化工进展 ›› 2022, Vol. 41 ›› Issue (4): 1814-1824.DOI: 10.16085/j.issn.1000-6613.2021-0936
收稿日期:
2021-05-05
修回日期:
2021-07-09
出版日期:
2022-04-23
发布日期:
2022-04-25
通讯作者:
高宁博
作者简介:
张喻(1987—),男,博士研究生,研究方向为煤及生物质热处理。E-mail:基金资助:
ZHANG Yu1,2(), GAO Ningbo1(), QUAN Cui1, WANG Fengchao1
Received:
2021-05-05
Revised:
2021-07-09
Online:
2022-04-23
Published:
2022-04-25
Contact:
GAO Ningbo
摘要:
低阶煤的热解是我国煤炭清洁高效转化的重要方式,高温油气除尘困难是限制其产业化的瓶颈。低阶煤热解过程中的高温油气具有温度高、尘含量大、含大分子稠环芳烃、易冷凝等特点,易阻塞除尘器及工艺管道,腐蚀设备,降低产品品质。本文主要从工程化应用角度,对比了湿法除尘、旋风除尘、静电除尘、陶瓷管除尘、金属过滤器除尘、颗粒床除尘等主要高温除尘工艺在低阶煤热解高温油气除尘领域的应用现状,分析了各技术优缺点及领域内的专利情况,指出颗粒床除尘、催化除尘、组合除尘技术有望成为未来该领域的发展方向。
中图分类号:
张喻, 高宁博, 全翠, 王凤超. 低阶煤热解高温油气除尘技术进展[J]. 化工进展, 2022, 41(4): 1814-1824.
ZHANG Yu, GAO Ningbo, QUAN Cui, WANG Fengchao. Research progress on high temperature oil-gas dust removal technology during pyrolysis of low-rank coal[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1814-1824.
1 | 武强, 涂坤, 曾一凡, 等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 2019, 44(6): 1625-1636. |
WU Qiang, TU Kun, ZENG Yifan, et al. Discussion on the main problems and countermeasures for building an upgrade version of main energy(coal) industry in China[J]. Journal of China Coal Society, 2019, 44(6): 1625-1636. | |
2 | 尚建选. 低阶煤分质利用[M]. 北京: 化学工业出版社, 2021. |
SHANG Jianxuan. Conversion and utilization of low rank coal [M]. Beijing: Chemical Industry Press, 2021. | |
3 | 白效言, 曲思建, 张飏, 等. 内旋式移动床煤热解新工艺开发及试验[J]. 化工进展, 2020, 39(3): 984-991. |
BAI Xiaoyan, QU Sijian, ZHANG Yang, et al. Research of new inner-rotary moving bed technology for low rank coal pyrolysis[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 984-991. | |
4 | 龙东生. 低阶粉煤热解-气化一体化装置构想[J]. 洁净煤技术, 2017, 23(5): 46-49, 55. |
LONG Dongsheng. Integration of pyrolysis and gasification of low rank pulverized coal[J]. Clean Coal Technology, 2017, 23(5): 46-49, 55. | |
5 | MEI Y F, LIU R H. Effect of temperature of ceramic hot vapor filter in a fluidized bed reactor on chemical composition and structure of bio-oil and reaction mechanism of pine sawdust fast pyrolysis[J]. Fuel Processing Technology, 2017, 161: 204-219. |
6 | WU J F, LIU Q Y, WANG R X, et al. Coke formation during thermal reaction of tar from pyrolysis of a subbituminous coal[J]. Fuel Processing Technology, 2017, 155: 68-73. |
7 | HE W J, LIU Z Y, LIU Q Y, et al. Behaviors of radical fragments in tar generated from pyrolysis of 4 coals[J]. Fuel, 2014, 134: 375-380. |
8 | 张相平, 马宝岐, 周秋成, 等. 榆林兰炭产业升级版的研究[M]. 西安: 西北大学出版社, 2017. |
ZHANG Xiangping, MA Baoqi, ZHOU Qiucheng, et al. Study on the upgrading of Yulin coal char industry[M]. Xi’an: Northwest University Press, 2017. | |
9 | CHEN Z H, SHI Y, LAI D G, et al. Coal rapid pyrolysis in a transport bed under steam-containing syngas atmosphere relevant to the integrated fluidized bed gasification[J]. Fuel, 2016, 176: 200-208. |
10 | FAN Y J, ZHANG S J, LI X Q, et al. Process intensification on suspension pyrolysis of ultra-fine low-rank pulverized coal via conveyor bed on pilot scale: distribution and characteristics of products[J]. Fuel, 2021, 286: 119341. |
11 | 任文君, 刘治华, 周洪义, 等. 粉状煤炭热解技术工业化现状与瓶颈[J]. 煤炭加工与综合利用, 2020(4): 48-52. |
REN Wenjun, LIU Zhihua, ZHOU Hongyi, et al. Industrialization status and bottleneck of pulverized coal pyrolysis technology[J]. Coal Processing & Comprehensive Utilization, 2020(4): 48-52. | |
12 | AHMAD T, AWAN I A, NISAR J, et al. Influence of inherent minerals and pyrolysis temperature on the yield of pyrolysates of some Pakistani coals[J]. Energy Conversion and Management, 2009, 50(5): 1163-1171. |
13 | JIN L J, ZHOU X, HE X F, et al. Integrated coal pyrolysis with methane aromatization over Mo/HZSM-5 for improving tar yield[J]. Fuel, 2013, 114: 187-190. |
14 | WU Y, LI Y, JIN L J, et al. Integrated process of coal pyrolysis with steam reforming of ethane for improving the tar yield[J]. Energy & Fuels, 2018, 32(12): 12268-12276. |
15 | FENG Y C, XU S P. Blue-coke production technology and the current state-of-the-art in China[J]. Carbon Resources Conversion, 2020, 3: 82-94. |
16 | 石振晶. 煤热解焦油析出特性和深加工试验研究[D]. 杭州: 浙江大学, 2014. |
SHI Zhenjing. Research on formation of tar during coal pyrolysiss and deep processing of tar[D]. Hangzhou: Zhejiang University, 2014. | |
17 | VERSAN KÖK M, ÖZBAS E, KARACAN O, et al. Effect of particle size on coal pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 1998, 45(2): 103-110. |
18 | ZHANG C, WU R C, HU E F, et al. Coal pyrolysis for high-quality tar and gas in 100 kg fixed bed enhanced with internals[J]. Energy & Fuels, 2014, 28(11): 7294-7302. |
19 | WHITMER L E. Removal of particulate matter from condensable vapors using a moving bed granular filter[D]. Iowa State University, Master of Science, 2011. DOI:10.31274/etd-180810-1674 . |
20 | SUN Z H, LI D, MA H X, et al. Characterization of asphaltene isolated from low-temperature coal tar[J]. Fuel Processing Technology, 2015, 138: 413-418. |
21 | DING M J, DING Y M. Analysis of an Erdos medium-temperature coal tar by gas chromatography-mass spectrometer[C]//2011 International Conference on Materials for Renewable Energy & Environment. May 20-22, 2011, Shanghai, China. IEEE, 2011: 1666-1670. |
22 | 孙鸣, 陈静, 代晓敏, 等. 陕北中低温煤焦油重油减压馏分的GC-MS分析[J]. 化学工程, 2015, 43(9): 52-57. |
SUN Ming, CHEN Jing, DAI Xiaomin, et al. Vacuum distillation and GC-MS analysis of heavy low-temperature coal tar from Northern Shaanxi[J]. Chemical Engineering (China), 2015, 43(9): 52-57. | |
23 | ZHAN M S, SUN G G, YAN S, et al. Filtration performance of coal pyrolysis flying char particles in a granular bed filter[J]. Energy & Fuels, 2018, 32(2): 1070-1079. |
24 | FRANKLIN H D, PETERS W A, HOWARD J B. Mineral matter effects on the rapid pyrolysis and hydropyrolysis of a bituminous coal[J]. Fuel, 1982, 61(12): 1213-1217. |
25 | 陈兆辉, 高士秋, 许光文. 煤热解过程分析与工艺调控方法[J]. 化工学报, 2017, 68(10): 3693-3707. |
CHEN Zhaohui, GAO Shiqiu, XU Guangwen. Analysis and control methods of coal pyrolysis process[J]. CIESC Journal, 2017, 68(10): 3693-3707. | |
26 | 尚建选, 马宝岐, 张秋民. 低阶煤分质转化多联产技术[M]. 北京: 煤炭工业出版社, 2013. |
SHANG Jianxuan, MA Baoqi, ZHANG Qiumin. Grading conversion and polygeneration technology of low rank coal [M]. Beijing: China Coal Industry Publishing House, 2013. | |
27 | 侯吉礼, 马跃, 李术元, 等. 兰炭生产过程中热平衡和物料平衡理论计算[J]. 洁净煤技术, 2018, 24(2): 56-61. |
HOU Jili, MA Yue, LI Shuyuan, et al. Theoretical calculation of heat and mass balance during retorting process of semi-coke production[J]. Clean Coal Technology, 2018, 24(2): 56-61. | |
28 | 贺永德. 现代煤化工技术手册[M]. 北京: 化学工业出版社, 2004. |
HE Yongde. Technical manual of modern coal chemical industry[M]. Beijing: Chemical Industry Press, 2004. | |
29 | PATTERSON P A, MUNZ R J. Cyclone collection efficiencies at very high temperatures[J]. The Canadian Journal of Chemical Engineering, 1989, 67(2): 321-328. |
30 | CHEN J Y, SHI M X. Analysis on cyclone collection efficiencies at high temperatures[J]. China Particuology, 2003, 1(1): 20-26. |
31 | BOHNET M. Influence of the gas temperature on the separation efficiency of aerocyclones[J]. Chemical Engineering and Processing: Process Intensification, 1995, 34(3): 151-156. |
32 | HUANG A N, MAEDA N, SUNADA S, et al. Effect of cold air stream injection on cyclone performance at high temperature[J]. Separation and Purification Technology, 2017, 183: 293-303. |
33 | NWOKOLO N, MAMPHWELI S, MAKAKA G. An investigation into heat recovery from the surface of a cyclone dust collector attached to a downdraft biomass gasifier[J]. Applied Thermal Engineering, 2016, 98: 1158-1164. |
34 | MISIULIA D, ANDERSSON A G, LUNDSTRÖM T S. Effects of the inlet angle on the flow pattern and pressure drop of a cyclone with helical-roof inlet[J]. Chemical Engineering Research and Design, 2015, 102: 307-321. |
35 | BRAR L S, SHARMA R P, DWIVEDI R. Effect of vortex finder diameter on flow field and collection efficiency of cyclone separators[J]. Particulate Science and Technology, 2015, 33(1): 34-40. |
36 | YOHANA E, TAUVIQIRRAHMAN M, PUTRA A R, et al. Numerical analysis on the effect of the vortex finder diameter and the length of vortex limiter on the flow field and particle collection in a new cyclone separator[J]. Cogent Engineering, 2018, 5(1): 1562319. |
37 | MISIULIA D, ELSAYED K, ANDERSSON A G. Geometry optimization of a deswirler for cyclone separator in terms of pressure drop using CFD and artificial neural network[J]. Separation and Purification Technology, 2017, 185: 10-23. |
38 | PRATIWI I A, ARDIANSYAH H D. Pressure drop investigation of industrial scale cyclone for palm oil fiber boiler[J]. IOP Conference Series: Earth and Environmental Science, 2019, 259: 012018. |
39 | 杨高强, 黄亚继, 袁琦. 高温烟气除尘技术及其进展[C]//第九届长三角能源论坛论文集. 南京, 2012: 189-191. |
YANG Gaoqiang, HUANG Yaji, YUAN Qi. High temperature flue gas dust removal technology and its development [C]//Yangtze River Delta Energy Forum. Nanjing, China: 2012: 184-186. | |
40 | 杜鑫, 黄茂丽, 齐彬彬, 等. 粉煤热解含尘干馏气两级净化实验研究[J]. 煤炭学报, 2018, 43(10): 2911-2917. |
DU Xin, HUANG Maoli, QI Binbin, et al. Experimental study on the two-stage purification of retorting gas in the process of pulverized coal pyrolysis[J]. Journal of China Coal Society, 2018, 43(10): 2911-2917. | |
41 | 柴宗成. 热解荒煤气除尘技术路线研究 [D].大连: 大连理工大学, 2016. |
CHAI Zongcheng. Study on the technical route of dedusting by pyrolysis gas [D]. Dalian: Dalian University of Technology, 2016. | |
42 | OMARA M, HOPKE P K, RAJA S, et al. Performance evaluation of a model electrostatic precipitator for an advanced wood combustion system[J]. Energy & Fuels, 2010, 24(12): 6301-6306. |
43 | ZHOU W N, JIANG R B, SUN Y F, et al. Study on multi-physical field characteristics of electrostatic precipitator with different collecting electrodes[J]. Powder Technology, 2021, 381: 412-420. |
44 | 方梦祥, 柳佳佳, 岑建孟, 等. 高温静电除尘技术研究进展及应用前景[J]. 高电压技术, 2019, 45(4): 1108-1117. |
FANG Mengxiang, LIU Jiajia, CEN Jianmeng, et al. Research progress and application prospect of high temperature electrostatic precipitation technology[J]. High Voltage Engineering, 2019, 45(4): 1108-1117. | |
45 | ZHENG C H, LIU X T, XU X, et al. Experimental study on electrostatic removal of high-carbon particle in high temperature coal pyrolysis gas[J]. Proceedings of the Combustion Institute, 2019, 37(3): 2959-2965. |
46 | ZHENG C H, SHEN Z Y, CHANG Q Y, et al. Experimental study on electrostatic precipitation of low-resistivity high-carbon fly ash at high temperature[J]. Energy & Fuels, 2017, 31(6): 6266-6273. |
47 | 陈泉霖, 方梦祥, 岑建孟, 等. 高温含油热解煤气静电除尘中试试验研究[J]. 煤炭转化, 2020, 43(4): 12-19. |
CHEN Quanlin, FANG Mengxiang, CEN Jianmeng, et al. Pilot test study on electrostatic precipitation of high temperature oily pyrolysis gas[J]. Coal Conversion, 2020, 43(4): 12-19. | |
48 | 何毓忠, 胡露钧, 何海涛. 煤的多联产项目中高温电除尘器的试验研究[J]. 山西焦煤科技, 2013, 37(8): 8-10, 13. |
HE Yuzhong, HU Lujun, HE Haitao. Experimental study on high-temperature electrostatic precipitator in coal poly-generation project[J]. Shanxi Coking Coal Science & Technology, 2013, 37(8): 8-10, 13. | |
49 | JAWOREK A, SOBCZYK A T, KRUPA A, et al. Hybrid electrostatic filtration systems for fly ash particles emission control. A review[J]. Separation and Purification Technology, 2019, 213: 283-302. |
50 | 原永涛, 李二欣. 高温电除尘技术的发展与应用[C]//第十五届中国电除尘学术会议论文集. 蚌埠, 2013: 144-149. |
YUAN Yongtao, LI Erxin. Development and application of the high-temperature electric precipitation technology[C]//Proceedings of the 15th China Electrostatic Precipitator Academic Conferences, Bengbu, 2013: 144-149. | |
51 | 白效言, 裴贤丰, 张飏, 等. 小粒径低阶煤热解油尘分离问题分析[J]. 煤质技术, 2015(6): 1-4. |
BAI Xiaoyan, PEI Xianfeng, ZHANG Yang, et al. Analysis on separation of tar and dust during pyrolysis of small-size low rank coal[J]. Coal Quality Technology, 2015(6): 1-4. | |
52 | 姬忠礼, 栾鑫, 苗林丰. 高温气体过滤技术及装备发展概况[J]. 化工进展, 2020, 39(6): 2304-2311. |
JI Zhongli, LUAN Xin, MIAO Linfeng. Overview of hot-gas filtration technology and equipment development[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2304-2311. | |
53 | 杨帅强, 都林, 李松庚, 等. 含尘含油高温热解煤气除尘技术研究进展[J]. 洁净煤技术, 2021, 27(1): 193-201. |
YANG Shuaiqiang, DU Lin, LI Songgeng, et al. Advances on dust removal technology of high temperature pyrolysis of coal gas containing dust and oil[J]. Clean Coal Technology, 2021, 27(1): 193-201. | |
54 | LUPION M. Hot gas filtration technologies for particles in gasification and combustion systems[M]. Handbook of Clean Energy Systems, 2015: 1-33. |
55 | LUPIÓN M, GUTIÉRREZ ORTIZ F J, NAVARRETE B, et al. Assessment performance of high-temperature filtering elements[J]. Fuel, 2010, 89(4): 848-854. |
56 | LUPION M, RODRIGUEZ-GALAN M, ALONSO-FARIÑAS B, et al. Investigation into the parameters of influence on dust cake porosity in hot gas filtration[J]. Powder Technology, 2014, 264: 592-598. |
57 | LIN J C T, HSIAO T C, HSIAU S S, et al. Effects of temperature, dust concentration, and filtration superficial velocity on the loading behavior and dust cakes of ceramic candle filters during hot gas filtration[J]. Separation and Purification Technology, 2018, 198: 146-154. |
58 | CHOI H J, KIM J U, KIM H S, et al. Effect of sintering temperature in preparation of granular ceramic filter[J]. Ceramics International, 2015, 41(8): 10030-10037. |
59 | KAMIYA H, DEGUCHI K, GOTOU J, et al. Increasing phenomena of pressure drop during dust removal using a rigid ceramic filter at high temperatures[J]. Powder Technology, 2001, 118(1/2): 160-165. |
60 | SAVUTO E, DI CARLO A, STEELE A, et al. Syngas conditioning by ceramic filter candles filled with catalyst pellets and placed inside the freeboard of a fluidized bed steam gasifier[J]. Fuel Processing Technology, 2019, 191: 44-53. |
61 | NACKEN M, BARON G V, HEIDENREICH S, et al. New DeTar catalytic filter with integrated catalytic ceramic foam: Catalytic activity under model and real bio syngas conditions[J]. Fuel Processing Technology, 2015, 134: 98-106. |
62 | 黄海朋. 1t煤/h流化床热解与甲烷二氧化碳重整工艺设计 [D]. 大连: 大连理工大学, 2013. |
HUANG Haipeng. Design of CO2 reforming of methane coupling with 1t/h coal pyrolysis in a fluidized bed reactor [D]. Dalian: Dalian University of Technology, 2013. | |
63 | 蔡兴飞, 文岳雄, 王立, 等. 一种多介质高温过滤装置及热解系统: CN209033960U [P]. 2018-09-10. |
CAI Xingfei, WEN Yuexiong, WANG Li, et al. The utility model relates to a multi-medium high temperature filtration device and a pyrolysis system: CN 209033960U [P]. 2018-09-10. | |
64 | 高洪培, 时正海, 唐巍, 等. 煤低温热解-燃烧一体化制取煤气焦油半焦系统及方法: CN105778942B[P]. 2019-03-26. |
GAO Hongpei, SHI Zhenghai, TANG Wei, et al. System and method for producing gas tar semi-coke from coal at low temperature pyrolysis and combustion: CN 105778942A [P]. 2016-04-18. | |
65 | 李昱喆, 时正海, 高洪培, 等. 一种热解煤气余热回收系统: CN205635511U [P]. 2016-04-18. |
LI Xianzhe, SHI Zhenghai, GAO Hongpei, et al. The utility model relates to a waste heat recovery system for pyrolysis gas: CN205635511U [P]. 2016-04-18. | |
66 | NAVARRETE B, LUPIÓN M, GUTIÉRREZ J, et al. Improving the Puertollano IGCC dedusting system: pilot plant erection and testing[EB/OL]. [2021-04-05]. . |
67 | SIMEONE E, SIEDLECKI M, NACKEN M, et al. High temperature gas filtration with ceramic candles and ashes characterisation during steam-oxygen blown gasification of biomass[J]. Fuel, 2013, 108: 99-111. |
68 | ASADULLAH M. Biomass gasification gas cleaning for downstream applications: a comparative critical review[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 118-132. |
69 | XUE F F, LI D, GUO Y T, et al. Technical progress and the prospect of low-rank coal pyrolysis in China[J]. Energy Technology, 2017, 5(11): 1897-1907. |
70 | 杨保军, 汤慧萍, 汪强兵, 等. 高温气固分离用金属多孔材料展望[J]. 材料保护, 2013, 46(S2): 140-141. |
YANG Baojun, TANG Huiping, WANG Qiangbing, et al. Prospect porous metal material in the field of high-temperature gas-solid separation applications[J]. Materials Protection, 2013, 46(S2): 140-141. | |
71 | 张健, 汤慧萍, 奚正平, 等. 高温气体净化用金属多孔材料的发展现状[J]. 稀有金属材料与工程, 2006, 35(S2): 438-441. |
ZHANG Jian, TANG Huiping, XI Zhengping, et al. Cuirent situation of porous metal used in high temperature dust removale[J]. Rare Metal Materials and Engineering, 2006, 35(S2): 438-441. | |
72 | ZAMANZADE M, BARNOUSH A, MOTZ C. A review on the properties of iron aluminide intermetallics[J]. Crystals, 2016, 6(1): 10. |
73 | PALM M, STEIN F, DEHM G. Iron aluminides[J]. Annual Review of Materials Research, 2019, 49(1): 297-326. |
74 | DUDINA D V, LEGAN M A, FEDOROVA N V, et al. Structural and mechanical characterization of porous iron aluminide FeAl obtained by pressureless Spark Plasma Sintering[J]. Materials Science and Engineering A, 2017, 695: 309-314. |
75 | GAO L, WANG T, LI B. Sintered Fe-Al based porous alloy material with hightemperature oxidization resistance and filtering elements: US 10159920[P]. 2018-12-25. |
76 | GUAN X F, HEWITT A, PENG W W, et al. Particulate control devices in Kemper County IGCC Project[J]. Energy Reports, 2019, 5: 969-978. |
77 | 李阳. 高温液体固定颗粒层气固分离除尘技术的实验研究[D]. 大连: 大连理工大学, 2016. |
LI Yang. Experimental research of high temperature liquid & fixed granular layer gas-solid separation technology[D]. Dalian: Dalian University of Technology, 2016. | |
78 | BROWN R C, SHI H W, COLVER G, et al. Similitude study of a moving bed granular filter[J]. Powder Technology, 2003, 138(2/3): 201-210. |
79 | XIAO G, WANG X H, ZHANG J P, et al. Granular bed filter: a promising technology for hot gas clean-up[J]. Powder Technology, 2013, 244: 93-99. |
80 | HADLEY T D, LIM K S, ORELLANA J, et al. The capture of aerosol in a granular moving bed[J]. Chemical Engineering Research and Design, 2012, 90(1): 52-62. |
81 | SHI H J, YANG G H, YAO Z W, et al. Semi-coke powder filtration experiments using a dual layer granular bed filter[J]. Advanced Powder Technology, 2018, 29(12): 3257-3264. |
82 | YOU M H, LI Z Y, ZHAN M S, et al. Flow simulation and performance analysis of a cyclone-granular bed filter[J]. Powder Technology, 2020, 361: 210-219. |
83 | 梁鹏, 王志锋, 董众兵, 等. 炉前煤低温干馏工艺中的挥发分除尘[J]. 燃料化学学报, 2006, 34(1): 25-29. |
LIANG Peng, WANG Zhifeng, DONG Zhongbing, et al. Hot dust removal in the process of low temperature coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2006, 34(1): 25-29. | |
84 | 曲旋, 张荣, 毕继诚, 等. CFB燃烧/煤热解多联供技术的中试初探[J]. 化工进展, 2008, 27(S1): 386-390. |
QU Xuan, ZHANG Rong, BI Jicheng, et al. Pilot scale study on CFB combustion / coal pyrolysis polygeneration technology [J]. Chemical Industry and Engineering Progress, 2008, 27(S1): 386-390. | |
85 | 颜深, 孙国刚, 孙占朋, 等. 颗粒床过滤除尘技术研究进展[J]. 化工进展, 2017, 36(9): 3152-3163. |
YAN Shen, SUN Guogang, SUN Zhanpeng, et al. Advances in research on granular bed filter for dust removal[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3152-3163. | |
86 | 陈水渺, 肖磊, 薛逊, 等. 一种内置颗粒床和旋风除尘器的粉煤热解除尘系统: CN205974380U[P]. 2017-02-22. |
CHEN Shuimiao, XIAO Lei, XUE Xun, et al. The utility model relates to a pulverized coal pyrolysis dust removal system with a built-in particle bed and a cyclone dust collector: CN 205974380U [P]. 2017-02-22. | |
87 | 陈静升, 张志刚, 樊英杰, 等. 一种中低温干馏煤气催化裂解和除尘一体化的系统及方法: CN103265978A[P]. 2013-08-28. |
CHEN Jingsheng, ZHANG Zhigang, FAN Yingjie, et al. The invention relates to a system and method for the integration of catalytic cracking and dust removal of medium and low temperature dry distillation gas: CN103265978A [P]. 2013-08-28. | |
88 | 王守峰, 贺鑫平, 李锦涛, 等. 除尘剂及使用该除尘剂对煤热解气体除尘的工艺及装置: CN104785016A[P]. 2015-07-22. |
WANG Shoufeng, HE Xinping, LI Jintao, et al. The dedusting agent and the process and device for using the dedusting agent to remove coal pyrolysis gas: CN104785016A [P]. 2015-07-22. | |
89 | 王树宽. 一种热解荒煤气粘结除尘方法及移动床过滤除尘器: CN110527562A[P]. 2019-12-03. |
WANG Shukuan. The invention relates to a method of binder dust removal for pyrolysis waste gas and a moving bed filter dust catcher: CN110527562A [P]. 2019-12-03. | |
90 | 刘振宇. 煤快速热解制油技术问题的化学反应工程根源: 逆向传热与传质[J]. 化工学报, 2016, 67(1): 1-5. |
LIU Zhenyu. Origin of common problems in fast coal pyrolysis technologies for tar: the countercurrent flow of heat and volatiles[J]. CIESC Journal, 2016, 67(1): 1-5. |
[1] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[4] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[5] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[6] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[7] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[8] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[9] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[10] | 姚丽铭, 王亚琢, 范洪刚, 顾菁, 袁浩然, 陈勇. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801. |
[11] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[12] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[13] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[14] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[15] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |