1 |
BADENHORST H. A review of the application of carbon materials in solar thermal energy storage[J]. Solar Energy, 2019, 192: 35-68.
|
2 |
SHI J B, LI M. Lightweight mortar with paraffin/expanded vermiculite-diatomite composite phase change materials: Development, characterization and year-round thermoregulation performance[J]. Solar Energy, 2021, 220: 331-342.
|
3 |
JAVADI F S, METSELAAR H S C, GANESAN P. Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review[J]. Solar Energy, 2020, 206: 330-352.
|
4 |
KHAN M M A, SAIDUR R, AL-SULAIMAN F A. A review for phase change materials (PCMs) in solar absorption refrigeration systems[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 105-137.
|
5 |
KUMAR P M, SUDARVIZHI D, PRAKASH K B, et al. Investigating a single slope solar still with a nano-phase change material[J]. Materials Today: Proceedings, 2021, 45: 7922-7925.
|
6 |
RINAWA M L, ANITHA SELVASOFIA S D, KUMAR P M, et al. Analyzing an evacuated tube solar water heating system using twin-nano/paraffin as phase change material[J]. Materials Today: Proceedings, 2022, 50: 2505-2509.
|
7 |
KATEKAR V P, DESHMUKH S S. A review of the use of phase change materials on performance of solar stills[J]. Journal of Energy Storage, 2020, 30: 101398.
|
8 |
DOUVI E, PAGKALOS C, DOGKAS G, et al. Phase change materials in solar domestic hot water systems: A review[J]. International Journal of Thermofluids, 2021, 10: 100075.
|
9 |
GU X, PENG L, LIU P, et al. Enhanced thermal properties and lab-scale thermal performance of polyethylene glycol/modified halloysite nanotube form-stable phase change material cement panel[J]. Construction and Building Materials, 2022, 323: 126550.
|
10 |
ZHANG P, CUI Y, ZHANG K, et al. Enhanced thermal storage capacity of paraffin/diatomite composite using oleophobic modification[J]. Journal of Cleaner Production, 2021, 279: 123211.
|
11 |
RAHMALINA D, RAHMAN R A, ISMAIL. Increasing the rating performance of paraffin up to 5000 cycles for active latent heat storage by adding high-density polyethylene to form shape-stabilized phase change material[J]. Journal of Energy Storage, 2022, 46: 103762.
|
12 |
CHRIAA I, TRIGUI A, KARKRI M, et al. Thermal properties of shape-stabilized phase change materials based on Low Density Polyethylene, Hexadecane and SEBS for thermal energy storage[J]. Applied Thermal Engineering, 2020, 171: 115072.
|
13 |
CHEN Y, GAO S, LIU Cet al. Preparation of PE-EPDM based phase change materials with great mechanical property, thermal conductivity and photo-thermal performance[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109988.
|
14 |
赵建青, 樊晓红, 沈家瑞. 高密度聚乙烯溶液接枝共聚反应[J]. 塑料工业, 1994, 22(5): 29-33.
|
|
ZHAO Jianqing, Fan Xiaohong, Shen Jiarui, et al. The graft copolymerization of HDPE [J]. China Plastics Industry, 1994, 22(5): 29-33.
|
15 |
TONG G S, LIU T, ZHAO L, et al. Supercritical carbon dioxide-assisted preparation of polypropylene grafted acrylic acid with high grafted content and small gel percent[J]. The Journal of Supercritical Fluids, 2009, 48(3): 261-268.
|
16 |
侯黎黎. 聚丙烯蜡接枝与乳化研究[D]. 郑州: 郑州大学, 2010: 22-23.
|
|
HOU L L. Research on the graft and the emulsion of polypropylene Wax [D]. Zhengzhou: Zhengzhou University, 2010: 22-23.
|
17 |
CHEN X, KONG X Y, WANG S Y, et al. Facile preparation of metal/metal-organic frameworks decorated phase change composite materials for thermal energy storage[J]. Journal of Energy Storage, 2021, 40: 102711.
|
18 |
CEVIK E, BOZKURT A. Redox active polymer metal chelates for use in flexible symmetrical supercapacitors: Cobalt-containing poly(acrylic acid) polymer electrolytes[J]. Journal of Energy Chemistry, 2021, 55: 145-153.
|
19 |
CHEN Q, YU H J, WANG Let al. Synthesis and characterization of amylose grafted poly(acrylic acid) and its application in ammonia adsorption[J]. Carbohydrate Polymers, 2016, 153: 429-434.
|
20 |
YE Y N, LI P Y, SHANGGUAN Y G, et al. A convenient, highly-efficient method for preparation of hydroxyl-terminated isotactic poly(propylene) and functional di-block copolymer[J]. Chinese Chemical Letters, 2014, 25(4): 596-600.
|
21 |
MIYAZAKI K, ARAI T, SHIBATA K, et al. Study on biodegradation mechanism of novel oxo-biodegradable polypropylenes in an aqueous medium[J]. Polymer Degradation and Stability, 2012, 97(11): 2177-2184.
|
22 |
XING H P, JIANG Z W, ZHANG Z J, et al. Effect of leaving group in dithiocarbamates on mediating melt radical reaction during preparing long chain branched polypropylene[J]. Polymer, 2012, 53(4): 947-955.
|
23 |
ALKAN C, GÜNTHER E, HIEBLER S, et al. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials[J]. Energy Conversion and Management, 2012, 64: 364-370.
|
24 |
WANG R, XIAO Y, LEI J X. A solid-solid phase change material based on dynamic ion cross-linking with reprocessability at room temperature[J]. Chemical Engineering Journal, 2020, 390: 124586.
|
25 |
XU H L, JIANG L, YUAN A Q, et al. Thermally-stable, solid-solid phase change materials based on dynamic metal-ligand coordination for efficient thermal energy storage[J]. Chemical Engineering Journal, 2021, 421: 129833.
|