化工进展 ›› 2022, Vol. 41 ›› Issue (6): 2839-2851.DOI: 10.16085/j.issn.1000-6613.2021-1606
收稿日期:
2021-07-29
修回日期:
2021-09-01
出版日期:
2022-06-10
发布日期:
2022-06-21
通讯作者:
赵立新
作者简介:
车中俊(1996—),男,硕士研究生,研究方向为流体机械。E-mail:基金资助:
CHE Zhongjun1(), ZHAO Lixin1,2(), GE Yiqing1
Received:
2021-07-29
Revised:
2021-09-01
Online:
2022-06-10
Published:
2022-06-21
Contact:
ZHAO Lixin
摘要:
概述了国内外基于磁场来强化非均相介质分离的研究进展,对相关的强化方法进行了分析和对比。根据磁场作用的非均相介质类别介绍了不同领域磁场辅助多相介质分离技术、设备及工作原理,如磁选机、涡电流分选机、重介质磁力旋流器、磁盘分离器、磁场辅助分离气-固旋流器、磁流化床等。根据应用领域可简要概括为磁场辅助固体分离(具有不同导磁性的固体)、气-固分离、固-液分离、液-液分离等。总结了磁场分布、磁场与颗粒作用、磁场与流场耦合的模拟方法,为磁场强化多相介质分离提供依据。针对普通设备分离能力存在的瓶颈问题,文中提出应综合考虑磁场与设备操作参数等因素以最大限度提高分离效率,应加强磁场与流场耦合研究并将磁场强化分离领域扩大至非磁性流体。
中图分类号:
车中俊, 赵立新, 葛怡清. 磁场强化多相介质分离技术进展[J]. 化工进展, 2022, 41(6): 2839-2851.
CHE Zhongjun, ZHAO Lixin, GE Yiqing. Development status of magnetic field intensificating separation of multiphase media[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2839-2851.
待提纯介质 | 入料(混合相) | 磁场源位置及作用区域 | 电流或 电压 | 磁场强度 /A·m-1 | 固体分离效率提高 | 参考文献 |
---|---|---|---|---|---|---|
10μm钛铁矿 | 10g/L钛铁矿悬浮液 | 入口 | — | — | 底流产率73%→81% | [ |
磁种子 | 30%磁种子絮体溶液 | 锥段(距底流口100mm) | 2A | — | 磁种子回收率88%→98.1% | [ |
12.5~3000μm原煤 | 1.3~2.0g/cm3粗煤泥 | 柱锥交界面上下40mm | 5A | 1300(轴向)1684(径向) | 精煤灰分11.59%→15.79% | [ |
柱锥交界面下120mm处 | 5A | 1977(径向) | 底流分选密度增加0.22g/cm3 | [ | ||
45~74μm钛铁矿 | 浓度为15%钛铁矿浆液 | 锥段 | 10A | 6349(轴向) 1398(径向) | 铁品味61.49%→98.96%, 矿浆浓度15%→48.83% | [ |
原煤 | 1.4g/cm3粗煤泥 | 底流段 | — | 735929(轴向) | 底流分选密度1.95g/cm3→2.1g/cm3 | [ |
1~100μm磁铁矿 | 1.5%~30%固体矿浆 | 溢流段 | 60V | — | 矿渣回收率90%→99.9% | [ |
黄铁矿 | 浓度为66%黄铁矿浆液 | 底流段 | 0.3A | 14285(轴向) | 磁铁矿品位66%→67.5% | [ |
表1 固-液旋流器在施加磁场前后的参数对比
待提纯介质 | 入料(混合相) | 磁场源位置及作用区域 | 电流或 电压 | 磁场强度 /A·m-1 | 固体分离效率提高 | 参考文献 |
---|---|---|---|---|---|---|
10μm钛铁矿 | 10g/L钛铁矿悬浮液 | 入口 | — | — | 底流产率73%→81% | [ |
磁种子 | 30%磁种子絮体溶液 | 锥段(距底流口100mm) | 2A | — | 磁种子回收率88%→98.1% | [ |
12.5~3000μm原煤 | 1.3~2.0g/cm3粗煤泥 | 柱锥交界面上下40mm | 5A | 1300(轴向)1684(径向) | 精煤灰分11.59%→15.79% | [ |
柱锥交界面下120mm处 | 5A | 1977(径向) | 底流分选密度增加0.22g/cm3 | [ | ||
45~74μm钛铁矿 | 浓度为15%钛铁矿浆液 | 锥段 | 10A | 6349(轴向) 1398(径向) | 铁品味61.49%→98.96%, 矿浆浓度15%→48.83% | [ |
原煤 | 1.4g/cm3粗煤泥 | 底流段 | — | 735929(轴向) | 底流分选密度1.95g/cm3→2.1g/cm3 | [ |
1~100μm磁铁矿 | 1.5%~30%固体矿浆 | 溢流段 | 60V | — | 矿渣回收率90%→99.9% | [ |
黄铁矿 | 浓度为66%黄铁矿浆液 | 底流段 | 0.3A | 14285(轴向) | 磁铁矿品位66%→67.5% | [ |
模拟方向 | 研究对象 | 模拟软件 | 模拟类型 (瞬态/稳态) | 模拟方法及步骤 | 参考文献 |
---|---|---|---|---|---|
磁系磁场分布 | 盘式永磁铁 | — | — | 计算机编程 | [ |
直角三角形线圈 | MATLAB | [ | |||
矩形永磁铁 | ANSYS | 稳态 | 创建物理环境;建立模型;划分网格;设置激励条件;求解 | [ | |
组合线圈 (变截面形状) | [ [ | ||||
电磁铁 (线圈缠绕导磁材料) | [ [ | ||||
磁场作用下颗粒的运动特性 | 塑料颗粒 | COMSOL | — | — | [ |
磁性颗粒 | — | 计算机编程 | [ | ||
MATLAB | [ | ||||
COMSOL | 瞬态 | 导入模型;选择物理场并分步模拟;设置磁场边界条件;求解 | [ | ||
导电水溶液 | ANSYS | 稳态 | 编程得到自定义程序UDF;UDF导入FLUENT;设置边界条件;求解 | [ | |
磁场与流场耦合 | |||||
[ | |||||
金属熔体 | ANSYS+MATLAB | 稳态、瞬态 | 将ANSYS模拟磁场数据通过MATLAB导入至FLUENT;设置MHD模块边界条件;求解 | [ | |
[ |
表2 磁场数值模拟方法对比
模拟方向 | 研究对象 | 模拟软件 | 模拟类型 (瞬态/稳态) | 模拟方法及步骤 | 参考文献 |
---|---|---|---|---|---|
磁系磁场分布 | 盘式永磁铁 | — | — | 计算机编程 | [ |
直角三角形线圈 | MATLAB | [ | |||
矩形永磁铁 | ANSYS | 稳态 | 创建物理环境;建立模型;划分网格;设置激励条件;求解 | [ | |
组合线圈 (变截面形状) | [ [ | ||||
电磁铁 (线圈缠绕导磁材料) | [ [ | ||||
磁场作用下颗粒的运动特性 | 塑料颗粒 | COMSOL | — | — | [ |
磁性颗粒 | — | 计算机编程 | [ | ||
MATLAB | [ | ||||
COMSOL | 瞬态 | 导入模型;选择物理场并分步模拟;设置磁场边界条件;求解 | [ | ||
导电水溶液 | ANSYS | 稳态 | 编程得到自定义程序UDF;UDF导入FLUENT;设置边界条件;求解 | [ | |
磁场与流场耦合 | |||||
[ | |||||
金属熔体 | ANSYS+MATLAB | 稳态、瞬态 | 将ANSYS模拟磁场数据通过MATLAB导入至FLUENT;设置MHD模块边界条件;求解 | [ | |
[ |
59 | 金乔. 底流型磁力旋流器分选铁矿的理论分析与试验研究[D]. 武汉: 武汉科技大学, 2015. |
JIN Q. The theoretical analysis and experimental research on separating iron ore in magnetic hydrocyclong which is underflow style[D]. Wuhan: Wuhan University of Science and Technology, 2015. | |
60 | 郭娜娜, 李茂林, 崔瑞, 等. 溢流型磁力旋流器径向磁场分析[J]. 矿冶工程, 2013, 33(5): 59-62. |
GUO N N, LI M L, CUI R, et al. Analysis of radial magnetic field of overflow magnetic cyclone[J]. Mining and Metallurgical Engineering, 2013, 33(5): 59-62. | |
1 | 赵婷婷. 磁处理油水分离的数值模拟研究[D]. 东营: 中国石油大学(华东), 2018. |
ZHAO T T. Numerical simulation study magnetic treatment technology for oil-water separation[D]. Dongying: China University of Petroleum (East China), 2018. | |
61 | WALKER M S, DEVERNOE A L. Mineral separations using rotating magnetic fluids[J]. International Journal of Mineral Processing, 1991, 31(3/4): 195-216. |
62 | Троцчкцǔ B B, Несветов B B, 茅志一. 电磁水力旋流器工作的研究[J]. 国外金属矿选矿, 1965, 2(9): 37-38. |
2 | CAI R, YANG H W, HE J S, et al. The effects of magnetic fields on water molecular hydrogen bonds[J]. Journal of Molecular Structure, 2009, 938(1/2/3):15-19. |
3 | SUTHERS S P, NUNNA V, TRIPATHI A, et al. Experimental study on the beneficiation of low-grade iron ore fines using hydrocyclone desliming, reduction roasting and magnetic separation[J]. Mineral Processing and Extractive Metallurgy, 2014, 123(4): 212-227. |
62 | Троцчкцǔ B B, Несветов B B, MAO Z Y. Study of electromagnetic hydrocyclone[J]. Mineral Processing of Foreign Metal Ores, 1965, 2(9): 37-38. |
63 | WATSON J L. Cycloning in magnetic fields[C]//presented at the SME-AIME Fall Meeting and Exhibit. Salt Lake City, USA. 1983: 335. |
4 | FREEMAN R J, ROWSON N A, VEASEY T J, et al. The development of a magnetic hydrocyclone for processing finely-ground magnetite[J]. Magnetics IEEE Transactions on Magnetics, 1994, 30(6): 4665-4667. |
5 | SVOBODA J, COETZEE C, CAMPBELL Q P. Experimental investigation into the application of a magnetic cyclone for dense medium separation[J]. Minerals Engineering, 1998, 11(6): 501-509. |
6 | 樊盼盼, 刘翼洲, 董连平, 等. 磁场强度对煤泥重介旋流器分选效果影响研究[J]. 中国矿业, 2020, 29(4): 163-167. |
FAN P P, LIU Y Z, DONG L P, et al. Study on the separation effect of slurry dense medium cyclone affected by magnetic field intensity[J]. China Mining Magazine, 2020, 29(4): 163-167. | |
7 | SONG C M, PEI B B, JIANG M T, et al. Numerical analysis of forces exerted on particles in cyclone separators[J]. Powder Technology, 2016, 294(1): 437-448. |
8 | LI W S, ZHENG A M, LIU J, et al. Gas-assisted low-field magnetic separation for efficient recovery of contaminants-loaded magnetic nanoparticles from large volume water solution[J]. Separation and Purification Technology, 2020, 248: 117016. |
9 | ZHANG J P, ZHA Z T, CHE P, et al. Theoretical study on submicron particle escape reduced by magnetic confinement effect in low inlet speed electrostatic cyclone precipitators[J]. Powder Technology, 2018, 339: 1005-1011. |
10 | SAFIKHANI H, ALLAHDADI S. The effect of magnetic field on the performance of new design cyclone separators[J]. Advanced Powder Technology, 2020, 31(6): 2541-2554. |
11 | 刘琳. 油水分离磁芯旋流器的结构设计与性能研究[D]. 大庆: 东北石油大学, 2018. |
LIU L. Structure design and performance study on an oil-water separation magnetic hydrocyclone[D]. Daqing: Northeast Petroleum University, 2018. | |
64 | FRICKER A G, 刘振中. 磁力水力旋流器[J]. 国外金属矿选矿, 1987(3): 34-40. |
FRICKER A G, LIU Z Z. Magnetic hydrocylone[J]. Metallic Ore Dressing Abroad, 1987(3): 34-40. | |
65 | SHEN G, FINCH J A. Theoretical analysis of multipole magnetic hydrocyclones[J]. Canadian Metallurgical Quarterly, 1990, 29(3): 171-176. |
66 | 褚良银, 罗茜. 磁力水力旋流器[J]. 中国矿业, 1993, 2(4): 73-75. |
CHU L Y, LUO Q. Magnetic hydrocylones[J]. China Mining Magazine, 1993, 2(4): 73-75. | |
67 | 徐少华, 林恬盛, 张军, 等. 超薄稀土磁盘分离机的研制与应用研究[J]. 现代矿业, 2020, 36(2): 84-87. |
XU S H, LIN T S, ZHANG J, et al. Development and application of ultra thin rare earth magnetic disk separator[J]. Modern Mining, 2020, 36(2): 84-87. | |
68 | 陈显利, 焦雨红, 张浩, 等. 超导磁分离在造纸厂污水净化中的应用[J]. 科技导报, 2009, 27(3): 61-66. |
CHEN X L, JIAO Y H, ZHANG H, et al. Superconducting magnetic separation and its application in the purification of wastewater in paper factories[J]. Science & Technology Review, 2009, 27(3): 61-66. | |
69 | 燕婧. 超磁分离技术在干河煤矿矿井水处理中的应用[J]. 山东煤炭科技, 2021, 39(3): 177-178, 181. |
12 | 王利平, 胡原君, 陈毅忠, 等. 表面改性磁种-磁滤技术处理含油废水的研究[J]. 水处理技术, 2008, 34(2): 50-53. |
WANG L P, HU Y J, CHEN Y Z, et al. Treatment of oily wastewater by magnetic seed-magnetic filtration with surface modified[J]. Technology of Water Treatment, 2008, 34(2): 50-53. | |
13 | 张志柳. 磁场强化MP-MBR法处理船舶含油污水效能及减缓膜污染研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. |
ZHANG Z L. Analysis on efficiency of magnetic field improved MP-MBR for vessel oily wastewater treatment and membrane fouling control[D]. Harbin: Harbin Engineering University, 2016. | |
14 | 张庆范, 赵建平, 安伟, 等. 电磁流体技术在海面薄油层回收中的应用[J]. 船海工程, 2017, 46(5): 130-133, 137. |
ZHANG Q F, ZHAO J P, AN W, et al. Application of electromagnetic fluid technology in thin oil layer recovery on the sea[J]. Ship & Ocean Engineering, 2017, 46(5): 130-133, 137. | |
15 | ZOU Q C, JIE J C, LIU S C, et al. Effect of traveling magnetic field on separation and purification of Si from Al–Si melt during solidification[J]. Journal of Crystal Growth, 2015, 429: 68-73. |
16 | STENER J F, CARLSON J E, PÅLSSON, B I, et al. Direct measurement of internal material flow in a bench scale wet low-intensity magnetic separator[J]. Minerals Engineering, 2016, 91: 55-65. |
17 | 周鑫. 干式磁选机在非金属矿磁选中的应用——干式对辊强磁选机[J]. 中国设备工程, 2021(1): 253-254. |
ZHOU X. Application of dry magnetic separators in magnetic separation of non-metallic minerals —— dry high intensity magnetic separators with opposite rollers[J]. China Plant Engineering, 2021(1): 253-254. | |
18 | BAAWUAH E, KELSEY C, ADDAI-MENSAH J, et al. Assessing the performance of a novel pneumatic magnetic separator for the beneficiation of magnetite ore[J]. Minerals Engineering, 2020, 156: 106483. |
19 | 黄俊玮, 程晓峰, 李洪潮, 等. 新型干式永磁磁选机在非金属矿中的应用[J]. 矿冶工程, 2021, 41(2): 44-47. |
HUANG J W, CHENG X F, LI H C, et al. Application of new-type dry permanent magnetic separator in processing of non-metallic ore[J]. Mining and Metallurgical Engineering, 2021, 41(2): 44-47. | |
20 | YE F P, REN X J, LIAO G P, et al. Mathematical model and experimental investigation for eddy current separation of nonferrous metals[J]. Results in Physics, 2020, 17: 103170. |
21 | LUNGU M H, SCHLETT Z. Vertical drum eddy-current separator with permanent magnets[J]. International Journal of Mineral Processing, 2001, 63(4): 207-216. |
22 | SCHLETT Z, LUNGU M. Eddy-current separator with inclined magnetic disc[J]. Minerals Engineering, 2002, 15(5): 365-367. |
23 | LUNGU M H. Separation of small nonferrous particles using an angular rotary drum eddy-current separator with permanent magnets[J]. International Journal of Mineral Processing, 2005, 78(1): 22-30. |
24 | LUNGU M H. Separation of small nonferrous particles using a two successive steps eddy-current separator with permanent magnets[J]. International Journal of Mineral Processing, 2009, 93(2): 172-178. |
25 | TRIPATHY S K, SURESH N. Influence of particle size on dry high-intensity magnetic separation of paramagnetic mineral[J]. Advanced Powder Technology, 2017, 28(3): 1092-1102. |
26 | TRIPATHY S K, BANERJEE P K, SURESH N. Separation analysis of dry high intensity induced roll magnetic separator for concentration of hematite fines[J]. Powder Technology, 2014, 264: 527-535. |
27 | ZHANG Z X, YAN G H, ZHU G Q, et al. Using microwave pretreatment to improve the high-gradient magnetic-separation desulfurization of pulverized coal before combustion[J]. Fuel, 2020, 274: 117826. |
28 | NORRGRAN D, SHUTTLEWORTH T, RASMUSSEN G. Updated magnetic separation techniques to improve grinding circuit efficiency[J]. Minerals Engineering, 2004, 17(11/12): 1287-1291. |
29 | KIM B J, CHO K H, CHANG B, et al. Sequential microwave roasting and magnetic separation for removal of Fe and Ti impurities in low-grade pyrophyllite ore from Wando mine, South Korea[J]. Minerals Engineering, 2019, 140: 105881. |
30 | 曹丽英, 刘文凯, 汪建新, 等. 新型干式磁选机分选品位影响因素试验研究[J]. 金属矿山, 2020(9): 197-201. |
CAO L Y, LIU W K, WANG J X, et al. Experimental study on influence factors of separation grade of a new type dry magnetic separator[J]. Metal Mine, 2020(9): 197-201. | |
31 | ZENG S L, ZENG W L, REN L Y, et al. Development of a high gradient permanent magnetic separator (HGPMS)[J]. Minerals Engineering, 2015, 71: 21-26. |
69 | YAN J. Application of ultra-magnetic separation technology in mine water treatment of Ganhe coal mine[J]. Shandong Coal Science and Technology, 2021, 39(3): 177-178, 181. |
70 | 郑利兵, 佟娟, 魏源送, 等. 磁分离技术在水处理中的研究与应用进展[J]. 环境科学学报, 2016, 36(9): 3103-3117. |
ZHENG L B, DONG J, WEI Y S, et al. The progress of magnetic separation technology in water treatment[J]. Acta Scientiae Circumstantiae, 2016, 36(9): 3103-3117. | |
71 | 王哲晓, 吕志国, 张勤. 超磁分离水体净化技术在水环境领域的典型应用[J]. 中国给水排水, 2016, 32(12): 34-37. |
WANG Z X, LU Z G, ZHANG Q. Typical application of ReCoMag system in water environment[J]. China Water & Wastewater, 2016,32(12): 34-37. | |
72 | 倪明亮, 郑朝勇, 张超, 等. 超磁分离技术在矿井水处理中的应用[C]//中国煤炭加工利用协会. 2010煤炭工业节能减排与发展循环经济论文集. 2010: 8. |
NI M L, ZHENG C Y, ZHANG C, et al. Application of super magnetic separation technology in mine water treatment[C]//China Coal Processing and Utilization Association. 2010 Papers on Energy Saving, Emission Reduction and Development of Circular Economy in Coal Industry. Beijing, 2010: 8. | |
73 | 周建忠, 靳云辉, 罗本福. 超磁分离水体净化技术在北小河污水处理厂的应用[J]. 中国给水排水, 2012, 28(6): 78-81. |
ZHOU J Z, JIN Y H, LUO B F. Application of superconducting magnetic separation water purification technology in Beixiaohe wastewater treatment plant[J]. China Water & Wastewater, 2012, 28(6): 78-81. | |
32 | 曾平, 周涛, 陈冠群, 等. 磁场流化床的研究与应用[J]. 化工进展, 2006, 25(4): 371-377. |
ZENG P, ZHOU T, CHEN G Q, et al. Research and application of magnetic fluidized bed[J]. Chemical Industry and Engineering Progress, 2006, 25(4): 371-377. | |
33 | 谷林鸿. 气固两相流对旋流除砂器壁面磨损影响因素的研究[D]. 西安: 西安石油大学, 2016. |
GU L H. Study on the influencing factors of cyclone desander’s wall rrosion caused by gas-solid two-phase flow[D]. Xi’an: Xi’an Shiyou University, 2016. | |
34 | 王月文. 气液固三相分离旋流器参数优选及流场特性研究[D]. 大庆: 东北石油大学, 2017. |
WANG Y W. Study on flow field characteristics and parameter optimization of gas-liquid-solid three phase separation hydrocyclone[D]. Daqing: Northeast Petroleum University, 2017. | |
74 | 边江, 蒋文明, 刘杨, 等. 电磁分离装置内油水分离特性实验研究[J]. 科学技术与工程, 2015, 15(27): 143-145, 151. |
BIAN J, JIANG W M, LIU Y, et al. Separation characteristics of two-phase flow field in the electromagnetic oil-water separation device[J]. Science Technology and Engineering, 2015,15(27): 143-145, 151. | |
75 | TAKEDA M, TANASE Y, KUBOZONO T, et al. Separation characteristics obtained from electrode partitioning MHD method for separating oil from contaminated seawater using high-field superconducting magnet[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 3700404. |
76 | ALI N, ZHANG B L, ZHANG H P, et al. Novel Janus magnetic micro particle synthesis and its applications as a demulsifier for breaking heavy crude oil and water emulsion[J]. Fuel, 2015, 141: 258-267. |
77 | PENG J X, LIU Q X, XU Z H, et al. Synthesis of interfacially active and magnetically responsive nanoparticles for multiphase separation applications[J]. Advanced Functional Materials, 2012, 22(8): 1732-1740. |
78 | 张国艳. 磁流体油污海水分离回收装置中流动过程的数值模拟[D]. 北京:中国科学院研究生院(电工研究所), 2006. |
ZHANG G Y. Numerical simulation on flow process of oil separation and recovery device from oil-contaminated seawater by MHD method[D]. Beijing: Chinese Academy of Sciences Graduate School (Institute of Electrical Engineering), 2006. | |
79 | WATSON J H P, YOUNAS I. Superconducting discs as permanent magnets for magnetic separation[J]. Materials Science & Engineering B, 1998, 53(1/2): 220-224. |
35 | SIADATY M, KHERADMAND S, GHADIRI F. Improvement of the cyclone separation efficiency with a magnetic field[J]. Journal of Aerosol Science, 2017, 114: 219-232. |
36 | YUE Y X, CHEN K R, LIU J Y, et al. Numerical simulation and deacidification of nanomagnetic enzyme conjugate in a liquid–solid magnetic fluidized bed[J]. Process Biochemistry, 2020, 90: 32-43. |
37 | TSCHÖPE A, HEIKENWÄLDER S, SCHNEIDER M, et al. Electrical conductivity of magnetically stabilized fluidized-bed electrodes—Chronoamperometric and impedance studies[J]. Chemical Engineering Journal, 2020, 396: 125326. |
38 | FABICH H T, SEDERMAN A J, HOLLAND D J. Study of bubble dynamics in gas-solid fluidized beds using ultrashort echo time (UTE) magnetic resonance imaging (MRI)[J]. Chemical Engineering Science, 2017, 172: 476-486. |
39 | SORNCHAMNI T, JOVANOVIC G N, REED B P, et al. Operation of magnetically assisted fluidized beds in microgravity and variable gravity: experiment and theory[J]. Advances in Space Research, 2004, 34(7): 1494-1498. |
40 | HRISTOV J. Magnetically assisted gas–solid fluidization in a tapered vessel: first report with observations and dimensional analysis[J]. The Canadian Journal of Chemical Engineering, 2008, 86(3): 470-492. |
41 | HRISTOV J. Magnetically assisted gas-solid fluidization in a tapered vessel: Part I. Magnetization-LAST mode[J]. Particuology, 2009, 7(1): 26-34. |
42 | HRISTOV J, YANG D, YANGY, et al. Magnetically assisted gas-solid fluidization in a tapered vessel: Part Ⅱ dimensionless bed expansion scaling[J]. Particuology Science and Technology of Particles, 2009, 7(3): 183-192. |
43 | 归柯庭, 施明恒. 磁场对流化床中气泡的湮灭作用[J]. 应用科学学报,1999, 17(3): 349-354. |
GUI K T, SHI M H. Annihilation effect of magnetic field on gas bubble in fluidized bed[J]. Journal of Applied Sciences, 1999, 17(3): 349-354. | |
44 | 王之肖, 张云峰, 归柯庭. 磁流化床强化烟气脱硫的机理研究[J]. 中国电机工程学报, 2005, 25(14): 68-72. |
WANG Z X, ZHANG Y F, GUI K T. Study on the mechanics of enhancement of flue gas desuphurization in magnetically fluidized bed[J]. Proceedings of the CSEE, 2005, 25(14): 68-72. | |
45 | 王拴连. 重介旋流器分选密度永磁场调控研究[D]. 太原: 太原理工大学, 2014. |
WANG S L. The permanent magnetic field online-control research on the separation density of dense medium cyclone[D]. Taiyuan: Taiyuan University of Technology, 2014. | |
46 | 付双成, 贾俊贤, 张亚磊, 等. 磁力旋流器磁系的磁场分析[J]. 化工进展, 2019, 38(5): 2150-2157. |
FU S C, JIA J X, ZHANG Y L, et al. Magnetic field analysis of magnetic system of magnetic cyclone[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2150-2157. | |
47 | 孔令帅, 彭海涛, 樊盼盼, 等. 磁力旋流器对磁铁矿的脱泥效果研究[J]. 矿业研究与开发, 2015, 35(10): 75-79. |
KONG L S, PENG H T, FAN P P, et al. Research for the desliming effect of magnetic cyclone on magnetite[J]. Mining Research and Development, 2015, 35(10): 75-79. | |
48 | AVDEYEV B, MASYUTKIN E, GOLIKOV S, et al. Calculation of efficiency curve of magnetic hydrocyclone[C]//2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). February 1-3, 2017, St. Petersburg and Moscow, Russia. IEEE, 2017: 1225-1228. |
49 | 周筝, 杜涛. 基于磁分离技术快速同步处理污水污泥的新设备[J]. 成都电子机械高等专科学校学报, 2005, 8(2): 3-5. |
ZHOU Z, DU T. A new equipment for simultaneous treatment of sewage sludge based on magnetic separation technology[J]. Journal of Chengdu Electro-Mechaical College, 2005, 8(2): 3-5. | |
50 | 伍勇, 方善如, 王颖. 稀土永磁Nd-Fe-B在固液分离中的应用研究[J]. 中国稀土学报, 2002, 20(5): 419-423. |
WU Y, FANG S R, WANG Y. Application of rare earth magnet Nd-Fe-B in solid-liquid separation[J]. Journal of the Chinese Rare Earth Society, 2002, 20(5): 419-423. | |
51 | SALINAS T, DURRUTY I, ARCINIEGAS Let al. Design and testing of a pilot scale magnetic separator for the treatment of textile dyeing wastewater[J]. Journal of Environmental Management, 2018, 218: 562-568. |
80 | 田欢欢. 利用MATLAB模拟直角三角形恒定电流线圈的磁场分布[J]. 科技风, 2021(15): 73-75, 78. |
TIAN H H. Using MATLAB to simulate the magnetic field distribution of the coil with constant right triangle current[J]. Science and Technology, 2021(15): 73-75, 78. | |
81 | 柴兆赟, 张洋. 磁场作用下重介质旋流器悬浮液密度调控研究[J]. 洁净煤技术, 2015, 21(3): 57-59, 68. |
CHAI Z Y, ZHANG Y. Regulation of suspension density in dense medium cyclone under magnetic field[J]. Clean Coal Technology, 2015, 21(3): 57-59, 68. | |
52 | KHESHTI Z, GHAJAR K A, MORENO-ATANASIO R, et al. Investigating the high gradient magnetic separator function for highly efficient adsorption of lead salt onto magnetic mesoporous silica microspheres and adsorbent recycling[J]. Chemical Engineering and Processing: Process Intensification, 2020,148: 107770. |
53 | OKA T, KANAYAMA H, TANAKA K, et al. Waste water purification by magnetic separation technique using HTS bulk magnet system[J]. Physica C: Superconductivity, 2009, 469(15/16/17/18/19/20): 1849-1852. |
82 | 张成安. 同轴电磁场对重介质旋流器分选效果的影响[D]. 太原: 太原理工大学, 2017. |
ZHANG C A. Effect of coaxial electromagnetic field on the separation of dense medium cyclone[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
54 | LI T, GUAN Y P, GUO C, et al. Pilot scale experiment of an innovative magnetic bar magnetic separator for chromium removal from tannery wastewater[J]. Process Safety and Environmental Protection, 2021, 149: 575-580. |
55 | 樊盼盼, 孔令帅, 彭海涛, 等. 置于锥部的轴向电磁场对重介旋流器分选效果的影响[J]. 煤炭学报, 2015, 40(7): 1615-1621. |
83 | REN L Y, ZENG S L, ZHANG Y M. Magnetic field characteristics analysis of a single assembled magnetic medium using ANSYS software[J]. International Journal of Mining Science and Technology, 2015, 25(3): 479-487. |
84 | 刘洪山. 用于禽流感病毒快速检测的纳米磁珠分离器研究[D]. 广州: 华南农业大学, 2016. |
LIU H S. Study on magnetic nanobead separator for rapid detection of avian influenza virus[D]. Guangzhou: South China Agricultural University, 2016. | |
85 | LUO L, ZHANG H S, LIU Y, et al. Preparation of thermosensitive polymer magnetic particles and their application in protein separations[J]. Journal of Colloid and Interface Science, 2014, 435: 99-104. |
86 | 熊平, 董萍, 郭萍. 旋转磁场中加导磁材料后其磁场分布研究[J]. 中国医学物理学杂志, 2008, 25(1): 469-472. |
XIONG P, DONG P, GUO P. The magnetic flux density research in three dimension with super-paramagnetic material in center[J].Chinese Journal of Medical Physics, 2008, 25(1): 469-472. | |
87 | 王发辉. 基于FLUENT的干法磁分离机理的数值模拟[D]. 焦作: 河南理工大学, 2010. |
WANG F H. A fluent software-based study of the numerical simulation for mechanisms of dry magnetic separation[D]. Jiaozuo: Henan Polytechnic University, 2010. | |
88 | MEHTA R P, KATARIA H R. Influence of magnetic field, thermal radiation and brownian motion on water-based composite nanofluid flow passing through a porous medium[J]. International Journal of Applied and Computational Mathematics, 2020, 7(1): 1-24. |
89 | TRBUŠIĆ M, GORIČAN V, BEKOVIĆ M, et al. An experimental study on magnetic field distribution above a magnetic liquid free surface[J]. Journal of Magnetism and Magnetic Materials, 2020, 509: 166903. |
90 | TZIRTZILAKIS E E, KAFOUSSIAS N G. Three-dimensional magnetic fluid boundary layer flow over a linearly stretching sheet[J]. Journal of Heat Transfer, 2010, 132(1): 011702. |
91 | 王彪. 微重力下磁场流化床内颗粒流动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
WANG B. Study on particle flow characteristics in magnetic field fluidized bed under microgravity[D]. Harbin: Harbin Institute of Technology, 2020. | |
92 | DVORSKY R, LESŇÁK M, PIŠTORA J, et al. Experimentally verified physical model of ferromagnetic microparticles separation in magnetic gradient inside a set of steel spheres[J]. Separation and Purification Technology, 2020, 239: 116460. |
93 | ZHANG X C, GU F, XIE J, et al. Magnetic projection: a novel separation method and its first application on separating mixed plastics[J]. Waste Management, 2019, 87: 805-813. |
55 | FAN P P, KONG L S, PENG H T, et al. Influence of an axial electromagnetic located in the conical part on dense medium cyclone separation effects[J]. Journal of China Coal Society, 2015, 40(7): 1615-1621. |
56 | 樊盼盼, 冯聪, 张成安, 等. 组合线圈对重介旋流器分选效果的影响[J]. 矿山机械, 2016, 44(1): 71-76. |
FAN P P, FENG C, ZHANG C A, et al. Influence of composite coil on separation effects of dense medium cyclone[J]. Mining & Processing Equipment, 2016, 44(1): 71-76. | |
57 | 冯聪. 磁场作用下外部导磁结构对重介旋流器分选效果的影响研究[D]. 太原: 太原理工大学, 2017. |
FENG C. Research on influence of the external magnetic structure on dense medium cyclone separation effects under magnetic field[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
58 | 戚威盛, 张悦刊, 刘培坤, 等. 磁力旋流器分离性能试验研究[J]. 流体机械, 2019, 47(8): 1-6, 11. |
94 | 王鹏凯. 磁力旋流器分离性能及试验研究[D]. 青岛: 山东科技大学, 2018. |
WANG P K. Experimental study on the separation performance of magnetic cyclone[D]. Qingdao: Shandong University of Science and Technology, 2018. | |
95 | 李强, 袁作彬, 杨永明, 等. 磁性液体靶向药物的磁场-流场耦合数值模拟研究[J]. 湖北民族学院学报(自然科学版), 2014, 32(3): 305-307, 310. |
LI Q, YUAN Z B, YANG Y M, et al. Numerical simulation research on the coupling between magnetic field and fluid field of ferrofluid targeted drug[J]. Journal of Hubei University for Nationalities(Natural Science Edition), 2014, 32(3): 305-307, 310. | |
96 | ESHAGHI M, NAZARI M, SHAHMARDAN M M, et al. Particle separation in a microchannel by applying magnetic fields and Nickel sputtering[J]. Journal of Magnetism and Magnetic Materials, 2020, 514: 167121. |
97 | 王芝伟, 梁殿印. 磁铁矿颗粒在复合力场中的运动轨迹研究[J]. 有色金属(选矿部分), 2011(2): 43-47. |
WANG Z W, LIANG D Y. Research on trajectory of magnetite particle in composite force field[J]. Nonferrous Metals(Mineral Processing Section), 2011(2): 43-47. | |
98 | SANDULYAK A, SANDULYAK A, BELGACEM F B M. Special solutions for magnetic separation problems using force and energy conditions for ferro-particles capture[J]. Journal of Magnetism and Magnetic Materials, 2016, 401: 902-905. |
99 | ROGERS H B, ANANI T, CHOI Y S, et al. Exploiting size-dependent drag and magnetic forces for size-specific separation of magnetic nanoparticles[J]. International Journal of Molecular Sciences, 2015, 16(8): 20001-20019. |
100 | 黄祺洲. 多模式磁场电磁搅拌器磁流耦合数值模拟及工艺参数优化[D]. 岳阳: 湖南理工学院, 2020. |
58 | QI W S, ZHANG Y K, LIU P K, et al. Experimental study on the separation performance of magnetic cyclone[J]. Fluid Machinery, 2019, 47(8): 1-6, 11. |
100 | HUANG Q Z. Numerical simulation of magnetic flow coupling and optimization of process parameters for multi-mode electromagnetic stirrer[D]. Yueyang: Hunan Institute of Science and Technology, 2020. |
101 | 李茂旺, 张国锋, 安航航. 150mm×150mm断面小方坯结晶器电磁搅拌磁场与流场耦合的数值模拟研究[J]. 工业加热, 2018,47(2): 49-53. |
LI M W, ZHANG G F, AN H H. Numerical simulation of coupled flow in a 150mm×150mm billet continuous casting mould with electromagnetic stirring[J].Industrial Heating, 2018, 47(2): 49-53. | |
102 | 徐婷, 张立华, 李晓谦, 等. 稳恒磁场下中间包温度场流场耦合数值模拟[J]. 特种铸造及有色合金, 2015, 35(4): 365-369. |
XU T, ZHANG L H, LI X Q, et al. Numerical simulation of fluid-thermal coupling field of tundish in static magnetic field[J]. Special Casting & Nonferrous Alloys, 2015, 35(4): 365-369. | |
103 | 杨光, 薛雄, 钦兰云, 等. 旋转磁场对激光熔凝钛合金熔池的影响[J]. 稀有金属材料与工程, 2016, 45(7): 1804-1810. |
YANG G, XUE X, QIN L Y, et al. Influence of a rotating magnetic field on laser melting titanium alloy melt pool[J]. Rare Metal Materials and Engineering, 2016, 45(7): 1804-1810. | |
104 | 蒋文明, 边江, 石念军, 等. 电磁分离装置内油水两相流流动分离特性[J]. 工业水处理, 2016, 36(1): 21-25. |
JIANG W M, BIAN J, SHI N J, et al. The flow and separation characteristics of two-phase flow in the oil-water separation device under electromagnetic field[J]. Industrial Water Treatment, 2016, 36(1): 21-25. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[3] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[4] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[5] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[6] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[7] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[8] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[9] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[10] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[11] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[12] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[13] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[14] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[15] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |