1 |
HEIDMANN Ilona, CALMANO Wolfgang. Removal of Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Ag(Ⅰ) and Cr(Ⅵ) present in aqueous solutions by aluminium electrocoagulation[J]. Journal of Hazardous Materials, 2008, 152(3): 934-941.
|
2 |
郑金鑫, 邱春生, 王晨晨, 等. Fenton处理对污泥脱水性、重金属形态及生物淋滤效率影响[J]. 化工进展, 2020, 39(2): 805-811.
|
|
ZHENG Jinxin, QIU Chunsheng, WANG Chenchen, et al. Effects of Fenton treatment on sewage sludge dewaterability, heavy metal speciation and leaching efficiency[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 805-811.
|
3 |
何尚卫, 张雷, 张超, 等. 工业污水处理厂生化出水氨氮周年变化及原因分析[J]. 化工进展, 2018, 37(9): 3691-3698.
|
|
HE Shangwei, ZHANG Lei, ZHANG Chao, et al. Annual variations and the cause of the ammonia nitrogen concentration in effluent of a chemical industrial wastewater treatment[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3691-3698.
|
4 |
唐志强, 张亮, 朱恂, 等. 不同Cu2+浓度下热再生氨电池产电及Cu2+去除特性[J]. 化工学报, 2019, 70(12): 4804-4810.
|
|
TANG Zhiqiang, ZHANG Liang, ZHU Xun, et al. Effect of Cu2+ concentration in cathode on power generation and copper removal of thermally regenerative ammonia-based battery[J]. CIESC Journal, 2019, 70(12): 4804-4810.
|
5 |
张厚, 施力匀, 杨春, 等. 电镀废水处理技术研究进展[J]. 电镀与精饰, 2018, 40(2): 36-41.
|
|
ZHANG Hou, SHI Liyun, YANG Chun, et al. Research progress of electroplating wastewater treatment technology[J]. Plating & Finishing, 2018, 40(2): 36-41.
|
6 |
VERMA Anamika, BISHNOI Narsi R, GUPTA Asha. Optimization study for Pb(Ⅱ) and COD sequestration by consortium of sulphate-reducing bacteria[J]. Applied Water Science, 2017, 7(5): 2309-2320.
|
7 |
LI Xiaofan, SHI Shaoyuan, CAO Hongbin, et al. Comparative study of chromium(Ⅵ) removal from simulated industrial wastewater with ion exchange resins[J]. Russian Journal of Physical Chemistry A, 2018, 92(6): 1229-1236.
|
8 |
LI Huosheng, CHEN Yongheng, LONG Jianyou, et al. Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins[J]. Journal of Hazardous Materials, 2017, 333: 179-185.
|
9 |
LEE Changgu, LEE Soonjae, PARK Jeong-Ann, et al. Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam[J]. Chemosphere, 2017, 166: 203-211.
|
10 |
PARK Jeong Ann, KANG Jin Kyu, LEE Seung Chan, et al. Electrospun poly(acrylic acid)/poly(vinyl alcohol) nanofibrous adsorbents for Cu(Ⅱ) removal from industrial plating wastewater[J]. RSC Advances, 2017, 7(29): 18075-18084.
|
11 |
JESUS J M S, SCARAZZATO T, TENÓRIO J A S, et al. Permselectivity study of ion-exchange membranes in the presence of Cu-HEDP complexes from a copper plating wastewater treatment[M]//WANG S, FREE M, ALAM S, et al. Applications of process engineering principles in materials processing, energy and environmental technologies. Cham: Springer, 2017: 549-554.
|
12 |
SUN Hao, WANG Han, WANG He, et al. Enhanced removal of heavy metals from electroplating wastewater through electrocoagulation using carboxymethyl chitosan as corrosion inhibitor for steel anode[J]. Environmental Science: Water Research & Technology, 2018, 4(8): 1105-1113.
|
13 |
MIN Kyung Jin, CHOI Su Young, JANG Deokjin, et al. Separation of metals from electroplating wastewater using electrodialysis[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(20): 2471-2480.
|
14 |
周杰, 宋小三, 王三反. 水处理电絮凝技术的研究进展与挑战[J]. 化工进展, 2020, 39(S2): 329-335.
|
|
ZHOU Jie, SONG Xiaosan, WANG Sanfan. Research progress and challenge of electrocoagulation technology in water treatment[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 329-335.
|
15 |
ZHANG Fang, LIU Jia, YANG Wulin, et al. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power[J]. Energy & Environmental Science, 2015, 8(1): 343-349.
|
16 |
ZHANG Fang, LABARGE Nicole, YANG Wulin, et al. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures[J]. ChemSusChem, 2015, 8(6): 1043-1048.
|
17 |
RAHIMI Mohammad, Adriana D'ANGELO, GORSKI Christopher A, et al. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery[J]. Journal of Power Sources, 2017, 351: 45-50.
|
18 |
李彦翔, 张亮, 朱恂, 等. 传质对热可再生氨电池性能的影响[J]. 工程热物理学报, 2019, 40(3): 668-671.
|
|
LI Yanxiang, ZHANG Liang, ZHU Xun, et al. Effect of mass transfer on the performance of membrane electrode assembly typed thermally regenerative ammonia-based battery[J]. Journal of Engineering Thermophysics, 2019, 40(3): 668-671.
|
19 |
ZHU Xiuping, RAHIMI Mohammad, GORSKI Christopher A, et al. A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat[J]. ChemSusChem, 2016, 9(8): 873-879.
|
20 |
ZHANG Liang, LI Yanxiang, ZHU Xun, et al. Copper foam electrodes for increased power generation in thermally regenerative ammonia-based batteries for low-grade waste heat recovery[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7408-7415.
|
21 |
张永胜, 张亮, 李俊, 等. 采用泡沫铜电极的热再生氨电池性能数值模拟[J]. 化工学报, 2020, 71(8): 3770-3779.
|
|
ZHANG Yongsheng, ZHANG Liang, LI Jun, et al. Numerical simulation of performance of thermally regenerative ammonia-based battery with copper foam electrode[J]. CIESC Journal, 2020, 71(8): 3770-3779.
|
22 |
RAHIMI Mohammad, ZHU Liang, KOWALSKI Kelly L, et al. Improved electrical power production of thermally regenerative batteries using a poly(phenylene oxide) based anion exchange membrane[J]. Journal of Power Sources, 2017, 342: 956-963.
|
23 |
RAHIMI Mohammad, KIM Taeyoung, GORSKI Christopher A, et al. A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity[J]. Journal of Power Sources, 2018, 373: 95-102.
|
24 |
WANG Weiguang, SHU Gequn, ZHU Xiuping, et al. Decoupled electrolytes towards enhanced energy and high temperature performance of thermally regenerative ammonia batteries[J]. Journal of Materials Chemistry A, 2020, 8(25): 12351-12360.
|
25 |
VICARI Fabrizio, Adriana D’ANGELO, KOUKO Yohan, et al. On the regeneration of thermally regenerative ammonia batteries[J]. Journal of Applied Electrochemistry, 2018, 48(12): 1381-1388.
|
26 |
RAHIMI Mohammad, SCHOENER Zachary, ZHU Xiuping, et al. Removal of copper from water using a thermally regenerative electrodeposition battery[J]. Journal of Hazardous Materials, 2017, 322: 551-556.
|
27 |
陈莎莎. 改进版分光光度法测定水中铜离子浓度[J]. 环球市场信息导报, 2014(29): 224.
|
|
CHEN Shasha. Determination of copper ion concentration in water by improved spectrop-hotometry[J]. Global Marhet Information Guide, 2014(29): 224.
|
28 |
杨润萍, 李晓霞, 丁磊, 等. 污染水中铜离子浓度的快速测定[J]. 中国卫生检验杂志, 2007, 17(12): 2217-2218, 2345.
|
|
YANG Runping, LI Xiaoxia, DING Lei, et al. Determination of copper ions in polluted water[J]. Chinese Journal of Health Laboratory Technology, 2007, 17(12): 2217-2218, 2345.
|
29 |
石雨, 张亮, 李俊, 等. 热再生电池氨再生过程强化[J]. 化工学报, 2020, 71(S2): 253-258.
|
|
SHI Yu, ZHANG Liang, LI Jun, et al. Enhanced ammonia regeneration of thermal regenerated batteries[J]. CIESC Journal, 2020, 71(S2): 253-258.
|
30 |
SHI Yu, ZHANG Liang, LI Jun, et al. Cu/Ni composite electrodes for increased anodic coulombic efficiency and electrode operation time in a thermally regenerative ammonia-based battery for converting low-grade waste heat into electricity[J]. Renewable Energy, 2020, 159: 162-171.
|
31 |
孙红, 庄凯明, 喻明富, 等. 全钒液流电池传质及电流分布[J]. 工程热物理学报, 2017, 38(3): 568-574.
|
|
SUN Hong, ZHUANG Kaiming, YU Mingfu, et al. The mass transfer and current distribution of vanadium redox flow battery[J]. Journal of Engineering Thermophysics, 2017, 38(3): 568-574.
|
32 |
姚森, 何雅玲, 席奂. 微生物燃料电池阳极生物膜传质模拟[J]. 工程热物理学报, 2013, 34(10): 1918-1921.
|
|
YAO Sen, HE Yaling, XI Huan. Simulation of the mass transfer in anodic biofilm of a microbial fuel cell[J]. Journal of Engineering Thermophysics, 2013, 34(10): 1918-1921.
|
33 |
WANG Weiguang, SHU Gequn, TIAN Hua, et al. Removals of Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ) and Ag(Ⅰ) from wastewater and electricity generation by bimetallic thermally regenerative electro-deposition batteries[J]. Separation and Purification Technology, 2020, 235: 116230.
|