化工进展 ›› 2022, Vol. 41 ›› Issue (8): 4224-4240.DOI: 10.16085/j.issn.1000-6613.2021-1947
祖立武1,2(), 毕莹1,2,3, 赵缤慧1,2, 李纪东1,2, 杨晴1,2, 丛姗姗1,2
收稿日期:
2021-09-10
修回日期:
2021-11-16
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
祖立武
作者简介:
祖立武(1972—),男,教授,硕士生导师,研究方向为高性能聚合物制备及改性。E-mail:基金资助:
ZU Liwu1,2(), BI Ying1,2,3, ZHAO Binhui1,2, LI Jidong1,2, YANG Qing1,2, CONG Shanshan1,2
Received:
2021-09-10
Revised:
2021-11-16
Online:
2022-08-25
Published:
2022-08-22
Contact:
ZU Liwu
摘要:
聚苯并嗪树脂(PBZ)是一类杂环聚合物材料,具有优异的热稳定性、高的抗拉强度和良好的耐化学性,在航空复合材料、共混物和电子电路板等许多领域得到了应用。本文概述了制备苯并嗪(BZ)单体的三种路线及合成方法,总结了在无催化剂条件下BZ单体的阳离子开环聚合(ROP)机理;详细阐述了含可固化基团的功能化BZ单体的种类以及可固化基团对PBZ树脂性能的影响,同样也详细论述了不含可固化基团的功能化BZ单体的结构性能以及研究现状。通过分子设计,科研人员已制备出了单官能团取代、双官能团取代、可聚合官能团取代的BZ单体,以及高分子量主链的BZ和主链含有BZ单元的化合物材料;简述了PBZ复合材料的研究进展,指出了PBZ树脂存在加工温度高、经典的PBZ脆性大的缺点以及产生的原因,最后指出苯并嗪树脂的发展方向为制备绿色生物基BZ、PBZ复合材料的改性以及合成新结构的功能性BZ。
中图分类号:
祖立武, 毕莹, 赵缤慧, 李纪东, 杨晴, 丛姗姗. 苯并𫫇嗪树脂研究进展[J]. 化工进展, 2022, 41(8): 4224-4240.
ZU Liwu, BI Ying, ZHAO Binhui, LI Jidong, YANG Qing, CONG Shanshan. Research progress in benzoxazine resin[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4224-4240.
68 | CAI W N, YUAN Z G, WANG Z C, et al. Enhancing the toughness of epoxy resin by using a novel hyperbranched benzoxazine[J]. Reactive and Functional Polymers, 2021, 164: 104920. |
69 | CALO E, MAFFEZZOLI A, MELE G, et al. Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites[J]. Green Chemistry, 2007, 9(7): 754. |
70 | AMBROŽIČ R, ŠEBENIK U, Synthesis KRAJNC M., kinetics curing, thermal and mechanical behavior of novel cardanol-based benzoxazines[J]. Polymer, 2015, 76: 203-212. |
71 | XU H L, LU Z J, ZHANG G Z. Synthesis and properties of thermosetting resin based on urushiol[J]. RSC Advances, 2012, 2(7): 2768. |
72 | VAN A, CHIOU K, ISHIDA H. Use of renewable resource vanillin for the preparation of benzoxazine resin and reactive monomeric surfactant containing oxazine ring[J]. Polymer, 2014, 55(6): 1443-1451. |
73 | KISKAN B, YAGCI Y. Thermally curable benzoxazine monomer with a photodimerizable coumarin group[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45(9): 1670-1676. |
74 | THIRUKUMARAN P, SHAKILA PARVEEN A, SAROJADEVI M. Synthesis and copolymerization of fully biobased benzoxazines from renewable resources[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(12): 2790-2801. |
75 | SALUM M L, IGUCHI D, ARZA C R, et al. Making benzoxazines greener: design, synthesis, and polymerization of a biobased benzoxazine fulfilling two principles of green chemistry[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13096-13106. |
76 | WANG C F, SUN J Q, LIU X D, et al. Synthesis and copolymerization of fully bio-based benzoxazines from guaiacol, furfurylamine and stearylamine[J]. Green Chemistry, 2012, 14(10): 2799. |
77 | LIU C Y, LIU Y H, PAN Z H, et al. Renewable bis-benzoxazine monomers from lignin derivatives: synthesis, characterization and studies on curing behavior[J]. Journal of Polymer Materials, 2019, 36(1): 87-99. |
78 | LIU X Y, ZHANG R H, LI T Q, et al. Novel fully biobased benzoxazines from rosin: synthesis and properties[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10682-10692. |
79 | DAI J Y, TENG N, PENG Y Y, et al. Biobased benzoxazine derived from daidzein and furfurylamine: microwave-assisted synthesis and thermal properties investigation[J]. ChemSusChem, 2018, 11(18): 3175-3183. |
80 | 殷平, 闫红强, 程捷, 等. 新型生物基苯并𫫇嗪的合成及性能[J]. 高等学校化学学报, 2019, 40(5): 1071-1079. |
YIN Ping, YAN Hongqiang, CHENG Jie, et al. Synthesis and properties of a novel bio-based benzoxazine[J]. Chemical Journal of Chinese Universities, 2019, 40(5): 1071-1079. | |
81 | ALHWAIGE A A, ISHIDA H, QUTUBUDDIN S. Carbon aerogels with excellent CO2 adsorption capacity synthesized from clay-reinforced biobased chitosan-polybenzoxazine nanocomposites[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1286-1295. |
82 | DUERAMAE I, JUBSILP C, TAKEICHI T, et al. Thermal degradation mechanism of highly filled nano-SiO2 and polybenzoxazine[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(1): 435-446. |
83 | RAJAMANIKAM R, PICHAIMANI P, KUMAR M, et al. Optical and thermomechanical behavior of benzoxazine functionalized ZnO reinforced polybenzoxazine nanocomposites[J]. Polymer Composites, 2017, 38(9): 1881-1889. |
84 | RAMDANI N, DERRADJI M, WANG J, et al. Experimental and modeling of thermal and dielectric properties of aluminum nitride-reinforced polybenzoxazine hybrids[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(2): 561-570. |
1 | BURKE W J. 3,4-Dihydro-1,3,2H-benzoxazines. reaction of p-substituted phenols with N, N-dimethylolamines[J]. Journal of the American Chemical Society, 1949, 71(2): 609-612. |
2 | ZHANG H C, LI M, DENG Y Y, et al. A novel polybenzoxazine containing styrylpyridine structure via the Knoevenagel reaction[J]. Journal of Applied Polymer Science, 2014, 131(19): 40823. |
85 | BARJASTEH E, NARONGDEJ P, SHIPLEY W, et al. Development and characterization of graphite nanoplatelets filled copolymer of benzoxazine and epoxy[J]. Polymer Composites, 2020, 41(9): 3528-3540. |
86 | JUBSILP C, TAEWATTANA R, TAKEICHI T, et al. Investigation on rubber-modified polybenzoxazine composites for lubricating material applications[J]. Journal of Materials Engineering and Performance, 2015, 24(10): 3958-3968. |
3 | BRUNOVSKA Z, LIU J P, ISHIDA H. 1,3,5-Triphenylhexahydro-1,3,5-triazine - active intermediate and precursor in the novel synthesis of benzoxazine monomers and oligomers[J]. Macromolecular Chemistry and Physics, 1999, 200(7): 1745-1752. |
4 | LIN C H, CHANG S L, HSIEH C W, et al. Aromatic diamine-based benzoxazines and their high performance thermosets[J]. Polymer, 2008, 49(5): 1220-1229. |
87 | ZEGAOUI A, DERRADJI M, MA R K, et al. Silane-modified carbon fibers reinforced cyanate ester/benzoxazine resin composites: morphological, mechanical and thermal degradation properties[J]. Vacuum, 2018, 150: 12-23. |
88 | YUE J, HE L Q, ZHAO P, et al. Engineering benzoxazine/epoxy/imidazole blends with controllable microphase structures for toughness improvement[J]. ACS Applied Polymer Materials, 2020, 2(8): 3458-3464. |
5 | KIM H J, BRUNOVSKA Z, ISHIDA H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers[J]. Polymer, 1999, 40(23): 6565-6573. |
6 | ZHANG C X, DENG Y Y, ZHANG Y Y, et al. Study on products and reaction paths for synthesis of 3,4-dihydro-2H-3-phenyl-1,3-benzoxazine from phenol, aniline and formaldehyde[J]. Chinese Chemical Letters, 2015, 26(3): 348-352. |
7 | WANG H Y, ZHU R Q, YANG P, et al. A study on the chain propagation of benzoxazine[J]. Polymer Chemistry, 2016, 7(4): 860-866. |
8 | WANG Z, ZHAO J C, RAN Q C, et al. Research on curing mechanism and thermal property of bis-allyl benzoxazine and N, N'-(2, 2, 4-trimethylhexane-1, 6-diyl) dimaleimide blend[J]. Reactive and Functional Polymers, 2013, 73(4): 668-673. |
9 | XIN L, GU Y. Molecular modeling of the chain structures of polybenzoxazines[J]. Chemical Research in Chinese Universities, 2002, 18(3): 367-369. |
10 | LIU X, GU Y. Effects of molecular structure parameters on ring-opening reaction of benzoxazines[J]. Science in China (Series B), 2001, 44(5): 552-560. |
11 | ISHIDA H, SANDERS D P. Regioselectivity and network structure of difunctional alkyl-substituted aromatic amine-based polybenzoxazines[J]. Macromolecules, 2000, 33(22): 8149-8157. |
12 | LIU C, SHEN D M, SEBASTIÁN R M, et al. Mechanistic studies on ring-opening polymerization of benzoxazines: a mechanistically based catalyst design[J]. Macromolecules, 2011, 44(12): 4616-4622. |
13 | SUDO A, KUDOH R, NAKAYAMA H, et al. Selective formation of poly(N, O-acetal) by polymerization of 1,3-benzoxazine and its main chain rearrangement[J]. Macromolecules, 2008, 41(23): 9030-9034. |
14 | AGAG T, TAKEICHI T. Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets[J]. Macromolecules, 2003, 36(16): 6010-6017. |
15 | CHENG Y R, YANG J, JIN Y X, et al. Synthesis and properties of highly cross-linked thermosetting resins of benzocyclobutene-functionalized benzoxazine[J]. Macromolecules, 2012, 45(10): 4085-4091. |
16 | WANG Y Q, KOU K C, ZHUO L H, et al. Thermal, mechanical and dielectric properties of BMI modified by the bis allyl benzoxazine[J]. Journal of Polymer Research, 2015, 22(4): 1-8. |
17 | ZHANG X, MOHAMED M G, XIN Z, et al. A tetraphenylethylene-functionalized benzoxazine and copper(Ⅱ) acetylacetonate form a high-performance polybenzoxazine[J]. Polymer, 2020, 201: 122552. |
18 | WANG T, WANG Z C, PAN Z C, et al. Synthesis of novel allylamine-fluorene based benzoxazine and its copolymerization with typical benzoxazine: curing behavior and thermal properties[J]. New Journal of Chemistry, 2020, 44(43): 18917-18928. |
19 | DOGAN DEMIR K, KISKAN B, YAGCI Y. Thermally curable acetylene-containing main-chain benzoxazine polymers via sonogashira coupling reaction[J]. Macromolecules, 2011, 44(7): 1801-1807. |
20 | HUANG J X, DU W, ZHANG J, et al. Study on the copolymers of silicon-containing arylacetylene resin and acetylene-functional benzoxazine[J]. Polymer Bulletin, 2008, 62(2): 127-138. |
21 | CHERNYKH A, AGAG T, ISHIDA H. Effect of polymerizing diacetylene groups on the lowering of polymerization temperature of benzoxazine groups in the highly thermally stable, main-chain-type polybenzoxazines[J]. Macromolecules, 2009, 42(14): 5121-5127. |
22 | SUN L, ZHANG K, MIN C Y, et al. Synthesis, characterization and structural thermally rearrangement of ortho-amide functional benzoxazine containing acetylene group[J]. Thermochimica Acta, 2018, 668: 1-8. |
23 | AGAG T, TAKEICHI T. Novel benzoxazine monomers containing p-phenyl propargyl ether: polymerization of monomers and properties of polybenzoxazines[J]. Macromolecules, 2001, 34(21): 7257-7263. |
24 | ZHANG K, YU X Y. Catalyst-free and low-temperature terpolymerization in a single-component benzoxazine resin containing both norbornene and acetylene functionalities[J]. Macromolecules, 2018, 51(16): 6524-6533. |
25 | ZHANG K, SHANG Z K, EVANS C J, et al. Benzoxazine atropisomers: intrinsic atropisomerization mechanism and conversion to high performance thermosets[J]. Macromolecules, 2018, 51(19): 7574-7585. |
26 | ZHANG K, QIU J M, LI S J, et al. Remarkable improvement of thermal stability of main-chain benzoxazine oligomer by incorporating o-norbornene as terminal functionality[J]. Journal of Applied Polymer Science, 2017, 134(41): 45408. |
27 | OHASHI S, KILBANE J, HEYL T, et al. Synthesis and characterization of cyanate ester functional benzoxazine and its polymer[J]. Macromolecules, 2015, 48(23): 8412-8417. |
28 | SINGH A S, SHUKLA S K, PANDEY A K, et al. Synthesis and evaluation of catalytic curing behavior of novel nitrile-functionalized benzoxazine for phthalonitrile resins[J]. Polymer Bulletin, 2018, 75(8): 3781-3800. |
29 | YANG X L, LI K, XU M Z, et al. Designing a low-temperature curable phenolic/benzoxazine-functionalized phthalonitrile copolymers for high performance composite laminates[J]. Journal of Polymer Research, 2017, 24(11): 1-8. |
30 | ZOU X Q, YANG X L, XU M Z, et al. Curing behaviors and properties of allyl- and benzoxazine-functional phthalonitrile with improved processability[J]. Journal of Polymer Research, 2015, 23(1): 1-9. |
31 | ZHANG T, YAN H Q, FANG Z P, et al. Synthesis of aromatic diamine-based benzoxazines and effect of their backbone structure on thermal and flammability properties of polymers[J]. Chinese Journal of Polymer Science, 2013, 31(10): 1359-1371. |
32 | HARIHARAN A, SRINIVASAN K, MURTHY C, et al. A novel imidazole-core-based benzoxazine and its blends for high-performance applications[J]. Industrial & Engineering Chemistry Research, 2017, 56(33): 9347-9354. |
33 | ZHANG K, HAN M C, LIU Y Q, et al. Design and synthesis of bio-based high-performance trioxazine benzoxazine resin via natural renewable resources[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9399-9407. |
34 | PANG T, ZENG M, FENG Z J, et al. A facile method for the preparation of furfurylamine based benzoxazine resin with high-frequency low dielectric constants and ultra-low dielectric losses[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(9): 8358-8370. |
35 | GUNASEKARAN S G, RAJAKUMAR K, ALAGAR M, et al. Design and development of mesoporous silica reinforced skeletal modified triaryl pyridine core based polybenzoxazine (SBA-15/PBZ) nanocomposites[J]. International Journal of Plastics Technology, 2015, 19(2): 309-332. |
36 | GAINA C, URSACHE O, GAINA V, et al. High performance thermosets based on multifunctional intermediates containing allyl, maleimide and benzoxazine groups[J]. Journal of Polymer Research, 2013, 20(10): 1-11. |
37 | TAO G, YANG F, CHANG B, et al. Synthesis and properties of a benzoxazine monomer containing maleimide and biphenyl groups[J]. High Performance Polymers, 2021, 33(7): 825-831. |
38 | SHARMA A K, PRASAD S, SHARMA S K. Synthesis and characterization of novel benzoxazine-based arylidinyl succinimide derivatives[J]. Synthetic Communications, 2017, 47(20): 1854-1863. |
39 | WANG J, WANG H, LIU J T, et al. Synthesis, curing kinetics and thermal properties of novel difunctional chiral and achiral benzoxazines with double chiral centers[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1255-1264. |
40 | ZHANG W K, GAO X X, YU L L, et al. Silane-functional benzoxazine: synthesis, polymerization kinetics and thermal stability[J]. Polymer International, 2017, 66(6): 908-915. |
41 | LIU H, FU Z E, SONG F, et al. The controllable construction and properties characterization of organic-inorganic hybrid materials based on benzoxazine-bridged polysilsesquioxanes[J]. RSC Advances, 2017, 7(6): 3136-3144. |
42 | ZHANG W Z, JIANG N, ZHANG T T, et al. Preparation and properties of silane-modified cardanol-benzoxazine for hydrophobic coating[J]. Journal of Elastomers & Plastics, 2021, 53(4): 296-310. |
43 | ARSLAN M, KISKAN B, YAGCI Y. Benzoxazine-based thermoset with autonomous self-healing and shape recovery[J]. Macromolecules, 2018, 51(24): 10095-10103. |
44 | MUTHUKARUPPAN A, ARUMUGAM H, KRISHNAN S, et al. A low cure thermo active polymerization of chalcone based benzoxazine and cross linkable olefin blends[J]. Journal of Polymer Research, 2018, 25(8): 1-11. |
45 | LIN C H, CHIEN C K, CHEN C H, et al. Photo-sensitive benzoxazine Ⅱ: chalcone-containing benzoxazine and its photo and thermal-cured thermoset[J]. RSC Advances, 2017, 7(60): 37844-37851. |
46 | HE X Y, WANG J, WANG Y D, et al. Synthesis, thermal properties and curing kinetics of fluorene diamine-based benzoxazine containing ester groups[J]. European Polymer Journal, 2013, 49(9): 2759-2768. |
47 | GNANAPRAGASAM S, KRISHNAN S, ARUMUGAM H, et al. Synthesis and characterization of a novel high-performance benzoxazine from benzaldehyde-based bisphenol[J]. Advances in Polymer Technology, 2018, 37(8): 3056-3065. |
48 | LIU H, LIU Q Q, TIAN L, et al. Structural effects of highly π-conjugated mesogenic Schiff-base moiety on the cationic polymerization of benzoxazine and formation of ordered morphologies[J]. Reactive and Functional Polymers, 2018, 124: 139-148. |
49 | SINI N K, AZECHI M, ENDO T. Synthesis and properties of spiro-centered benzoxazines[J]. Macromolecules, 2015, 48(20): 7466-7472. |
50 | ZENG K, LI H, SHI H X, et al. Synthesis and thermal properties of silicon-containing benzoxazine[J]. High Performance Polymers, 2020, 32(1): 59-64. |
51 | YANG J X, JIA Y, LI P N, et al. Tribological properties of bismaleimide reinforced with Si-containing benzoxazine monomer[J]. High Performance Polymers, 2021, 33(7): 751-759. |
52 | GOTO M, YAJIMA T, MINAMI M, et al. Synthesis and cross-linking of a benzoxazine-containing anthracene moiety: thermally stable photoluminescent benzoxazine resin[J]. Macromolecules, 2020, 53(15): 6640-6648. |
53 | ZHANG T T, MEN W W, LIU Y, et al. Synthesis and characterization of polybenzoxazine containing phosphorus[J]. Chinese Journal of Polymer Science, 2012, 30(2): 250-257. |
54 | SU H X, LIU Z G. The structure and thermal properties of novel DOPO-containing 1,3-benzoxazines[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1207-1215. |
55 | WANG M W, LIN C H, JUANG T Y. Steric hindrance control synthesis of primary amine-containing benzoxazines and properties of the resulting poly(benzoxazine imide) thermosetting films[J]. Macromolecules, 2013, 46(22): 8853-8863. |
56 | MA H X, ZHAO C, QIU J J, et al. Synthesis of branched benzoxazine monomers with high molecular mass, wide processing window, and properties of corresponding polybenzoxazines[J]. Journal of Applied Polymer Science, 2017, 134(6): 44453. |
57 | XIA Y Q, LIN Y F, RAN Q C, et al. Modification of benzoxazine with aryl-ether-ether-ketone diphenol: preparation and characterization[J]. RSC Advances, 2017, 7(3): 1617-1625. |
58 | SHARMA P, LOCHAB B, KUMAR D, et al. Sustainable bis-benzoxazines from cardanol and PET-derived terephthalamides[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1085-1093. |
59 | ZENG M, CHEN J B, XU Q Y, et al. A facile method for the preparation of aliphatic main-chain benzoxazine copolymers with high-frequency low dielectric constants[J]. Polymer Chemistry, 2018, 9(21): 2913-2925. |
60 | KHAN M, HALDER K, SHISHATSKIY S, et al. Synthesis and crosslinking of polyether-based main chain benzoxazine polymers and their gas separation performance[J]. Polymers, 2018, 10(2): 221. |
61 | SONG J, LEE J, KIM H. A study on the thermal properties of polyetheramine modified polybenzoxazines[J]. Macromolecular Research, 2014, 22(2): 179-186. |
62 | THAWEECHAI T, KAEWVILAI A. Benzoxazine grafted poly(γ-glutamic acid) functional material: synthesis, characterization and photophysical properties[J]. Materials Chemistry and Physics, 2019, 227: 117-122. |
63 | WANG H, WANG J, FENG T T, et al. Synthesis, curing behavior, and thermal properties of fluorene-based benzoxazine-endcapped copoly(ether ketone ketone)s[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(3): 1913-1921. |
64 | XU Q Y, ZENG M, CHEN J B, et al. Synthesis, polymerization kinetics, and high-frequency dielectric properties of novel main-chain benzoxazine copolymers[J]. Reactive and Functional Polymers, 2018, 122: 158-166. |
65 | ZHANG L, YANG Y, CHEN Y X, et al. Cardanol-capped main-chain benzoxazine oligomers for resin transfer molding[J]. European Polymer Journal, 2017, 93: 284-293. |
66 | LIN R C, KUO S W. Well-defined benzoxazine/triphenylamine-based hyperbranched polymers with controlled degree of branching[J]. RSC Advances, 2018, 8(24): 13592-13611. |
67 | LIN R C, MOHAMED M G, KUO S W. Benzoxazine/triphenylamine-based dendrimers prepared through facile one-pot Mannich condensations[J]. Macromolecular Rapid Communications, 2017, 38(16): 1700251. |
[1] | 杨志强, 曾纪珺, 马义丁, 尉涛, 赵波, 刘英哲, 张伟, 吕剑, 李兴文, 张博雅, 唐念, 李丽, 孙东伟. 六氟化硫替代气体的研究现状及未来发展趋势[J]. 化工进展, 2023, 42(8): 4093-4107. |
[2] | 刘朝军, 刘俊杰, 丁伊可, 张建青. 高效空气过滤用PTFE膜材料的结构和性能[J]. 化工进展, 2022, 41(8): 4367-4374. |
[3] | 唐坤, 刘奇磊, 张磊, 刘琳琳, 都健, 孟庆伟. 基于高阶基团贡献法与COSMO-SAC模型的溶剂设计方法[J]. 化工进展, 2021, 40(S2): 48-55. |
[4] | 屈孟男, 姚亚丽, 何金梅, 冯娟, 刘珊珊. 减摩抗磨类新型润滑油添加剂的研究进展[J]. 化工进展, 2016, 35(07): 2156-2165. |
[5] | 李万捷,林殷雷,郑玉刚. MDI-50型聚氨酯弹性体的合成及性能 [J]. 化工进展, 2011, 30(7): 1542-. |
[6] | 宁英男,薛秋梅,毛国梁,姜 涛. 乙烯四聚催化体系双膦胺配体的结构与性能 [J]. 化工进展, 2011, 30(5): 1003-. |
[7] | 许俊强,郭 芳,全学军,赵清华,储 伟. 焦化废水中的杂环化合物及多环芳烃降解的研究进展 [J]. 化工进展, 2008, 27(7): 973-. |
[8] | 张新民,冯恩娟,徐正华,严 生. 聚羧酸类减水剂的分子设计与结构性能关系 [J]. 化工进展, 2008, 27(6): 913-. |
[9] | 张学岗,张军保,宋 静,宋海华. 基于MGASA的计算机辅助分子设计 [J]. 化工进展, 2008, 27(12): 2019-. |
[10] | 潘红霞,肖明宇,陈大俊. 聚氨酯/丙烯酸酯复合乳液的制备方法及性能研究进展 [J]. 化工进展, 2006, 25(9): 1064-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |