覆剂的制备与性能研究[D]. 天津: 天津科技大学, 2017. |
FENG Yuzhi. Study on preparation and the properties of organic-silicone modified perfluoropolyether coatings[D]. Tianjin: Tianjin University of Science & Technology, 2017. | |
13 | 谢宇. 全氟聚醚润滑剂[J]. 合成润滑材料, 2005, 32(4): 38-42. |
XIE Yu. Perfluoroalkylpolyethers lubricant[J]. Synthetic Lubricants, 2005, 32(4): 38-42. | |
14 | 陈坤, 冯裕智, 唐旭东. 全氟聚醚硅氧烷与SiO2复合制备耐久性超疏水涂层[J]. 合成树脂及塑料, 2018, 35(1): 6-9, 19. |
CHEN Kun, FENG Yuzhi, TANG Xudong. Preparation of durable super hydrophobic coatings via combination of perfluoroalkyl siloxane and SiO2 [J]. China Synthetic Resin and Plastics, 2018, 35(1): 6-9, 19. | |
15 | GOLA Massimo, SANSOTERA Maurizio, NAVARRINI Walter, et al. Perfluoropolyether-functionalized gas diffusion layers for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2014, 258: 351-355. |
16 | 瓦尔瑟奇,丰塔纳, 穆塔, 等. (全)氟聚醚衍生物: CN109153777A[P]. 2019-01-04. |
VALSECCHI R, FONTANA S A, MUTTA F, et al. (per) Fluoropolyether derivatives: CN109153777A[P]. 2019-01-04. | |
17 | 周杰华. 新型全氟聚醚衍生氟碳表面活性剂的合成及性能[D]. 上海: 东华大学, 2013. |
ZHOU Jiehua. Synthesis and performance of novel perfluoropolyether derivatived fluorocarbon surfactants[D]. Shanghai: Donghua University, 2013. | |
18 | Sunghyun KI, KANG Dongku. Gas crosstalk between PFPE-PEG-PFPE triblock copolymer surfactant-based microdroplets and monitoring bacterial gas metabolism with droplet-based microfluidics[J]. Biosensors, 2020, 10(11): 172. |
19 | ZHANG X, KIM J S, KWON Y. Synthesis and thermal analysis of nano-aluminum/fluorinated polyurethane elastomeric composites for structural energetics[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(4): 2488-2492. |
20 | CHEN Chuanliang, ZHANG Zhao, ZHAO Xiaowen, et al. Polyoxymethylene/graphene oxide-perfluoropolyether nano-composite with ultra-low friction coefficient fabricated by formation of superior interfacial tribofilm[J]. Composites A: Applied Science and Manufacturing, 2020, 132: 105856. |
21 | KAŁDOŃSKI T J, GRYGLEWICZ Ł, STAŃCZYK M, et al. Investigations on lubricity and surface properties of selected perfluoropolyether oils[J]. Journal of KONES Powertrain and Transport, 2011, 18(1): 199-212. |
22 | JOHNS K, CORTI C, MONTAGNA L, et al. Developments in fluorinated liquid lubricants and lubricant additives[J]. Journal of Physics D: Applied Physics, 1992, 25(1A): A141-A146. |
23 | 李倩, 辛虎, 曹春兰. 改善轴承温升的氟醚润滑脂的制备[J]. 合成润滑材料, 2020, 47(3): 18-20. |
LI Qian, XIN Hu, CAO Chunlan. Preparation of fluoroether grease to improve bearing temperature rise[J]. Synthetic Lubricants, 2020, 47(3): 18-20. | |
24 | 祁鹏浩, 仝哲, 刘奇, 等. 表面织构化DLC涂层在脂润滑下的摩擦学性能研究[J]. 表面技术, 2021, 50(1): 296-304. |
QI Penghao, TONG Zhe, LIU Qi, et al. Tribological properties of DLC coated textured surfaces under grease lubrication[J]. Surface Technology, 2021, 50(1): 296-304. | |
25 | 刘江. 玻璃表面透明纳米结构构建技术及其防指纹机制研究[D]. 南京: 东南大学, 2020. |
LIU Jiang. Fabrication of transparent nanostructures on glass surface and the mechanism of anti-fingerprint[D]. Nanjing: Southeast University, 2020. | |
26 | TANI H, UESARAIE Y, LU R G, et al. Hybrid lubricant film with high bonding ratio and high coverage[J]. Microsystem Technologies, 2020, 26(11): 3331-3337. |
27 | ROWTHU Sriharitha, DESHPANDE Pushkar, ANNAMALAI Adithyan, et al. Harnessing nano oil reservoir network for generating low friction and wear in self-mating alumina[J]. Materials & Design, 2021, 206: 109821. |
28 | ZHU Lili, DONG Jun, ZENG Qunfeng. High temperature solid/liquid lubrication behaviours of DLC films[J]. Lubrication Science, 2021: ls.1540. |
29 | 刘洋, 辛虎, 李杏涛, 等. 全氟聚醚润滑脂胶体安定性的改进研究[J]. 润滑与密封, 2022, 47(4): 164-169. |
LIU Yang, XIN Hu, LI Xingtao, et al. Research on improvement of colloid stability of perfluoropolyether greases[J]. Lubrication Engineering, 2022, 47(4): 164-169. | |
30 | 王俊英, 张香文. 全氟聚醚润滑油在高温下的腐蚀性研究[J]. 润滑油, 2019, 34(2): 23-26. |
WANG Junying, ZHANG Xiangwen. Study on corrosion of perfluoropolyalkylether lubricants at high temperature[J]. Lubricating Oil, 2019, 34(2): 23-26. | |
31 | BAI Yanyan, ZHANG Chaoyang, YU Qiangliang, et al. Supramolecular PFPE gel lubricant with anti-creep capability under irradiation conditions at high vacuum[J]. Chemical Engineering Journal, 2021, 409: 128120. |
32 | 张建强, 高一鸣, 姜滢, 等. 一种改性全氟聚醚衍生物在全氟聚醚基础油中的摩擦学性能研究[J]. 表面技术, 2020, 49(9): 198-205. |
ZHANG Jianqiang, GAO Yiming, JIANG Ying, et al. Friction properties of modified perfluoropolyether derivatives in perfluoropolyether base oil[J]. Surface Technology, 2020, 49(9): 198-205. | |
33 | 白艳艳, 于强亮, 梁永民, 等. 碳酸钙纳米颗粒复合超分子凝胶润滑剂的摩擦学性能研究[J]. 摩擦学学报, 2022, 42(1): 2-13. |
BAI Yanyan, YU Qiangliang, LIANG Yongmin, et al. Tribological properties of a composite lubricant CaCO3-supramolecular[J]. Tribology, 2022, 42(1): 2-13. | |
34 | WANG Sunan, LI Ke, XIA Tao, et al. Chemical grafting fluoropolymer on cellulose nanocrystals and its rheological modification to perfluoropolyether oil[J]. Carbohydrate Polymers, 2022, 276: 118802. |
35 | 孙维民, 石明浩, 张毅, 等. 全氟聚醚油基磁性液体的制备及耐腐蚀性能研究[J]. 润滑与密封, 2009, 34(3): 32-35. |
SUN Weimin, SHI Minghao, ZHANG Yi, et al. Researches on preparation and properties of corrosion resistance for polyether oil-based magnetic liquid[J]. Lubrication Engineering, 2009, 34(3): 32-35. | |
36 | 刘杰. 含氟专用化学品在电子领域和5G技术中的应用[J]. 天津化工, 2020, 34(5): 36-38. |
LIU Jie. Application of fluorine-containing special chemicals in the field of electronics and 5G technology[J]. Tianjin Chemical Industry, 2020, 34(5): 36-38. | |
37 | 刘汉勇, 颜招强, 陈芳. 氟醚油基磁性液体及其密封相关性能[J]. 磁性材料及器件, 2020, 51(4): 50-54. |
LIU Hanyong, YAN Zhaoqiang, CHEN Fang. The perfluoropolyether oil based ferrofluid and its sealing-related properties[J]. Journal of Magnetic Materials and Devices, 2020, 51(4): 50-54. | |
38 | K·库明斯. 全氟聚醚液体薄膜和使用全氟聚醚液体清洁掩模的方法: CN1517799[P]. 2004-08-04. |
CUMMINGS K. Perfluoropolyether liquid film and method for cleaning mask using perfluoropolyether liquid: CN1517799 [P]. 2004-08-04. | |
39 | GILLET B, LANDRY-BLAIS A, LAMY M, et al. An optical red green blue sensor for monitoring the degradation of magnetorheological fluids in flow-recirculating high-torque clutch actuators[J]. Journal of Intelligent Material Systems and Structures, 2021, 32(9): 921-930. |
40 | CHENG Yanhong, LI Decai, LI Zhenkun. Influence of rheological properties on the starting torque of magnetic fluid seal[J]. IEEE Transactions on Magnetics, 2021, 57(3): 1-8. |
41 | 黄宇祥, 朱胜兰, 张鸣, 等. 热力学稳定全氟聚醚基磁流体的研制[J]. 化工新型材料, 2020, 48(4): 112-116. |
HUANG Yuxiang, ZHU Shenglan, ZHANG Ming, et al. Preparation of thermodynamical stable perfluoropolyether based magnetic fluid[J]. New Chemical Materials, 2020, 48(4): 112-116. | |
42 | CHEN Xingyu, KAWAI Kento, ZHANG Hedong, et al. ReaxFF reactive molecular dynamics simulations of mechano-chemical decomposition of perfluoropolyether lubricants in heat-assisted magnetic recording[J]. The Journal of Physical Chemistry C, 2020, 124(41): 22496-22505. |
43 | HATSUDA K, TANO N, TANI H. Ionic liquid lubricant for ultra-low head-media spacing in hard disk drives[J]. Tribology Online, 2020, 15(4): 230-240. |
44 | GUO X C, KNIGGE B, MARCHON B, et al. Multidentate functionalized lubricant for ultralow head/disk spacing in a disk drive[J]. Journal of Applied Physics, 2006, 100(4): 044306. |
45 | KIELY J D, JONES P M, HOEHN J. Materials challenges for the heat-assisted magnetic recording head-disk interface[J]. MRS Bulletin, 2018, 43(2): 119-124. |
46 | HOLLÓCZKI O, MACCHIAGODENA M, WEBER H, et al. Triphilic ionic-liquid mixtures: Fluorinated and non-fluorinated aprotic ionic-liquid mixtures[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2015, 16(15): 3325-3333. |
47 | FAN A, WALTMAN R J. The challenges of developing ionic liquids as tribological lubricants for thin film media[J]. Journal of Industrial and Engineering Chemistry, 2021, 102: 17-24. |
48 | WANG Bingchen, MORAN Catherine, TANG Huan, et al. Highly fluorinated ionic liquid films as nanometer-thick media lubricants for hard disk drives[J]. ACS Applied Nano Materials, 2020, 3(9): 8803-8809. |
49 | YANG Zongcheng, HE Xiaoyan, CHANG Jiangfan, et al. Fabrication of biomimetic slippery liquid-infused porous surface on 5086 aluminum alloy with excellent antifouling performance[J]. Surface and Interface Analysis, 2021, 53(2): 147-155. |
50 | RUIZ-SANCHEZ A J, GUERIN A J, EL-ZUBIR O, et al. Preparation and evaluation of fouling-release properties of amphiphilic perfluoropolyether-zwitterion cross-linked polymer films[J]. Progress in Organic Coatings, 2020, 140: 105524. |
51 | 钱慧娟, 宋华, 朱明亮, 等. 聚合物基疏水/超疏水涂层防垢的研究进展[J]. 应用化工, 2020, 49(3): 773-776. |
QIAN Huijuan, SONG Hua, ZHU Mingliang, et al. Research progress in scale prevention of polymer-based hydrophobic/superhydrophobic coatings[J]. Applied Chemical Industry, 2020, 49(3): 773-776. | |
52 | 钱晓燕, 裴一博, 许建民, 等. 钢片表面全氟聚醚硅氧烷涂层的耐腐蚀性能[J]. 电镀与涂饰, 2019, 38(22): 1208-1212. |
QIAN Xiaoyan, PEI Yibo, XU Jianmin, et al. Corrosion resistance of perfluoropolyether siloxane coating on steel sheet[J]. Electroplating & Finishing, 2019, 38(22): 1208-1212. | |
53 | FENERO M, KNEZ M, SARIC I, et al. Omniphobic etched aluminum surfaces with anti-icing ability[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2020, 36(37): 10916-10922. |
54 | NOWAK A P, GROSS A F, SHERMAN E, et al. Dual component passive icephobic coatings with micron-scale phase-separated 3D structures[J]. ACS Applied Materials & Interfaces, 2021, 13(35): 42005-42013. |
55 | LIM S M, LEE M S, SOHN E H, et al. Perfluoropolyether-benzophenone as a highly durable, broadband anti-reflection, and anti-contamination coating[J]. Scientific Reports, 2020, 10(1): 15121. |
56 | 冯裕智, 谢小娜, 邢杰慧, 等. 多硅氧烷改性全氟聚醚涂覆剂的制备与性能[J]. 有机硅材料, 2016, 30(3): 198-202. |
FENG Yuzhi, XIE Xiaona, XING Jiehui, et al. Preparation and properties of perfluoropolyether coating agent modified by siloxanes[J]. Silicone Material, 2016, 30(3): 198-202. | |
57 | 马正峰. 耐磨自润滑亲/疏水界面材料的构筑及其性能研究[D]. 兰州: 兰州大学, 2021. |
MA Zhengfeng. Construction and performance study of wear-resistant and self-lubricating hydrophilic/hydrophobic interface materials[D]. Lanzhou: Lanzhou University, 2021. | |
58 | MA Zhengfeng, WU Yang, XU Rongnian, et al. Robust hybrid omniphobic surface for stain resistance[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14562-14568. |
59 | CHUN J H, CHO Y K, JIN Y E, et al. Coating properties of UV-curable polyurethane acrylate composites with lotus leaf powder[J]. Molecular Crystals and Liquid Crystals, 2018, 660(1): 110-114. |
60 | 孙旗龄, 裴一博, 冯裕智, 等. Y型全氟聚醚UV固化涂料的制备及其性能[J]. 合成树脂及塑料, 2020, 37(3): 25-29. |
SUN Qiling, PEI Yibo, FENG Yuzhi, et al. Preparation and properties of Y-type perfluoropolyether UV curable coatings[J]. China Synthetic Resin and Plastics, 2020, 37(3): 25-29. | |
61 | 焦岚姣, 安秋凤, 秦鹏伟, 等. 新型环保氟醚防指纹涂层的构建及性能研究[J]. 现代化工, 2021, 41(2): 130-134. |
JIAO Lanjiao, AN Qiufeng, QIN Pengwei, et al. Construction and properties of a new environmental-friendly fluoroether anti-fingerprint coating[J]. Modern Chemical Industry, 2021, 41(2): 130-134. | |
62 | 李彪, 李康康, 陈香李. 自修复超疏水涂层材料研究进展[J]. 化学通报, 2022, 85(4): 401-409. |
LI Biao, LI Kangkang, CHEN Xiangli. Progress in self-healing superhydrophobic materials[J]. Chemistry, 2022, 85(4): 401-409. | |
63 | 刘静, 雷西萍, 于婷, 等. 纳米SiO2@超支化PDMS复合超疏水涂层的制备与性能调控[J]. 复合材料学报, 2022. DOI:10.13801/j.cnki.fhclxb.20220331.002 . |
LIU Jing, LEI Xiping, YU Ting, et al. Construction and property regulation of nano-SiO2@hyperbranched PDMS composite superhydrophobic coating[J]. Acta Materiae Compositae Sinica, 2022. DOI:10.13801/j.cnki.fhclxb.20220331.002 . | |
64 | 韩佳, 勾昱君, 李怡达, 等. 具有光热效应的超疏水表面防覆冰研究[J]. 制冷, 2022, 41(1): 13-18. |
HAN Jia, GOU Yujun, LI Yida, et al. Anti-icing of superhydrophobic surfaces with photothermal effect[J]. Refrigeration, 2022, 41(1): 13-18. | |
65 | 王威, 余新泉, 张友法. 仿蝉翼超疏水疏油玻璃防指纹特性研究[J]. 表面技术, 2021, 50(10): 40-47. |
WANG Wei, YU Xinquan, ZHANG Youfa. Study on anti-fingerprint properties of biomimetic cicada-wing superhydro(oleo)phobic glass[J]. Surface Technology, 2021, 50(10): 40-47. | |
66 | CASAZZA E, MARIANI A, RICCO L, et al. Synthesis, characterization, and properties of a novel acrylic terpolymer with pendant perfluoropolyether segments[J]. Polymer, 2002, 43(4): 1207-1214. |
67 | CHAROLA A E, TUCCI A, KOESTLER R J. On the reversibility of treatments with acrylic/silicone resin mixtures[J]. Journal of the American Institute for Conservation, 1986, 25(2): 83-92. |
68 | CHIANTORE O, LAZZARI M. Photo-oxidative stability of paraloid acrylic protective polymers[J]. Polymer, 2001, 42(1): 17-27. |
69 | CAO Yijian, SALVINI Antonella, CAMAITI Mara. Facile design of “sticky” near superamphiphobic surfaces on highly porous substrate[J]. Materials & Design, 2018, 153: 139-152. |
70 | PAN Jun, XU Xianli, WANG Zhaohui, et al. Innovative hydrophobic/hydrophilic perfluoropolyether (PFPE)/polyvinylidene fluoride (PVDF) composite membrane for vacuum membrane distillation[J]. Chinese Journal of Chemical Engineering, 2022, 45: 248-257. |
71 | PAN Jun, ZHANG Fangli, WANG Zhaohui, et al. Enhanced anti-wetting and anti-fouling properties of composite PFPE/PVDF membrane in vacuum membrane distillation[J]. Separation and Purification Technology, 2022, 282: 120084. |
72 | CAO Yijian, SALVINI Antonella, CAMAITI Mara. Superhydrophobic fluorinated oligomers as protective agents for outdoor stone artworks[J]. Journal of Cultural Heritage, 2020, 44: 90-97. |
73 | ZHENG Hongpeng, LIU Li, MENG Fandi, et al. Multifunctional superhydrophobic coatings fabricated from basalt scales on a fluorocarbon coating base[J]. Journal of Materials Science & Technology, 2021, 84: 86-96. |
74 | GAO Tiantian, GU Xixi, GUO Shengtong, et al. Synthesis, self-assembly of perfluoropolyether based ABA-triblock copolymers for superhydrophobic surface applications[J]. Polymer, 2020, 205: 122732. |
75 | ZENG Zijing, HE Jianjun, Jun JIE, et al. Effect of perfluoropolyether and the micro nano structure of ZnO on anti icing performance of fluorinated organic superhydrophobicity coatings on wind turbine blade surface[J]. Materials Research Express, 2021, 8(11): 115008. |
76 | 舒忠虎, 何建军, 段焱森, 等. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(S2): 56-59. |
SHU Zhonghu, HE Jianjun, DUAN Yansen, et al. Study on preparation of EP-ZnO nano superhydrophobic coating by compound fluorination modification[J]. Materials Reports, 2021, 35(S2): 56-59. | |
77 | WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. |
78 | YU Mengnan, LIU Mingming, HOU Yuanyuan, et al. Facile fabrication of biomimetic slippery lubricant-infused transparent and multifunctional omniphobic surfaces[J]. Journal of Materials Science, 2020, 55(10): 4225-4237. |
79 | LI Dandan, LIN Zaiwen, ZHU Jiahui, et al. An engineering-oriented approach to construct rough micro/nano-structures for anticorrosion and antifouling application[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621: 126590. |
80 | ASAWA K, KUMAR S, HUANG Y P, et al. Guiding light via slippery liquid-infused porous surfaces[J]. Applied Physics Letters, 2021, 118(9): 091602. |
81 | STEWART C A C, KOK T W, LEE K H K, et al. A spontaneous one-step fabrication of slippery gel coatings[J]. Applied Surface Science, 2022, 572: 151341. |
82 | ENGELS H W, PIRKL H G, ALBERS R, et al. Polyurethanes: Versatile materials and sustainable problem solvers for today's challenges[J]. Angewandte Chemie (International Ed in English), 2013, 52(36): 9422-9441. |
83 | WANG Shengyu, LIU Weifeng, YANG Dongjie, et al. Highly resilient lignin-containing polyurethane foam[J]. Industrial & Engineering Chemistry Research, 2019, 58(1): 496-504. |
84 | 赵芸, 焦晓光, 郭冰之, 等. 含氟聚氨酯的制备及性能研究[J]. 北京理工大学学报, 2021, 41(9): 1015-1022. |
ZHAO Yun, JIAO Xiaoguang, GUO Bingzhi, et al. Preparation of fluorinated polyurethane and property analysis[J]. Transactions of Beijing Institute of Technology, 2021, 41(9): 1015-1022. | |
85 | SMITH D D. Fluorinated polyurethane resins: US2911390[P]. 1959-11-03. |
86 | 潘学梅, 武元鹏, 邓瑾妮, 等. 水性含氟聚氨酯的研究进展[J]. 高分子通报, 2009(2): 33-41. |
PAN Xuemei, WU Yuanpeng, DENG Jinni, et al. Synthesis and studies on water-borne fluorinated polyurethanes[J]. Polymer Bulletin, 2009(2): 33-41. | |
87 | YU Yitao, WANG Jing, ZONG Jianping, et al. Synthesis of a fluoro-diol and preparation of fluorinated waterborne polyurethanes with high elongation at break[J]. Journal of Macromolecular Science A, 2018, 55(2): 183-191. |
88 | 黄志国, 辛梅华, 李明春, 等. 含氟聚氨酯的制备研究进展[J]. 化学工程与装备, 2013(8): 168-174. |
HUANG Zhiguo, XIN Meihua, LI Mingchun, et al. Advance in synthesis of fluorinated polyurethane[J]. Chemical Engineering & Equipment, 2013(8): 168-174. | |
89 | 秦凤鸣, 李香玉, 王锦艳, 等. 有机硅改性聚氨酯/纳米SiO2复合超疏水涂层的制备[J]. 高分子学报, 2021, 52(9): 1165-1173. |
QIN Fengming, LI Xiangyu, WANG Jinyan, et al. Preparation of silicone modified polyurethane/nano-SiO2 composite superhydrophobic coating[J]. Acta Polymerica Sinica, 2021, 52(9): 1165-1173. | |
90 | NOWAK A P, GROSS A F, SHERMAN E, et al. Sprayable perfluoropolyether/poly(ethylene glycol) segmented polyurethane coatings with micron-scale phase separated 3D structure[J]. Polymer, 2021, 212: 123279. |
91 | 杨莹, 王成忠, 江盛玲, 等. 含氟聚硅氧烷改性聚氨酯的制备及性能研究[J]. 中国胶粘剂, 2020, 29(11): 8-12. |
YANG Ying, WANG Chengzhong, JIANG Shengling, et al. Study on preparation and properties of fluorine-containing polysiloxane modified polyurethane[J]. China Adhesives, 2020, 29(11): 8-12. | |
92 | BALZAROTTI R, LATORRATA S, MARIANI M, et al. Optimization of perfluoropolyether-based gas diffusion media preparation for PEM fuel cells[J]. Energies, 2020, 13(7): 1831. |
93 | 汪慧思, 陶博文, 张小平, 等. 含氟聚氨酯研究进展及其在推进剂中的应用展望[J]. 化学推进剂与高分子材料, 2019, 17(2): 13-17, 60. |
WANG Huisi, TAO Bowen, ZHANG Xiaoping, et al. Research progress of fluorine-containing polyurethanes and their application prospects in propellants[J]. Chemical Propellants & Polymeric Materials, 2019, 17(2): 13-17, 60. | |
94 | 孙建英, 卿凤翎. 高性能有机氟材料制备科学及应用进展[J]. 化工进展, 2020, 39(9): 3395-3402. |
SUN Jianying, QING Fengling. Progress in preparation and application of high performance fluorinated organic materials[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3395-3402. | |
95 | GU Xixi, GAO Tiantian, MENG Xiangping, et al. Enhanced hydrophobicity of polyurethane with the self-assembly of perfluoropolyether-based triblock copolymers[J]. Progress in Organic Coatings, 2022, 162: 106561. |
96 | LOPEZ G, AMÉDURI B, HABAS J P. A perfluoropolyether-based elastomers library with on-demand thermorheological features[J]. European Polymer Journal, 2017, 95: 207-215. |
97 | DEVAUX D, VILLALUENGA I, BHATT M, et al. Crosslinked perfluoropolyether solid electrolytes for lithium ion transport[J]. Solid State Ionics, 2017, 310: 71-80. |
98 | XIAO Chuan, ZHAO Yuming, ZHOU Wei. Nanoimprinted conducting nanopillar arrays made of MWCNT/polymer nanocomposites: A study by electrochemical impedance spectroscopy[J]. Nanoscale Advances, 2021, 3(2): 556-566. |
99 | 王维, 王冬, 东为富. 新型疏水聚氨酯硬质泡沫的绿色制备及其性能研究[J]. 中国塑料, 2021, 35(4): 23-29. |
WANG Wei, WANG Dong, DONG Weifu. Green preparation and properties of new hydrophobic rigid polyurethane foams[J]. China Plastics, 2021, 35(4): 23-29. | |
100 | JIAO Xiaoguang, FENG Zhongtai, JIAO Qingze, et al. Fluorinated polyurethane-based enameled wires with a low friction coefficient[J]. ACS Omega, 2021, 6(7): 4719-4725. |
101 | CHIANG H C, FANG M F, OKAMOTO Y. Mechanical, optical and gas transport properties of poly(perfluoro-2-methylene-4-methyl-1,3-dioxolane) membrane containing perfluoropolyether as a plasticizer[J]. Journal of Fluorine Chemistry, 2020, 236: 109572. |
102 | MA Qiang, LIAO Shenglong, MA Yingchao, et al. An ultra-low-temperature elastomer with excellent mechanical performance and solvent resistance[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(36): e2102096. |
103 | FRIESEN C M, AMÉDURI B. Outstanding telechelic perfluoropolyalkylethers and applications therefrom[J]. Progress in Polymer Science, 2018, 81: 238-280. |
104 | MONTARNAL D, CAPELOT M, TOURNILHAC F, et al. Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965-968. |
105 | KRISHNAKUMAR B, SANKA R V, BINDER W H, et al. Vitrimers: Associative dynamic covalent adaptive networks in thermoset polymers[J]. Chemical Engineering Journal, 2020, 385: 123820. |
106 | HAYASHI M, OBARA H, MIWA Y. Design and basic properties of polyester vitrimers combined with an ionomer concept[J]. Molecular Systems Design & Engineering, 2021, 6(3): 234-241. |
107 | GUERRE M, TAPLAN C, NICOLAŸ R, et al. Fluorinated vitrimer elastomers with a dual temperature response[J]. Journal of the American Chemical Society, 2018, 140(41): 13272-13284. |
108 | LOPEZ G, GRANADO L, COQUIL G, et al. Perfluoropolyether (PFPE)-based vitrimers with ionic conductivity[J]. Macromolecules, 2019, 52(5): 2148-2155. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 向硕, 卢鹏, 石伟年, 杨鑫, 何燕, 朱立业, 孔祥微. 二维WS2纳米片的规模化可控制备及其摩擦学性能[J]. 化工进展, 2023, 42(9): 4783-4790. |
[5] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[6] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[7] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[8] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[9] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[10] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[11] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[12] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[13] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[14] | 余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599. |
[15] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |