化工进展 ›› 2022, Vol. 41 ›› Issue (4): 1825-1833.DOI: 10.16085/j.issn.1000-6613.2021-0845
收稿日期:
2021-04-21
修回日期:
2021-06-09
出版日期:
2022-04-23
发布日期:
2022-04-25
通讯作者:
刘维燥
作者简介:
何民宇(1998—),男,硕士研究生,研究方向为工业固废综合利用。E-mail: 基金资助:
HE Minyu1(), LIU Weizao1(), LIU Qingcai1, QIN Zhifeng2
Received:
2021-04-21
Revised:
2021-06-09
Online:
2022-04-23
Published:
2022-04-25
Contact:
LIU Weizao
摘要:
CO2捕集与封存技术是目前实现碳减排最有效的方法。其中,CO2矿物封存(又称CO2矿化)是利用CO2与含钙镁硅酸盐矿物进行反应使CO2以稳定的碳酸盐形式永久储存起来。本文首先介绍了CO2矿化的基本原理和技术路线,其中间接矿化反应条件较温和、矿化效率更高、得到的产物也更纯,因此对于CO2间接矿化的研究也更广泛。本文综述并对比了天然矿物及工业固废矿化CO2的研究进展,指出工业固废更有利于CO2矿化过程。工业固废矿化CO2过程矿化CO2的同时处理了工业固废,实现以废治废,因此它在经济上也是具有一定优势。在此基础上,本文以高炉渣为代表,介绍了其矿化CO2的详细研究进展,指出采用可循环的助剂、回收高炉渣中有价元素可提升矿化过程经济性。对于CO2矿化过程的放大试验、生命周期的评估及低能耗的新工艺开发将是CO2矿物封存实现工业化的关键。
中图分类号:
何民宇, 刘维燥, 刘清才, 秦治峰. CO2矿物封存技术研究进展[J]. 化工进展, 2022, 41(4): 1825-1833.
HE Minyu, LIU Weizao, LIU Qingcai, QIN Zhifeng. Research progress in CO2 mineral sequestration technology[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1825-1833.
1 | OLIVIER J G, PETERS J. Trends in global CO2 and total greenhouse gas emissions: 2019 report[R]. PBL Netherlands Environmental Assessment Agency, 2019. |
2 | IPCC 2014. Climate change 2014: synthesis report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the fifth assessment report of the Intergovernmental Panel on Climate Change[R]. Geneva: IPCC, 2014. |
3 | GAO Y, GAO X, ZHANG X H. The 2℃ global temperature target and the evolution of the long-term goal of addressing climate change—From the United Nations Framework Convention on Climate Change to the Paris Agreement[J]. Engineering, 2017, 3(2): 272-278. |
4 | LIM M, HAN G C, AHN J W, et al. Environmental remediation and conversion of carbon dioxide (CO2) into useful green products by accelerated carbonation technology[J]. International Journal of Environmental Research and Public Health, 2010, 7(1): 203-228. |
5 | MACDOWELL N, FLORIN N, BUCHARD A, et al. An overview of CO2 capture technologies[J]. Energy & Environmental Science, 2010, 3(11): 1645-1669. |
6 | LIU W Z, TENG L M, ROHANI S, et al. CO2 mineral carbonation using industrial solid wastes: a review of recent developments[J]. Chemical Engineering Journal, 2021, 416: 129093. |
7 | LACKNER K S, BUTT D P, WENDT C H. Progress on binding CO2 in mineral substrates[J]. Energy Conversion and Management, 1997, 38: S259-S264. |
8 | LACKNER K S, WENDT C H, BUTT D P, et al. Carbon dioxide disposal in carbonate minerals[J]. Energy, 1995, 20(11): 1153-1170. |
9 | O’CONNOR W K, DAHLIN D C, NILSEN D N, et al. Carbon dioxide sequestration by direct mineral carbonation: results from recent studies and current status[C]// 1st Annual DOE Carbon Sequestration Conference, Washington, D.C., 2001. |
10 | TAI C Y, CHEN W R, SHIH S M. Factors affecting wollastonite carbonation under CO2 supercritical conditions[J]. AIChE Journal, 2006, 52(1): 292-299. |
11 | ZEVENHOVEN R, WIKLUND A, FAGERLUND J, et al. Carbonation of calcium-containing mineral and industrial by-products[J]. Frontiers of Chemical Engineering in China, 2010, 4(2): 110-119. |
12 | FARA A ABU, RAYSON M R, BRENT G F, et al. Formation of magnesite and hydromagnesite from direct aqueous carbonation of thermally activated lizardite[J]. Environmental Progress & Sustainable Energy, 2019, 38(3): e13244. |
13 | FARHANG F, OLIVER T K, RAYSON M, et al. Experimental study on the precipitation of magnesite from thermally activated serpentine for CO2 sequestration[J]. Chemical Engineering Journal, 2016, 303: 439-449. |
14 | FABIAN M, SHOPSKA M, PANEVA D, et al. The influence of attrition milling on carbon dioxide sequestration on magnesium-iron silicate[J]. Minerals Engineering, 2010, 23(8): 616-620. |
15 | LI J J, HITCH M. Mechanical activation of magnesium silicates for mineral carbonation, a review[J]. Minerals Engineering, 2018, 128: 69-83. |
16 | HUIJGEN W J J, WITKAMP G J, COMANS R N J. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process[J]. Chemical Engineering Science, 2006, 61(13): 4242-4251. |
17 | GERDEMANN S J, O’CONNOR W K, DAHLIN D C, et al. Ex situ aqueous mineral carbonation[J]. Environmental Science Technology, 2007, 41(7): 2587-2593. |
18 | TEIR S, KUUSIK R, FOGELHOLM C J, et al. Production of magnesium carbonates from serpentinite for long-term storage of CO2 [J]. International Journal of Mineral Processing, 2007, 85(1/2/3): 1-15. |
19 | TEIR S, REVITZER H, ELONEVA S, et al. Dissolution of natural serpentinite in mineral and organic acids[J]. International Journal of Mineral Processing, 2007, 83(1/2): 36-46. |
20 | TEIR S, ELONEVA S, FOGELHOLM C J, et al. Fixation of carbon dioxide by producing hydromagnesite from serpentinite[J]. Applied Energy, 2009, 86(2): 214-218. |
21 | ARCE FERRUFINO G L A, OKAMOTO S, SANTOS J C DOS, et al. CO2 sequestration by pH-swing mineral carbonation based on HCl/NH4OH system using iron-rich lizardite 1T[J]. Journal of CO2 Utilization, 2018, 24: 164-173. |
22 | BAO W J, LI H Q, ZHANG Y. Experimental investigation of enhanced carbonation by solvent extraction for indirect CO2 mineral sequestration[J]. Greenhouse Gases: Science and Technology, 2014, 4(6): 785-799. |
23 | WANG X, MAROTO-VALER M M. Integration of CO2 capture and mineral carbonation by using recyclable ammonium salts[J]. ChemSusChem, 2011, 4(9): 1291-1300. |
24 | WANG X L, MAROTO-VALER M M. Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation[J]. Fuel, 2011, 90(3): 1229-1237. |
25 | FAGERLUND J, NDUAGU E, ROMÃO I, et al. CO2 fixation using magnesium silicate minerals Part 1: Process description and performance[J]. Energy, 2012, 41(1): 184-191. |
26 | NDUAGU E, BJÖRKLÖF T, FAGERLUND J, et al. Production of magnesium hydroxide from magnesium silicate for the purpose of CO2 mineralization—Part 2: Mg extraction modeling and application to different Mg silicate rocks[J]. Minerals Engineering, 2012, 30: 87-94. |
27 | ZEVENHOVEN R, SLOTTE M, ÅBACKA J, et al. A comparison of CO2 mineral sequestration processes involving a dry or wet carbonation step[J]. Energy, 2016, 117: 604-611. |
28 | RAZA W, RAZA N, AGBE H, et al. Multistep sequestration and storage of CO2 to form valuable products using forsterite[J]. Energy, 2018, 155: 865-873. |
29 | ARCE G L A F, SOARES NETO T G, ÁVILA I, et al. Leaching optimization of mining wastes with lizardite and brucite contents for use in indirect mineral carbonation through the pH swing method[J]. Journal of Cleaner Production, 2017, 141: 1324-1336. |
30 | ROMÃO I S, GANDO-FERREIRA L M, ZEVENHOVEN R. Combined extraction of metals and production of Mg(OH)2 for CO2 sequestration from nickel mine ore and overburden[J]. Minerals Engineering, 2013, 53: 167-170. |
31 | HUIJGEN W J J, COMANS R N J. Mineral CO2 sequestration by steel slag carbonation[J]. Environmental Science & Technology, 2005, 39(24): 9676-9682. |
32 | CHANG E E, PAN S Y, CHEN Y H, et al. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor[J]. Journal of Hazardous Materials, 2011, 195: 107-114. |
33 | CHANG E E, PAN S Y, CHEN Y H, et al. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed[J]. Journal of Hazardous Materials, 2012, 227/228: 97-106. |
34 | PAN S Y, LORENTE LAFUENTE A M, CHIANG P C. Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization[J]. Applied Energy, 2016, 170: 269-277. |
35 | TAMILSELVI DANANJAYAN R R, KANDASAMY P, ANDIMUTHU R. Direct mineral carbonation of coal fly ash for CO2 sequestration[J]. Journal of Cleaner Production, 2016, 112: 4173-4182. |
36 | TEIR S, ELONEVA S, FOGELHOLM C J, et al. Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production[J]. Energy, 2007, 32(4): 528-539. |
37 | ELONEVA S, TEIR S, SALMINEN J, et al. Steel converter slag as a raw material for precipitation of pure calcium carbonate[J]. Industrial & Engineering Chemistry Research, 2008, 47(18): 7104-7111. |
38 | ELONEVA S, TEIR S, SALMINEN J, et al. Fixation of CO2 by carbonating calcium derived from blast furnace slag[J]. Energy, 2008, 33(9): 1461-1467. |
39 | SUN Y, YAO M S, ZHANG J P, et al. Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution[J]. Chemical Engineering Journal, 2011, 173(2): 437-445. |
40 | ELONEVA S, SAID A, FOGELHOLM C J, et al. Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate[J]. Applied Energy, 2012, 90(1): 329-334. |
41 | HE L L, YU D X, LYU W, et al. A novel method for CO2 sequestration via indirect carbonation of coal fly ash[J]. Industrial & Engineering Chemistry Research, 2013, 52(43): 15138-15145. |
42 | HOSSEINI T, SELOMULYA C, HAQUE N, et al. Indirect carbonation of victorian brown coal fly ash for CO2 sequestration: multiple-cycle leaching-carbonation and magnesium leaching kinetic modeling[J]. Energy & Fuels, 2014, 28(10): 6481-6493. |
43 | JO H, PARK S H, JANG Y N, et al. Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions[J]. Chemical Engineering Journal, 2014, 254: 313-323. |
44 | JEON J, KIM M J. CO2 storage and CaCO3 production using seawater and an alkali industrial by-product[J]. Chemical Engineering Journal, 2019, 378: 122180. |
45 | DRI M, SANNA A, MAROTO-VALER M M. Dissolution of steel slag and recycled concrete aggregate in ammonium bisulphate for CO2 mineral carbonation[J]. Fuel Processing Technology, 2013, 113: 114-122. |
46 | JI L, YU H, YU B, et al. Integrated absorption-mineralisation for energy-efficient CO2 sequestration: reaction mechanism and feasibility of using fly ash as a feedstock[J]. Chemical Engineering Journal, 2018, 352: 151-162. |
47 | JI L, YU H, LI K K, et al. Integrated absorption-mineralisation for low-energy CO2 capture and sequestration[J]. Applied Energy, 2018, 225: 356-366. |
48 | WANG L, LIU W Z, HU J P, et al. Indirect mineral carbonation of titanium-bearing blast furnace slag coupled with recovery of TiO2 and Al2O3 [J]. Chinese Journal of Chemical Engineering, 2018, 26(3): 583-592. |
49 | CHU G R, WANG L, LIU W Z, et al. Indirect mineral carbonation of chlorinated tailing derived from Ti-bearing blast-furnace slag coupled with simultaneous dechlorination and recovery of multiple value-added products[J]. Greenhouse Gases: Science and Technology, 2019, 9(1): 52-66. |
50 | ÖZBAY E, ERDEMIR M, DURMUŞ H İ. Utilization and efficiency of ground granulated blast furnace slag on concrete properties—A review[J]. Construction and Building Materials, 2016, 105: 423-434. |
51 | USGS. Mineral commodity summaries 2020[R]. U.S. Geological Survey, 2020. |
52 | ULIASZ-BOCHEŃCZYK A, MOKRZYCKI E. CO2 mineral sequestration with the use of ground granulated blast furnace slag[J]. Gospodarka Surowcami Mineralnymi, 2017, 33(1): 111-124. |
53 | REN E Z, TANG S Y, LIU C J, et al. Carbon dioxide mineralization for the disposition of blast-furnace slag: reaction intensification using NaCl solutions[J]. Greenhouse Gases: Science and Technology, 2020, 10(2): 436-448. |
54 | MUN M, CHO H. Mineral carbonation for carbon sequestration with industrial waste[J]. Energy Procedia, 2013, 37: 6999-7005. |
55 | DE CROM K, CHIANG Y W, GERVEN T VAN, et al. Purification of slag-derived leachate and selective carbonation for high-quality precipitated calcium carbonate synthesis[J]. Chemical Engineering Research and Design, 2015, 104: 180-190. |
56 | LEE S, KIM J W, CHAE S, et al. CO2 sequestration technology through mineral carbonation: an extraction and carbonation of blast slag[J]. Journal of CO2 Utilization, 2016, 16: 336-345. |
57 | BANG J H, LEE S W, JEON C, et al. Leaching of metal ions from blast furnace slag by using aqua regia for CO2 mineralization[J]. Energies, 2016, 9(12): 996. |
58 | HU J P, LIU W Z, WANG L, et al. Indirect mineral carbonation of blast furnace slag with (NH4)2SO4 as a recyclable extractant[J]. Journal of Energy Chemistry, 2017, 26(5): 927-935. |
59 | LIU W Z, YIN S, LUO D M, et al. Optimising the recovery of high-value-added ammonium alum during mineral carbonation of blast furnace slag[J]. Journal of Alloys and Compounds, 2019, 774: 1151-1159. |
60 | 李春, 刘维燥, 岳海荣, 等. CO2矿化非碱性矿的离子迁移规律及过程强化基础[J]. 中国基础科学, 2018, 20(4): 49-54. |
LI Chun, LIU Weizao, YUE Hairong, et al. Ion migration rule and process reinforcement basis for the CO2 mineralization of non-alkaline ores[J]. China Basic Science, 2018, 20(4): 49-54. | |
61 | YIN S, ALDAHRI T, ROHANI S, et al. Insights into the roasting kinetics and mechanism of blast furnace slag with ammonium sulfate for CO2 mineralization[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14026-14036. |
62 | DENG C H, LIU W Z, CHU G R, et al. Aqueous carbonation of MgSO4 with (NH4)2CO3 for CO2 sequestration[J]. Greenhouse Gases: Science and Technology, 2019, 9(2): 209-225. |
63 | GENG X, LYU L, LI C, et al. The kinetics of CO2 indirect mineralization of MgSO4 to produce MgCO3· 3H2O[J]. Journal of CO2 Utilization, 2019, 33: 64-71. |
64 | LIU W Z, MENG F Q, CHU G R, et al. Phase diagrams of the MgSO4-Al2(SO4) 3-(NH4) 2SO4-H2O system at 25 and 55℃ and their application in mineral carbonation[J]. Fluid Phase Equilibria, 2018, 473: 226-235. |
65 | GAO J Q, LI C, LIU W Z, et al. Process simulation and energy integration in the mineral carbonation of blast furnace slag[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 157-167. |
66 | HAN Z K, GAO J Q, YUAN X Z, et al. Microwave roasting of blast furnace slag for carbon dioxide mineralization and energy analysis[J]. RSC Advances, 2020, 10(30): 17836-17844. |
67 | REN S, ALDAHRI T, LIU W, et al. CO2 mineral sequestration by using blast furnace slag: from batch to continuous experiments[J]. Energy, 2021, 214: 118975. |
68 | LIU Q, LIU W Z, HU J P, et al. Energy-efficient mineral carbonation of blast furnace slag with high value-added products[J]. Journal of Cleaner Production, 2018, 197: 242-252. |
69 | CHU G R, LI C, LIU W Z, et al. Facile and cost-efficient indirect carbonation of blast furnace slag with multiple high value-added products through a completely wet process[J]. Energy, 2019, 166: 1314-1322. |
70 | LIU W Z, ALDAHRI T, REN S, et al. Solvent-free synthesis of hydroxycancrinite zeolite microspheres during the carbonation process of blast furnace slag[J]. Journal of Alloys and Compounds, 2020, 847: 156456. |
71 | LIU W Z, ALDAHRI T, XU C B, et al. Synthesis of sole gismondine-type zeolite from blast furnace slag during CO2 mineralization process[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104652. |
[1] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[2] | 李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
[3] | 王秋华, 吴嘉帅, 张卫风. 碱性工业固废矿化封存二氧化碳研究进展[J]. 化工进展, 2023, 42(3): 1572-1582. |
[4] | 范嘉昊, 张洋, 范兵强, 张贺东, 郑诗礼, 邹兴. (NH4)2SO4和Na2SO4混合溶液中(NH4)2SO4结晶动力学及铁/铝/锰/铬等离子对(NH4)2SO4结晶的影响规律[J]. 化工进展, 2023, 42(1): 488-496. |
[5] | 曾一凡, 舒建成, 杨慧敏, 赵志胜, 陈梦君, 杨勇, 刘仁龙. 铵盐体系电解锰渣中石膏的转变规律[J]. 化工进展, 2022, 41(9): 5115-5121. |
[6] | 郑鹏, 李蔚玲, 郭亚飞, 孙健, 王瑞林, 赵传文. 鼓泡床中电石渣加速碳酸化分析与响应面优化[J]. 化工进展, 2022, 41(3): 1528-1538. |
[7] | 刘维燥, 胡金鹏, 刘清才, 李春. 硫酸铵与钛酸钙焙烧动力学[J]. 化工进展, 2021, 40(8): 4624-4630. |
[8] | 王中辉, 苏胜, 尹子骏, 安晓雪, 赵志刚, 陈逸峰, 刘涛, 汪一, 胡松, 向军. CO2矿化及吸收-矿化一体化(IAM)方法研究进展[J]. 化工进展, 2021, 40(4): 2318-2327. |
[9] | 黄浩,王涛,方梦祥. 二氧化碳矿化养护混凝土技术及新型材料研究进展[J]. 化工进展, 2019, 38(10): 4363-4373. |
[10] | 刘阳钰, 贾宏伟, 潘永泰, 郑水林, 孙志明, 李铭哲. 蛋白土与硫酸铵煅烧反应产物及过程动力学[J]. 化工进展, 2018, 37(12): 4543-4550. |
[11] | 石田, 陈健, 段伦博, 赵长遂. 溶液燃烧合成法制备自活化钙铜复合CO2吸收剂的性能[J]. 化工进展, 2018, 37(08): 3086-3091. |
[12] | 黄福芝, 周倩. 诱导聚结法过硫酸铵缓释微胶囊的制备[J]. 化工进展, 2018, 37(08): 3076-3085. |
[13] | 唐昊, 李慧, 杨江毅, 蔺卓玮, 庄柯, 陆强, 李文艳. NH3-SCR工艺中硫酸铵盐的生成与分解机理研究进展[J]. 化工进展, 2018, 37(03): 822-831. |
[14] | 李亚林, 刘蕾, 侯金金, 刘晓彤, 韩宁宁. 电渗透-过硫酸铵氧化协同强化污泥深度脱水[J]. 化工进展, 2017, 36(05): 1919-1926. |
[15] | 王梦秋1,龚惠娟2,樊杨梅1,余珉1,陈泽智1,刘静3,潘敏3. 双氧水对亚硫酸铵的氧化特性[J]. 化工进展, 2014, 33(02): 505-509. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |