化工进展 ›› 2022, Vol. 41 ›› Issue (4): 1802-1813.DOI: 10.16085/j.issn.1000-6613.2021-0850
熊哲(), 邓伟, 刘佳, 汪雪棚, 徐俊, 江龙, 苏胜, 汪一(), 胡松, 向军
收稿日期:
2021-04-22
修回日期:
2021-07-07
出版日期:
2022-04-23
发布日期:
2022-04-25
通讯作者:
汪一
作者简介:
熊哲(1993—),男,博士,研究方向为生物油受热结焦机理。E-mail:基金资助:
XIONG Zhe(), DENG Wei, LIU Jia, WANG Xuepeng, XU Jun, JIANG Long, SU Sheng, WANG Yi(), HU Song, XIANG Jun
Received:
2021-04-22
Revised:
2021-07-07
Online:
2022-04-23
Published:
2022-04-25
Contact:
WANG Yi
摘要:
生物油在受热条件下极易结焦,结焦是影响生物油规模化利用的重要因素之一,因此深入理解生物油受热结焦特性是实现生物油高效热转化利用的基础。本文从生物油热解过程的关键反应参数(温度、升温速率、气氛、压力、灰分)、生物油化学成分、生物油有机组分间交互作用、自由基反应特性等方面综述了生物油受热结焦特性相关研究进展,总结了反应参数对生物油热解结焦反应网络的影响,梳理了生物油各特征组分单独热解结焦及特征组分间交互作用对结焦特性的影响机制,并基于生物油结焦机理和焦炭的物化特性,总结了通过定向调控生物油结焦反应过程,将焦炭作为燃料和炭材料的潜在利用途径。最后,指出了明晰生物油受热结焦机理还需从生物油组分间交互作用机制和自由基反应机理的角度进一步探究。本文为实现生物油高效热转化利用提供了理论参考和借鉴。
中图分类号:
熊哲, 邓伟, 刘佳, 汪雪棚, 徐俊, 江龙, 苏胜, 汪一, 胡松, 向军. 生物油非催化热转化过程中受热结焦特性研究进展[J]. 化工进展, 2022, 41(4): 1802-1813.
XIONG Zhe, DENG Wei, LIU Jia, WANG Xuepeng, XU Jun, JIANG Long, SU Sheng, WANG Yi, HU Song, XIANG Jun. Research progress in coke formation characteristics of bio-oil during its non-catalytic thermal conversion process[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1802-1813.
1 | 仉利, 姚宗路, 赵立欣, 等. 生物质热解制备高品质生物油研究进展[J]. 化工进展, 2021, 40(1): 139-150. |
ZHANG Li, YAO Zonglu, ZHAO Lixin, et al. Research progress on preparation of high quality bio-oil by pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 139-150. | |
2 | HU X, GHOLIZADEH M. Progress of the applications of bio-oil[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110124. |
3 | XIONG Z, GUO J H, CHAIWAT W, et al. Assessing the chemical composition of heavy components in bio-oils from the pyrolysis of cellulose, hemicellulose and lignin at slow and fast heating rates[J]. Fuel Processing Technology, 2020, 199: 106299. |
4 | GHOLIZADEH M, HU X, LIU Q. A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109313. |
5 | XIONG Z, GUO J H, HAN H D, et al. Effects of AAEMs on formation of heavy components in bio-oil during pyrolysis at various temperatures and heating rates[J]. Fuel Processing Technology, 2021, 213: 106690. |
6 | 吕微, 张琦, 王铁军, 等. 生物油重质组分模型物热解行为及其动力学研究[J]. 燃料化学学报, 2013, 41(2): 198-206. |
Wei LYU, ZHANG Qi, WANG Tiejun, et al. Thermal degradation behaviors and pyrolysis kinetics of model compounds of bio-oil heavy fractions[J]. Journal of Fuel Chemistry and Technology, 2013, 41(2): 198-206. | |
7 | 耿风华,张睿,刘海燕,等. 生物油组分分离与化学品提取的研究进展[J]. 化工进展, 2021, 40(10): 1-21. |
GENG Fenghua, ZHANG Rui, LIU Haiyan, et al.Progress in the separation of components and extraction of chemicals from bio-oils[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 1-21. | |
8 | KIM T S, KIM J Y, KIM K H, et al. The effect of storage duration on bio-oil properties[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 118-125. |
9 | MEI Y F, CHAI M Y, SHEN C J, et al. Effect of methanol addition on properties and aging reaction mechanism of bio-oil during storage[J]. Fuel, 2019, 244: 499-507. |
10 | PINHEIRO PIRES A P, ARAUZO J, FONTS I, et al. Challenges and opportunities for bio-oil refining: a review[J]. Energy & Fuels, 2019, 33(6): 4683-4720. |
11 | WANG Y, MOURANT D, HU X, et al. Formation of coke during the pyrolysis of bio-oil[J]. Fuel, 2013, 108: 439-444. |
12 | LI X L, ZHANG Z M, ZHANG L J, et al. Investigation of coking behaviors of model compounds in bio-oil during steam reforming[J]. Fuel, 2020, 265: 116961. |
13 | VALLE B, CASTAÑO P, OLAZAR M, et al. Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst[J]. Journal of Catalysis, 2012, 285(1): 304-314. |
14 | GAYUBO A G, VALLE B, AGUAYO A T, et al. Olefin production by catalytic transformation of crude bio-oil in a two-step process[J]. Industrial & Engineering Chemistry Research, 2010, 49(1): 123-131. |
15 | VALLE B, GAYUBO A G, AGUAYO A T, et al. Selective production of aromatics by crude bio-oil valorization with a nickel-modified HZSM-5 zeolite catalyst[J]. Energy & Fuels, 2010, 24(3): 2060-2070. |
16 | GAYUBO A G, VALLE B, AGUAYO A T, et al. Pyrolytic lignin removal for the valorization of biomass pyrolysis crude bio-oil by catalytic transformation[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(1): 132-144. |
17 | GAYUBO A G, VALLE B, AGUAYO A T, et al. Attenuation of catalyst deactivation by cofeeding methanol for enhancing the valorisation of crude bio-oil[J]. Energy & Fuels, 2009, 23(8): 4129-4136. |
18 | CERQUEIRA H S, CAEIRO G, COSTA L, et al. Deactivation of FCC catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2008, 292(1/2): 1-13. |
19 | 刘启聪, 何立模, 邓增通, 等. Fe/生物质焦预重整在Ni基催化重整生物油中的作用[J]. 化工进展, 2018, 37(11): 4273-4279. |
LIU Qicong, HE Limo, DENG Zengtong, et al. Effect of Fe/bio-char pre-reforming on Ni-based catalytic reforming of bio-oil[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4273-4279. | |
20 | HU X, ZHANG Z M, GHOLIZADEH M, et al. Coke formation during thermal treatment of bio-oil[J]. Energy & Fuels, 2020, 34(7): 7863-7914. |
21 | WANG Y, LI X, MOURANT D, et al. Formation of aromatic structures during the pyrolysis of bio-oil[J]. Energy & Fuels, 2012, 26(1): 241-247. |
22 | XIONG Z, WANG Y, SYED-HASSAN S S A, et al. Effects of heating rate on the evolution of bio-oil during its pyrolysis[J]. Energy Conversion and Management, 2018, 163: 420-427. |
23 | XIONG Z, SYED-HASSAN S S A, HU X, et al. Effects of the component interaction on the formation of aromatic structures during the pyrolysis of bio-oil at various temperatures and heating rates[J]. Fuel, 2018, 233: 461-468. |
24 | GAO W R, ZHANG M M, WU H W. Bed agglomeration during bio-oil fast pyrolysis in a fluidized-bed reactor[J]. Energy & Fuels, 2018, 32(3): 3608-3613. |
25 | HU X, NANGO K, BAO L, et al. High yields of solid carbonaceous materials from biomass[J]. Green Chemistry, 2019, 21(5): 1128-1140. |
26 | CHHITI Y, SALVADOR S, COMMANDRÉ J M, et al. Thermal decomposition of bio-oil: focus on the products yields under different pyrolysis conditions[J]. Fuel, 2012, 102: 274-281. |
27 | RAMACHANDRAN R P B, ROSSUM G VAN, SWAAIJ W P M VAN, et al. Evaporation of biomass fast pyrolysis oil: Evaluation of char formation[J]. Environmental Progress & Sustainable Energy, 2009, 28(3): 410-417. |
28 | CHHITI Y, PEYROT M, SALVADOR S. Soot formation and oxidation during bio-oil gasification: experiments and modeling[J]. Journal of Energy Chemistry, 2013, 22(5): 701-709. |
29 | XIONG Z, JIANG L, XU J, et al. Effects of the gas-/liquid-phase interactions on the evolution of bio-oil during its thermal treatment[J]. Energy & Fuels, 2020, 34(7): 8482-8492. |
30 | XIONG Z, HAN H D, AZIS M M, et al. Formation of the heavy tar during bio-oil pyrolysis: a study based on Fourier transform ion cyclotron resonance mass spectrometry[J]. Fuel, 2019, 239: 108-116. |
31 | ROSSUM G VAN, GÜELL B M, RAMACHANDRAN R P B, et al. Evaporation of pyrolysis oil: product distribution and residue char analysis[J]. AIChE Journal, 2010, 56(8): 2200-2210. |
32 | BRANCA C, DI BLASI C. Multistep mechanism for the devolatilization of biomass fast pyrolysis oils[J]. Industrial & Engineering Chemistry Research, 2006, 45(17): 5891-5899. |
33 | 张怡, 陈登宇, 张栋, 等. 生物油TG-FTIR分析与热解气化特性研究[J]. 燃料化学学报, 2012, 40(10): 1194-1199. |
ZHANG Yi, CHEN Dengyu, ZHANG Dong, et al. TG-FTIR analysis of bio-oil and its pyrolysis/gasification property[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1194-1199. | |
34 | BRANCA C, BLASI C D, ELEFANTE R. Devolatilization and heterogeneous combustion of wood fast pyrolysis oils[J]. Industrial & Engineering Chemistry Research, 2005, 44(4): 799-810. |
35 | BRANCA C, DI BLASI C, RUSSO C. Devolatilization in the temperature range 300—600 K of liquids derived from wood pyrolysis and gasification[J]. Fuel, 2005, 84(1): 37-45. |
36 | BRANCA C, DI BLASI C, ELEFANTE R. Devolatilization of conventional pyrolysis oils generated from biomass and cellulose[J]. Energy & Fuels, 2006, 20(5): 2253-2261. |
37 | 王贤华, 贺瑞雪, 杨海平, 等. 生物油热解气化的TG-FTIR分析[J]. 太阳能学报, 2010, 31(5): 545-549. |
WANG Xianhua, HE Ruixue, YANG Haiping, et al. TG-FTIR analysis of bio oil pyrolysis/gasification[J]. Acta Energiae Solaris Sinica, 2010, 31(5): 545-549. | |
38 | ARNOLD S, RODRIGUEZ-URIBE A, MISRA M, et al. Slow pyrolysis of bio-oil and studies on chemical and physical properties of the resulting new bio-carbon[J]. Journal of Cleaner Production, 2018, 172: 2748-2758. |
39 | LI C Z. Importance of volatile-char interactions during the pyrolysis and gasification of low-rank fuels—A review[J]. Fuel, 2013, 112: 609-623. |
40 | QUAN S M, LIU Z Y, SHI L, et al. Volatiles reaction during pyrolysis of corn stalk—Its influence on bio-oil composition and coking behavior of volatiles[J]. Fuel, 2019, 246: 1-8. |
41 | XIONG Z, SYED-HASSAN S S A, XU J, et al. Evolution of coke structures during the pyrolysis of bio-oil at various temperatures and heating rates[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 336-342. |
42 | BAI X L, JOHNSTON P, BROWN R C. An experimental study of the competing processes of evaporation and polymerization of levoglucosan in cellulose pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 99: 130-136. |
43 | PHOUNGLAMCHEIK A, WRETBORN T, UMEKI K. Increasing efficiency of charcoal production with bio-oil recycling[J]. Energy & Fuels, 2018, 32(9): 9650-9658. |
44 | STOESSER P, RUF J, GUPTA R, et al. Contribution to the understanding of secondary pyrolysis of biomass-based slurry under entrained-flow gasification conditions[J]. Energy & Fuels, 2016, 30(8): 6448-6457. |
45 | XU Q, ZHANG L J, SUN K, et al. Cross-polymerisation between the model furans and carbohydrates in bio-oil with acid or alkaline catalysts[J]. Journal of the Energy Institute, 2020, 93(4): 1678-1689. |
46 | XU Q, HU X, ZHANG L J, et al. Cross-polymerization between the model furans and phenolics in bio-oil with acid or alkaline catalysts[J]. Green Energy & Environment, 2021, 6(1): 138-149. |
47 | XIONG Z, CHEN Y J, AZIS M M, et al. Roles of furfural during the thermal treatment of bio-oil at low temperatures[J]. Journal of Energy Chemistry, 2020, 50: 85-95. |
48 | KNEŽEVIĆ D, SWAAIJ W P M VAN, KERSTEN S R A. Hydrothermal conversion of biomass: I, Glucose conversion in hot compressed water[J]. Industrial & Engineering Chemistry Research, 2009, 48(10): 4731-4743. |
49 | XIONG Z, SYED-HASSAN S S A, HU X, et al. Pyrolysis of the aromatic-poor and aromatic-rich fractions of bio-oil: Characterization of coke structure and elucidation of coke formation mechanism[J]. Applied Energy, 2019, 239: 981-990. |
50 | GUO X J, WANG S R, GUO Z G, et al. Pyrolysis characteristics of bio-oil fractions separated by molecular distillation[J]. Applied Energy, 2010, 87(9): 2892-2898. |
51 | ZHU X F, LI K, ZHANG L Q, et al. Comparative study on the evolution of physicochemical characteristics of biochar produced from bio-oil distillation residue under different induction atmosphere[J]. Energy Conversion and Management, 2018, 157: 288-293. |
52 | ELKASABI Y, BOATENG A A, JACKSON M A. Upgrading of bio-oil distillation bottoms into biorenewable calcined coke[J]. Biomass and Bioenergy, 2015, 81: 415-423. |
53 | CHUA Y W, YU Y, WU H W. Thermal decomposition of pyrolytic lignin under inert conditions at low temperatures[J]. Fuel, 2017, 200: 70-75. |
54 | LIU S M, CHEN M Q, HU Q S, et al. The kinetics model and pyrolysis behavior of the aqueous fraction of bio-oil[J]. Bioresource Technology, 2013, 129: 381-386. |
55 | KEOWN D M, HAYASHI J I, LI C Z. Drastic changes in biomass char structure and reactivity upon contact with steam[J]. Fuel, 2008, 87(7): 1127-1132. |
56 | HALLETT W L H, CLARK N A. A model for the evaporation of biomass pyrolysis oil droplets[J]. Fuel, 2006, 85(4): 532-544. |
57 | BAI X L, JOHNSTON P, SADULA S, et al. Role of levoglucosan physiochemistry in cellulose pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 99: 58-65. |
58 | HU X, WANG Y, MOURANT D, et al. Polymerization on heating up of bio-oil: a model compound study[J]. AIChE Journal, 2013, 59(3): 888-900. |
59 | KAWAMOTO H, MURAYAMA M, SAKA S. Pyrolysis behavior of levoglucosan as an intermediate in cellulose pyrolysis: polymerization into polysaccharide as a key reaction to carbonized product formation[J]. Journal of Wood Science, 2003, 49(5): 469-473. |
60 | WANG Y, HU X, SONG Y, et al. Catalytic steam reforming of cellulose-derived compounds using a char-supported iron catalyst[J]. Fuel Processing Technology, 2013, 116: 234-240. |
61 | SUN K, XU Q, SHAO Y W, et al. Cross-polymerization between the typical sugars and phenolic monomers in bio-oil: a model compounds study[J]. Energy & Fuels, 2019, 33(8): 7480-7490. |
62 | SUN K, ZHANG L J, XU Q, et al. Evidence for cross-polymerization between the biomass-derived furans and phenolics[J]. Renewable Energy, 2020, 154: 517-531. |
63 | XU Q, SUN K, SHAO Y W, et al. Cross-polymerisation between furfural and the phenolics of varied molecular structure in bio-oil[J]. Bioresource Technology Reports, 2019, 8: 100324. |
64 | GOVINDARAJ A, SEN R, NAGARAJU B V, et al. Carbon nanospheres and tubules obtained by the pyrolysis of hydrocarbons[J]. Philosophical Magazine Letters, 1997, 76(5): 363-368. |
65 | JIN Y Z, GAO C, HSU W K, et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons[J]. Carbon, 2005, 43(9): 1944-1953. |
66 | NIETO-MÁRQUEZ A, ESPARTERO I, LAZO J C, et al. Direct synthesis of carbon and nitrogen-carbon nanospheres from aromatic hydrocarbons[J]. Chemical Engineering Journal, 2009, 153(1/2/3): 211-216. |
67 | KOPRINAROV N, KONSTANTINOVA M. Preparation of carbon spheres by low-temperature pyrolysis of cyclic hydrocarbons[J]. Journal of Materials Science, 2011, 46(5): 1494-1501. |
68 | WU C, LIU R H. Carbon deposition behavior in steam reforming of bio-oil model compound for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(14): 7386-7398. |
69 | WORNAT M J, PORTER B G, YANG N Y C. Single droplet combustion of biomass pyrolysis oils[J]. Energy & Fuels, 1994, 8(5): 1131-1142. |
70 | HU E Z, HU X G, LIU T X, et al. Investigation of morphology, structure and composition of biomass-oil soot particles[J]. Applied Surface Science, 2013, 270: 596-603. |
71 | HU S, XIANG J, SUN L S, et al. Characterization of char from rapid pyrolysis of rice husk[J]. Fuel Processing Technology, 2008, 89(11): 1096-1105. |
72 | SANNA A, OGBUNEKE K, ANDRÉSEN J M. Bio-coke from upgrading of pyrolysis bio-oil for co-firing[J]. Fuel, 2009, 88(12): 2340-2347. |
73 | LIU Y B, YAN H, CHEN X B, et al. Effect of blending ratio on coke morphology and composition in co-coking of vacuum residue and bio-tar[J]. Journal of Analytical and Applied Pyrolysis, 2019, 141: 104629. |
74 | PETRAKIS L, GRANDY D W. Formation and behaviour of coal free radicals in pyrolysis and liquefaction conditions[J]. Nature, 1981, 289(5797): 476-477. |
75 | 刘振宇. 重质有机资源热解过程中的自由基化学[J]. 北京化工大学学报(自然科学版), 2018, 45(5): 8-24. |
LIU Zhenyu. Radical chemistry in the pyrolysis of heavy organics[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(5): 8-24. | |
76 | HE W J, LIU Q Y, SHI L, et al. Understanding the stability of pyrolysis tars from biomass in a view point of free radicals[J]. Bioresource Technology, 2014, 156: 372-375. |
77 | HE W J, LIU Z Y, LIU Q Y, et al. Behavior of radicals during solvent extraction of three low rank bituminous coals[J]. Fuel Processing Technology, 2017, 156: 221-227. |
78 | CHEN Z Z, YAN Y X, ZHANG X R, et al. Behaviors of coking and stable radicals of a heavy oil during thermal reaction in sealed capillaries[J]. Fuel, 2017, 208: 10-19. |
79 | SHI X G, LIU Z Y, NIE H, et al. Behavior of coking and stable radicals formation during thermal reaction of an atmospheric residue[J]. Fuel Processing Technology, 2019, 192: 87-95. |
80 | 宋豫龙, 李伟, 徐州, 等. 喷雾热解制备落叶松基炭球及其电化学性能[J]. 林产化学与工业, 2019, 39(2): 9-15. |
SONG Yulong, LI Wei, XU Zhou, et al. Synthesis and electrochemical properties of larch-based carbon spheres via spray pyrolysis[J]. Chemistry and Industry of Forest Products, 2019, 39(2): 9-15. | |
81 | 季豪克, 张雪洁, 王昊, 等. 多孔碳纳米球及其负载金属催化剂的研究进展[J]. 化工进展, 2019, 38(7): 3143-3152. |
JI Haoke, ZHANG Xuejie, WANG Hao, et al. Research progress of the porous carbon nanospheres and their supported metal catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3143-3152. | |
82 | DESHMUKH A A, MHLANGA S D, COVILLE N J. Carbon spheres[J]. Materials Science and Engineering, 2010, 70(1/2): 1-28. |
83 | QIN W, KADLA J F. Carbon fibers based on pyrolytic lignin[J]. Journal of Applied Polymer Science, 2012, 126(S1): E204-E213. |
[1] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[2] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[3] | 白志华, 张军. 二乙烯三胺五亚甲基膦酸/Fenton体系氧化脱除NO[J]. 化工进展, 2023, 42(9): 4967-4973. |
[4] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[5] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[6] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[7] | 姚丽铭, 王亚琢, 范洪刚, 顾菁, 袁浩然, 陈勇. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801. |
[8] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[9] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[10] | 朱薇, 齐鹏刚, 苏银海, 张书平, 熊源泉. 生物油分级多孔碳超级电容器电极材料的制备及性能[J]. 化工进展, 2023, 42(6): 3077-3086. |
[11] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[12] | 王雪, 徐期勇, 张超. 木质纤维素类生物质水热炭化机理及水热炭应用进展[J]. 化工进展, 2023, 42(5): 2536-2545. |
[13] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
[14] | 梁贻景, 马岩, 卢展烽, 秦福生, 万骏杰, 王志远. La1-x Sr x MnO3钙钛矿涂层的抗结焦性能[J]. 化工进展, 2023, 42(4): 1769-1778. |
[15] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |