化工进展 ›› 2022, Vol. 41 ›› Issue (8): 4367-4374.DOI: 10.16085/j.issn.1000-6613.2021-1955
收稿日期:
2021-09-13
修回日期:
2021-12-31
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
刘俊杰
作者简介:
刘朝军(1981—),男,博士,研究方向为高性能空气过滤材料及净化装备。E-mail:基金资助:
LIU Chaojun1,2(), LIU Junjie2(
), DING Yike1, ZHANG Jianqing1
Received:
2021-09-13
Revised:
2021-12-31
Online:
2022-08-25
Published:
2022-08-22
Contact:
LIU Junjie
摘要:
聚四氟乙烯(PTFE)膜高效空气过滤材料以其过滤效率高、初始阻力小和无硼释放等优点,在电子工业洁净室中得到了广泛的应用,然而目前尚缺乏PTFE膜与传统滤材结构及性能的系统对比研究。本文选取了两种商业应用的PTFE膜高效滤材,采用扫描电子显微镜、孔径分析仪、自动滤材测试仪等多种表征手段对材料的微观结构和过滤性能与超细玻璃纤维(简称玻纤)滤材进行了较为全面的对比研究,结果表明,PTFE膜本质上也是一种纤维类滤材,其纤维平均直径为60~85nm,远低于玻纤滤材的668.8nm;高效PTFE膜的过滤效率与玻纤滤材相当,且其初始阻力不及玻纤滤材的50%,但PTFE膜滤材的容尘性能不及玻纤滤材,更适合应用于有再生或预过滤装置的场所。
中图分类号:
刘朝军, 刘俊杰, 丁伊可, 张建青. 高效空气过滤用PTFE膜材料的结构和性能[J]. 化工进展, 2022, 41(8): 4367-4374.
LIU Chaojun, LIU Junjie, DING Yike, ZHANG Jianqing. Structure and properties of PTFE membrane for high efficiency air filtration[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4367-4374.
滤材 | δ /μm | dmax /μm | dave /μm | Df /nm | Tv /N·(5cm)-1 | Tc /N·(5cm)-1 | BS /N | QF① /Pa-1 |
---|---|---|---|---|---|---|---|---|
F-1 | 3.5 | 5.88 | 2.42 | 64.6 | 202.0 | 106.9 | 355.5 | 0.078 |
F-2 | 19.7 | 3.57 | 1.71 | 85.7 | 310.3 | 200.4 | 522.4 | 0.087 |
F-3 | 494.9 | 9.70 | 7.53 | 668.8 | 42.1 | 21.0 | 16.4 | 0.028 |
表1 PTFE膜和玻纤滤材的结构和性能参数
滤材 | δ /μm | dmax /μm | dave /μm | Df /nm | Tv /N·(5cm)-1 | Tc /N·(5cm)-1 | BS /N | QF① /Pa-1 |
---|---|---|---|---|---|---|---|---|
F-1 | 3.5 | 5.88 | 2.42 | 64.6 | 202.0 | 106.9 | 355.5 | 0.078 |
F-2 | 19.7 | 3.57 | 1.71 | 85.7 | 310.3 | 200.4 | 522.4 | 0.087 |
F-3 | 494.9 | 9.70 | 7.53 | 668.8 | 42.1 | 21.0 | 16.4 | 0.028 |
Kn值 | 纤维直径d | 气体流态 |
---|---|---|
Kn<0.001 | d>130.6μm | 连续 |
0.001<Kn<0.25 | 522nm<d<130.6μm | 滑移 |
0.25<Kn<10 | 13nm<d<522nm | 过渡 |
Kn>10 | d<13nm | 自由分子 |
表2 Kn值与单纤维附近气体流动状态的对应关系
Kn值 | 纤维直径d | 气体流态 |
---|---|---|
Kn<0.001 | d>130.6μm | 连续 |
0.001<Kn<0.25 | 522nm<d<130.6μm | 滑移 |
0.25<Kn<10 | 13nm<d<522nm | 过渡 |
Kn>10 | d<13nm | 自由分子 |
1 | 姜肇中. 玻璃纤维应用技术[M]. 北京: 中国石化出版社, 2004. |
JIANG Zhaozhong. Application technologies of glass fibres[M]. Beijing: China Petrochemical Press, 2004. | |
2 | LIU C, HSU P C, LEE H W, et al. Transparent air filter for high-efficiency PM2.5 capture[J]. Nature Communications, 2015, 6: 6205. |
3 | 蔡杰. 空气过滤ABC[M]. 北京: 中国建筑工业出版社, 2002. |
CAI Jie. Air filtration ABC[M]. Beijing: China Architecture & Building Press, 2002. | |
4 | 赵璜, 屠恒忠. 超细玻璃纤维过滤纸[J]. 纸和造纸, 2004, 23(2): 56-59. |
ZHAO Huang, TU Hengzhong. Ultra-fine glass fiber filter paper[J]. Paper and Paper Making, 2004, 23(2): 56-59. | |
5 | RAYNOR P C, CHAE S J. The long-term performance of electrically charged filters in a ventilation system[J]. Journal of Occupational and Environmental Hygiene, 2004, 1(7): 463-471. |
6 | HUTTEN I M. Processes for nonwoven filter media[M]//Handbook of Nonwoven Filter Media. Amsterdam: Elsevier, 2007: 195-244. |
7 | VARADE S A, GAJBHIYE A, PHADKE K M, et al. Comparison of inherent properties of glass fibre filters[J]. Journal of the Indian Institute of Science, 2003, 83(5/6): 127-131. |
8 | LALA N L, RAMASESHAN R, LI B J, et al. Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants[J]. Biotechnology and Bioengineering, 2007, 97(6): 1357-1365. |
9 | LIU J X, CHANG D Q, MIAO L T, et al. Experiment investigation on two filter medias for air filtration[J]. Applied Mechanics and Materials, 2013, 300/301: 1340-1343. |
10 | FENG Z B, LONG Z W, MO J H. Experimental and theoretical study of a novel electrostatic enhanced air filter (EEAF) for fine particles[J]. Journal of Aerosol Science, 2016, 102: 41-54. |
11 | 胡敏, 仲兆祥, 邢卫红. 纳米纤维膜在空气净化中的应用研究进展[J]. 化工进展, 2018, 37(4): 1305-1313. |
HU Min, ZHONG Zhaoxiang, XING Weihong. Development of nanofiber membrane for air purification[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1305-1313. | |
12 | BAO L, SEKI K, NIINUMA H, et al. Verification of slip flow in nanofiber filter media through pressure drop measurement at low-pressure conditions[J]. Separation and Purification Technology, 2016, 159: 100-107. |
13 | LI P, WANG C Y, ZHANG Y Y, et al. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes[J]. Small, 2014, 10(22): 4543-4561. |
14 | 赵兴雷. 空气过滤用高效低阻纳米纤维材料的结构调控及构效关系研究[D]. 上海: 东华大学, 2017. |
ZHAO Xinglei. Tunable fabrication of nanofibrous materials with high-efficiency and low-resistance and their application in air filtration[D]. Shanghai: Donghua University, 2017. | |
15 | 李祥业, 白天娇, 翁昕, 等. 电纺聚丙烯腈基碳纳米纤维在超级电容器中的应用[J]. 化工进展, 2021, 40(6): 3314-3329. |
LI Xiangye, BAI Tianjiao, WENG Xin, et al. Application of electrospun polyacrylonitrile-based carbon nanofibers in supercapacitors[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3314-3329. | |
16 | SRIDHAR R, LAKSHMINARAYANAN R, MADHAIYAN K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals[J]. Chemical Society Reviews, 2015, 44(3): 790-814. |
17 | 洪贤良, 陈小晖, 张建青, 等. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(6): 174-182. |
HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, et al. Research progress in preparation of hierarchically structured air filter materials by electrospinning[J]. Journal of Textile Research, 2020, 41(6): 174-182. | |
18 | 刘朝军, 刘俊杰, 丁伊可, 等. 静电纺丝法制备高效空气过滤材料的研究进展[J]. 纺织学报, 2019, 40(6): 134-142. |
LIU Chaojun, LIU Junjie, DING Yike, et al. Research progress in preparation of high-efficiency air filter materials by electrospinning[J]. Journal of Textile Research, 2019, 40(6): 134-142. | |
19 | GORE R W. Process for producing porous products: US3953566[P]. 1976-04-27. |
20 | 蔡海锋. 制备聚四氟乙烯微孔膜的关键技术研究[D]. 杭州: 浙江大学, 2018. |
CAI Haifeng. Study on key technologies of preparing polytetrafluoroethylene porous membrane[D]. Hangzhou: Zhejiang University, 2018. | |
21 | GALLET G, SVEDLIND R, ERIKSSON M, et al. Airborne nanoparticle filtration in semiconductor manufacturing CFM: contamination free manufacturing[C]//2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). May 15-18, 2017. Saratoga Springs, NY, USA. IEEE, 2017: 59-63. |
22 | OSBORNE M W, GAIL L, RUITER P, et al. Applied membrane air filtration technology for best energy savings and enhanced performance of critical processes[J]. European Journal of Parenteral & Pharmaceutical Sciences, 2013, 18(3): 76-82. |
23 | ZHANG W Y, DENG S M, WANG Y X, et al. Dust loading performance of the PTFE HEPA media and its comparison with the glass fibre HEPA media[J]. Aerosol and Air Quality Research, 2018, 18(7): 1921-1931. |
24 | 王庚. 膨体聚四氟乙烯(ePTFE)覆膜滤料过滤性能的研究[D]. 北京: 北京化工大学, 2005. |
WANG Geng. The study of behavior of ePTFE membrane filter in air-filtration process[D]. Beijing: Beijing University of Chemical Technology, 2005. | |
25 | 李猛. PTFE微孔膜/熔喷材料复合空气滤材的制备与性能研究[D]. 上海: 东华大学, 2017. |
LI Meng. Preparation and properties of PTFE membrance/melt-blown nonwoven composite filter material[D]. Shanghai: Donghua University, 2017. | |
26 | 赵文焕, 原永涛, 赵利, 等. 聚四氟乙烯覆膜滤料的发展及应用特点[J]. 建筑热能通风空调, 2006, 25(4): 35-37. |
ZHAO Wenhuan, YUAN Yongtao, ZHAO Li, et al. The development and application characteristics of PTFE membrane filter material[J]. Building Energy & Environment, 2006, 25(4): 35-37. | |
27 | NOH K C, LEE J H, KIM C, et al. Filtration of submicron aerosol particles using a carbon fiber ionizer-assisted electret filter[J]. Aerosol and Air Quality Research, 2011, 11(7): 811-821. |
28 | YANG Z Z, LIN J H, TSAI I S, et al. Particle filtration with an electret of nonwoven polypropylene fabric[J]. Textile Research Journal, 2002, 72(12): 1099-1104. |
29 | WANG L, ZHANG C B, GAO F, et al. Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration[J]. RSC Advances, 2016, 6(107): 105988-105995. |
30 | 李玖明. PTFE 平板膜微孔结构调控及膜蒸馏性能研究[D]. 杭州: 浙江理工大学, 2015. |
LI Jiuming. Study on the microporous structures manipulation and membrane distillation performance of PTFE sheet membrane[D]. Hangzhou: Zhejiang Sci-Tech University, 2015. | |
31 | GAO H C, YANG Y Q, AKAMPUMUZA O, et al. A low filtration resistance three-dimensional composite membrane fabricated via free surface electrospinning for effective PM2.5 capture[J]. Environmental Science: Nano, 2017, 4(4): 864-875. |
32 | WANG Z, ZHAO C C, PAN Z J. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration[J]. Journal of Colloid and Interface Science, 2015, 441: 121-129. |
33 | 刘俊杰. 高效纤维滤料最易透过粒径计数效率的研究[D]. 天津: 天津大学, 2007. |
LIU Junjie. Study on the particle count efficiency at the most penetrating particle size for high efficiency fibrous filter media[D]. Tianjin: Tianjin University, 2007. | |
34 | KIM G T, AHN Y C, LEE J K. Characteristics of nylon 6 nanofilter for removing ultra fine particles[J]. Korean Journal of Chemical Engineering, 2008, 25(2): 368-372. |
35 | 许钟麟. 空气洁净技术原理[M]. 上海: 同济大学出版社, 1998. |
XU Zhonglin. Principles of air cleaning technology[M]. Shanghai: Tongji University Press, 1998. | |
36 | KIRSH V A. The effect of van der Waals’ forces on aerosol filtration with fibrous filters[J]. Colloid Journal, 2000, 62(6): 714-720. |
37 | HUNG C H, LEUNG W W F. Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime[J]. Separation and Purification Technology, 2011, 79(1): 34-42. |
38 | MIKHEEV A Y, SHLYAPNIKOV Y M, KANEV I L, et al. Filtering and optical properties of free standing electrospun nanomats from nylon-4, 6[J]. European Polymer Journal, 2016, 75: 317-328. |
39 | XIA T L, BIAN Y, ZHANG L, et al. Relationship between pressure drop and face velocity for electrospun nanofiber filters[J]. Energy and Buildings, 2018, 158: 987-999. |
40 | NAKATA K, KIM S H, OHKOSHI Y, et al. Electrospinning of poly(ether sulfone) and evaluation of the filtration efficiency[J]. Seńi Gakkaishi, 2007, 63(12): 307-312. |
41 | 王哲. 多级结构微纳米纤维的结构调控及其空气过滤性能[D]. 苏州: 苏州大学, 2017. |
WANG Zhe. Structure regulation of herarchical micro-/nano-scale fibers and their performance of air fitration[D]. Suzhou: Soochow University, 2017. | |
42 | MAZE B, TAFRESHI H V, WANG Q, et al. Unsteady-state simulation of nanoparticle aerosol filtration via nanofiber electrospun filters at reduced pressures[J]. Journal of Aerosol Science, 2007, 38(5): 550-571. |
43 | CHAMBRE P L, SCHAAF S A. Flow of rarefied gases[M]. Princeton: Princeton University Press, 1961. |
44 | LI Y, ZHU Z G, YU J Y, et al. Carbon nanotubes enhanced fluorinated polyurethane macroporous membranes for waterproof and breathable application[J]. ACS Applied Materials & Interfaces, 2015, 7(24): 13538-13546. |
[1] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[2] | 章建忠, 许升, 樊家澍, 费振宇, 王堃, 黄建, 崔峰波, 冉文华. 玻璃纤维浸润剂的分析与表征技术进展[J]. 化工进展, 2023, 42(2): 821-838. |
[3] | 唐春霞, 李萌, 王玉玺, 宗永忠, 付少海. Cr(Ⅵ)去除用功能化纤维素纳米材料的结构设计研究进展[J]. 化工进展, 2023, 42(2): 585-594. |
[4] | 邱艺娟, 林佳伟, 秦济锐, 吴嘉茵, 林凤采, 卢贝丽, 唐丽荣, 黄彪. 双重动态共价键交联纳米纤维素导电水凝胶及其柔性传感器[J]. 化工进展, 2022, 41(8): 4406-4416. |
[5] | 王慧, 刘新懿, 王伟, 万同, 厉宗洁, 王劭妤, 程博闻. 静电纺特殊形貌纳米纤维的应用研究进展[J]. 化工进展, 2022, 41(8): 4341-4356. |
[6] | 詹洵, 陈健, 杨兆哲, 吴国民, 孔振武, 沈葵忠. 纳米纤维素构建超疏水材料研究进展[J]. 化工进展, 2022, 41(8): 4303-4313. |
[7] | 祖立武, 毕莹, 赵缤慧, 李纪东, 杨晴, 丛姗姗. 苯并𫫇嗪树脂研究进展[J]. 化工进展, 2022, 41(8): 4224-4240. |
[8] | 陈博, 陈伟香, 唐丽荣, 洪祺祺, 严雪, 靳江涛, 吕日新, 黄彪. 基于硝化纳米纤维素/琼脂的高灵敏度湿度传感器[J]. 化工进展, 2022, 41(5): 2604-2614. |
[9] | 周丽莎, 李若男, 卞雨洁, 陈舜胜. TOCNF与磁性羧甲基壳聚糖纳米粒子复合物的制备及吸附Pb2+的特性[J]. 化工进展, 2022, 41(2): 901-910. |
[10] | 韩芬, 杨娜, 孙永利, 姜斌, 肖晓明, 张吕鸿. 玻璃纤维聚结器脱除油中乳化水[J]. 化工进展, 2022, 41(12): 6723-6732. |
[11] | 李若男, 周丽莎, 陈舜胜, 徐建雄, 邓子龙, 张洪才. 纤维素纳米纤维及其改性产物吸附重金属的研究进展[J]. 化工进展, 2022, 41(1): 310-319. |
[12] | 刘荣涛, 张诗洋, 黄兴文, 朋小康, 闵永刚. 聚苯胺/聚乳酸复合纳米纤维表面形貌对生物相容性的影响[J]. 化工进展, 2021, 40(8): 4406-4412. |
[13] | 罗惠玲, 邵诸锋, 王树博, 徐先林. 多孔有机笼在聚丙烯腈纳米纤维表面固载及其复合质子交换膜[J]. 化工进展, 2021, 40(7): 3854-3861. |
[14] | 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺聚丙烯腈基碳纳米纤维在超级电容器中的应用[J]. 化工进展, 2021, 40(6): 3314-3329. |
[15] | 时培东, 胡春蕊, 郑苗苗, 赵娟, 刘锐, 贾原媛. 纳米纤维素/Al2O3胶体/PE锂离子电池隔膜的制备及其成膜机理[J]. 化工进展, 2021, 40(10): 5624-5633. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 852
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 610
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |