化工进展 ›› 2021, Vol. 40 ›› Issue (4): 2318-2327.DOI: 10.16085/j.issn.1000-6613.2020-0981
王中辉(), 苏胜(), 尹子骏, 安晓雪, 赵志刚, 陈逸峰, 刘涛, 汪一, 胡松, 向军
收稿日期:
2020-06-02
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
苏胜
作者简介:
王中辉(1997—),男,硕士研究生,研究方向为CO2矿化减排。E-mail:基金资助:
WANG Zhonghui(), SU Sheng(), YIN Zijun, AN Xiaoxue, ZHAO Zhigang, CHEN Yifeng, LIU Tao, WANG Yi, HU Song, XIANG Jun
Received:
2020-06-02
Online:
2021-04-05
Published:
2021-04-14
Contact:
SU Sheng
摘要:
为避免温室效应带来的负面影响,CO2减排已成为目前的当务之急。CO2矿物碳酸化作为一种有潜力的CO2减排技术,受到了学者们的广泛关注。CO2矿物碳酸化方法主要包括直接干法碳酸化、直接湿法碳酸化以及间接碳酸化等不同工艺过程。目前,CO2直接或间接碳酸化方法面临的关键挑战是提升CO2碳酸化反应动力学特性;反应速率慢、碳酸化效率较低是当前该技术的主要问题。传统CO2胺类化学吸收法具有吸收速率快、吸收容量大和吸收剂能循环再生的优点,但能耗和运行成本较高。将CO2胺类化学吸收法与CO2碳酸化过程结合而开发的CO2吸收-矿化一体化技术(IAM)不仅解决了传统工艺高能耗、低转化率的问题,而且使工艺流程简化、成本降低,有利于应用于工业化。本文主要综述了近年来CO2矿化技术的研究进展,对比了各种工艺技术路线的不同特点,并分析指出加强对IAM工艺反应机理的研究以及开发出高效、经济的吸收剂和矿化原料,将是该工艺未来研究的重点和关键。
中图分类号:
王中辉, 苏胜, 尹子骏, 安晓雪, 赵志刚, 陈逸峰, 刘涛, 汪一, 胡松, 向军. CO2矿化及吸收-矿化一体化(IAM)方法研究进展[J]. 化工进展, 2021, 40(4): 2318-2327.
WANG Zhonghui, SU Sheng, YIN Zijun, AN Xiaoxue, ZHAO Zhigang, CHEN Yifeng, LIU Tao, WANG Yi, HU Song, XIANG Jun. Research progress of CO2 mineralization and integrated absorption-mineralization (IAM) method[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2318-2327.
矿化原料 | 主要成分 | 主要化学反应方程式 |
---|---|---|
天然矿物 | ||
橄榄石 | Mg2SiO4 | Mg2SiO4+2CO2 |
蛇纹石 | Mg3Si2O5(OH)4 | Mg3Si2O5(OH)4+3CO2 |
硅灰石 | CaSiO3 | CaSiO3+CO2 |
工业固废 | ||
粉煤灰 | CaO | CaO+CO2 CaO+H2O Ca(OH)2(aq)+CO2 |
钢渣 | CaO、MgO | CaO+CO2 MgO+CO2 |
磷石膏 | CaSO4·2H2O | CaSO4·2H2O+2NH3·H2O+CO2 CaSO4(s)+2KAlSi3O8+CO2+2H2O |
电石渣 | Mg(OH)2 | Ca(OH)2(aq)+CO2 |
盐湖苦卤 | MgCl2 | MgCl2·6H2O(aq)+2NH3·H2O Mg(OH)2+CO2+2H2O |
表1 矿化原料及其主要化学反应过程
矿化原料 | 主要成分 | 主要化学反应方程式 |
---|---|---|
天然矿物 | ||
橄榄石 | Mg2SiO4 | Mg2SiO4+2CO2 |
蛇纹石 | Mg3Si2O5(OH)4 | Mg3Si2O5(OH)4+3CO2 |
硅灰石 | CaSiO3 | CaSiO3+CO2 |
工业固废 | ||
粉煤灰 | CaO | CaO+CO2 CaO+H2O Ca(OH)2(aq)+CO2 |
钢渣 | CaO、MgO | CaO+CO2 MgO+CO2 |
磷石膏 | CaSO4·2H2O | CaSO4·2H2O+2NH3·H2O+CO2 CaSO4(s)+2KAlSi3O8+CO2+2H2O |
电石渣 | Mg(OH)2 | Ca(OH)2(aq)+CO2 |
盐湖苦卤 | MgCl2 | MgCl2·6H2O(aq)+2NH3·H2O Mg(OH)2+CO2+2H2O |
参数 | CO2捕获 | ||
---|---|---|---|
化学再生(CaO) | 化学再生(粉煤灰) | 传统热再生 | |
吸收剂浓度/mol·L-1 | 2 | 2 | 2 |
烟气CO2压力/kPa | 9 | 9 | 9 |
吸收温度/℃ | 40 | 40 | 40 |
再生压力/atm | 1 | 1 | 2 |
再生温度/℃ | 40 | 40 | 116 |
换热器换热温差/℃ | — | — | 10 |
CO2循环负荷/mol·mol-1 | 0.21 | 0.21 | 0.21 |
再生消耗能量/MJ·kg-1 CO2 | 0 | 0 | 4.7 |
产物 | CaCO3 | 富含CaCO3的飞灰 | 高纯度CO2 |
表2 IAM工艺与传统MEA工艺实验条件及结果[48,51,59]
参数 | CO2捕获 | ||
---|---|---|---|
化学再生(CaO) | 化学再生(粉煤灰) | 传统热再生 | |
吸收剂浓度/mol·L-1 | 2 | 2 | 2 |
烟气CO2压力/kPa | 9 | 9 | 9 |
吸收温度/℃ | 40 | 40 | 40 |
再生压力/atm | 1 | 1 | 2 |
再生温度/℃ | 40 | 40 | 116 |
换热器换热温差/℃ | — | — | 10 |
CO2循环负荷/mol·mol-1 | 0.21 | 0.21 | 0.21 |
再生消耗能量/MJ·kg-1 CO2 | 0 | 0 | 4.7 |
产物 | CaCO3 | 富含CaCO3的飞灰 | 高纯度CO2 |
参数 | 传统MEA工艺能耗 | IAM工艺能耗 | IAM工艺节能 |
---|---|---|---|
汽提塔再沸器/kJ·(kg CO2)-1 | 760 | — | 760 |
压缩装置/kJ·(kg CO2)-1 | 397 | — | 397 |
泵/kJ·(kg CO2)-1 | 9.9 | 9.9 | 0 |
过滤装置/kJ·(kg CO2)-1 | — | 51.7 | -51.7 |
总计/kJ·(kg CO2)-1 | 1166.9 | 61.6 | 1115.3 |
年能耗成本/ | 142865 | 233 | 142632 |
设备投入成本/ | 42460 | 5537 | 36923 |
表3 IAM工艺与传统MEA工艺能耗和资本投入
参数 | 传统MEA工艺能耗 | IAM工艺能耗 | IAM工艺节能 |
---|---|---|---|
汽提塔再沸器/kJ·(kg CO2)-1 | 760 | — | 760 |
压缩装置/kJ·(kg CO2)-1 | 397 | — | 397 |
泵/kJ·(kg CO2)-1 | 9.9 | 9.9 | 0 |
过滤装置/kJ·(kg CO2)-1 | — | 51.7 | -51.7 |
总计/kJ·(kg CO2)-1 | 1166.9 | 61.6 | 1115.3 |
年能耗成本/ | 142865 | 233 | 142632 |
设备投入成本/ | 42460 | 5537 | 36923 |
1 | ALLEN M R, FRAME D J, HUNTINGFORD C, et al. Warming caused by cumulative carbon emissions towards the trillionth tonne[J]. Nature, 2009, 458: 163-1166. |
2 | ROGELJ J, ELZEN M D, HOHNE N, et al. Paris agreement climate proposals need a boost to keep warming well below 2℃[J]. Nature, 2016, 534: 631-639. |
3 | BERGER J, CHRISTENSEN J, DUBASH N K, et al. Emissions gap report 2019[R]. Nairobi: UNEP, 2019. |
4 | SANNA A, UIBU M, CARAMANNA G, et al. A review of mineral carbonation technologies to sequester CO2[J]. Chemical Society Reviews, 2014, 43: 8049-8080. |
5 | 康丽娜, 尚会建, 郑学明. CO2的捕集封存技术进展及在我国的应用前景[J]. 化工进展, 2010, 29(S1): 24-27. |
KANG Lina, SHANG Huijian, ZHENG Xueming. Progress of CO2 capture and storage technology and its application prospects in China[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 24-27. | |
6 | LOCKWOOD T. A comparative review of next-generation carbon capture technologies for coal-fired power plant[J]. Energy Procedia, 2017, 114: 2658-2670. |
7 | ROMANOV V, SOONG Y, CARNEY C, et al. Mineralization of carbon dioxide: a literature review[J]. ChemBioEng Reviews, 2015, 2: 231-256. |
8 | PARK S, LEE M G, PARK J, et al. CO2 (carbon dioxide) fixation by applying new chemical absorption-precipitation methods[J]. Energy, 2013, 59: 737-742. |
9 | NARAHARISETTI P K, YEO T Y, BU J. New classification of CO2 mineralization processes and economic evaluation[J]. Renewable and Sustainable Energy Reviews, 2019, 99: 220-233. |
10 | GEERLINGS H, ZEVENHOVEN R. CO2 mineralization-bridge between storage and utilization of CO2[J]. Annual Review of Chemical and Biomolecular Engineering, 2013, 4: 103-117. |
11 | SEIFRITZ W. CO2 disposal by means of silicates[J]. Nature, 1990, 345(6275): 486-486. |
12 | BOBICKI E R, LIU Qingxia, XU Zhenghe, et al. Carbon capture and storage using alkaline industrial wastes[J]. Progress in Energy and Combustion Science, 2012, 38: 302-320. |
13 | OLAJIRE A A. A review of mineral carbonation technology in sequestration of CO2[J]. Journal of Petroleum Science and Engineering, 2013, 109: 364-392. |
14 | 张兵兵, 王慧敏, 曾尚红, 等. 二氧化碳矿物封存技术现状及展望[J]. 化工进展, 2012, 31(9): 2075-2083. |
ZHANG Bingbing, WANG Huimin, ZENG Shanghong, et al. Present situation and prospect of carbon dioxide mineral storage technology[J]. Chemical Industry and Engineering Progress, 2012, 31(9): 2075-2083. | |
15 | PAN S, CHIANG A, CHANG E E, et al. An innovative approach to integrated carbon mineralization and waste utilization: a review[J]. Aerosol and Air Quality Research, 2015, 15: 1072-1091. |
16 | FAGERLUND J, TEIR S, NDUAGU E, et al. Carbonation of magnesium silicate mineral using a pressurized gas-solid process[J].Energy Procedia, 2009, 1: 4907-4914. |
17 | RENFORTH P, WASHBOURNE C L, TAYLDER J, et al. Silicate production and availability for mineral carbonation[J]. Environmental Science & Technology, 2011, 45: 2035-2041. |
18 | ZHAO Jihui, WANG Dongmin, LIAO Shucong. Effect of mechanical grinding on physical and chemical characteristics of circulating fluidized bed fly ash from coal gangue power plant[J]. Construction and Building Materials, 2015, 101: 851-860. |
19 | 王晓龙, 郜时旺, 刘练波, 等. 捕集并利用燃煤电厂二氧化碳生产高附加值产品的新工艺[J]. 中国电机工程学报, 2012, 32(S1): 164-167. |
WANG Xiaolong, GAO Shiwang, LIU Lianbo, et al. New process for capturing and using carbon dioxide from coal-fired power plants to produce high value-added products[J]. Proceedings of the CSEE, 2012, 32(S1): 164-167. | |
20 | PAN S Y, SHAH K J, CHEN Y H, et al. Deployment of accelerated carbonation using alkaline solid wastes for carbon mineralization and utilization toward a circular economy[J]. ACS Sustainable Chemistry & Engineering, 2017, 5: 6429-6437. |
21 | 谢和平, 谢凌志, 王昱飞, 等. 全球二氧化碳减排不应是CCS, 应是CCU[J]. 四川大学学报(工程科学版), 2012, 44(4): 1-5. |
XIE Heping, XIE Lingzhi, WANG Yufei, et al. Global carbon dioxide emission reduction should not be CCS, but CCU[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(4): 1-5. | |
22 | AZDARPOUR A, ASADULLAH M, MOHAMMADIAN E, et al. A review on carbon dioxide mineral carbonation through pH-swing process[J]. Chemical Engineering Journal, 2015, 279: 615-630. |
23 | LACKNER K S, BUTT D P, WENDT C H. Progress on binding CO2 in mineral substrates[J]. Energy Conversion and Management, 1997, 38: S259-264. |
24 | LIU Wei, SU Sheng, XU Kai, et al. CO2 sequestration by direct gas-solid carbonation of fly ash with steam addition[J]. Journal of Cleaner Production, 2018, 178: 98-107. |
25 | O’CONNOR W K, DAHLIN D C, NILSEN R P, et al. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid[C]//TURNER P C. Albany Research Center Proceedings of the 25th International Technical Conference on Coal Utilization & Fuel Systems, Oregon: Albany Research Center, 2000: 1-15. |
26 | KWAK J H, HU Jianzhi, HOYT D W, et al. Metal carbonation of forsterite in supercritical CO2 and H2O using solid state 29Si, 13C NMR spectroscopy[J]. The Journal of Physical Chemistry C, 2010, 114: 4126-4134. |
27 | 绳昊一, 吕莉, 梁斌, 等. 焙烧温度对硅酸钙矿化CO2的影响[J]. 矿产综合利用, 2015, 10(5): 76-80. |
SHENG Haoyi, Li LYU, LIANG Bin, et al. Effect of roasting temperature on mineralized CO2 of calcium silicate[J]. Comprehensive Utilization of Minerals, 2015, 10(5): 76-80. | |
28 | 栗明宏, 赵瑞红, 柴彤, 等. 烟道气碳化水镁石副产碱式碳酸镁碳捕集技术[J]. 煤炭转化, 2017, 40(3): 76-80. |
LI Minghong, ZHAO Ruihong, CAI Tong, et al. Flue gas carbonized brucite by-product basic magnesium carbonate carbon capture technology[J]. Coal Conversion, 2017, 40(3): 76-80. | |
29 | WANG Tao, HUANG Hao, HU Xutao, et al. Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate[J]. Chemical Engineering Journal, 2017, 323: 320-329. |
30 | HUANG Hao, GUO Ruonan, WANG Tao, et al. Carbonation curing for wollastonite-Portland cementitious materials: CO2 sequestration potential and feasibility assessment[J]. Journal of Cleaner Production, 2019, 211: 830-841. |
31 | YI Zhenwei, WANG Tao, GUO Ruonan, et al. Sustainable building material from CO2 mineralization slag: aggregate for concretes and effect of CO2 curing[J]. Journal of CO2 Utilization, 2020, 40: 101196. |
32 | GUO Ruonan, CHEN Qiyang, HUANG Hao, et al. Carbonation curing of industrial solid waste-based aerated concretes[J]. Greenhouse Gases Science and Technology, 2019, 9: 433-443. |
33 | 黄浩, 王涛, 方梦祥. 二氧化碳矿化养护混凝土技术及新型材料研究进展[J]. 化工进展, 2019, 38(10): 4363-4373. |
HUANG Hao, WANG Tao, FANG Mengxiang. Review on carbon dioxide mineral carbonation curing technology of concrete and novel material development[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4363-4373. | |
34 | HUIGEN W J J. Carbon dioxide sequestration by mineral carbonation[D]. Netherlands: Wageningen University, 2007. |
35 | GADIKOTA G, MATTER J, KELEMEN P, et al. Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3[J]. Physical Chemistry Chemical Physics, 2014, 16: 4679-4693. |
36 | WANG Fei, DREISINGERA D, JARVIS M, et al. Kinetics and mechanism of mineral carbonation of olivine for CO2 sequestration[J]. Mineral Engineering, 2019, 131: 185-197. |
37 | SARAN R K, ARORA V, YADAV S. CO2 sequestration by mineral carbonation: a review[J]. Global NEST Journal, 2018, 20(3): 497-503. |
38 | 李春, 刘维燥, 岳海荣, 等. CO2矿化非碱性矿的离子迁移规律及过程强化基础[J]. 中国基础科学, 2018(4): 49-54. |
LI Chun, LIU Weizao, YUE Hairong, et al. Ion migration rule and process reinforcement basis of CO2 mineralization of non-alkaline ores[J]. China Basic Science, 2018(4): 49-54. | |
39 | YIN Shu, ALDAHRI T, ROHANI S, et al. Insights into the roasting kinetics and mechanism of blast furnace slag with ammonium sulfate for CO2 mineralization[J]. Industrial Engineering Chemistry Research, 2019, 58: 14036-14036. |
40 | LIU Qiang, LIU Weizao, HU Jinpeng, et al. Energy-efficient mineral carbonation of blast furnace slag with high value-added products[J]. Journal of Cleaner Production, 2018, 197: 242-252. |
41 | LIU Weizao, YIN Shu, LUO Dongmei, et al. Optimizing the recovery of high-value-added ammonium alum during mineral carbonation of blast furnace slag[J]. Journal of Alloys and Compounds, 2019, 774: 1151-1159. |
42 | MAROTO-VALER M M, FAUTH D J, KUCHTA M E, et al. Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration[J]. Fuel Process Technology, 2005, 86: 1627-1645. |
43 | TEIR S, REVITZER H, ELONEVA S, et al. Dissolution of natural serpentinite in mineral and organic acids[J]. International Journal of Mineral Processing, 2007, 83: 36-46. |
44 | BLENCOE J, PALMER D, ANOVITZ L, et al. Carbonation of metal silicates for long-term CO2 sequestration: US 8673256[P]. 2014-03-18. |
45 | 包炜军, 李会泉, 张懿. 强化碳酸化固定CO2反应过程分析与机理探讨[J]. 化工学报, 2009,60(9): 2332-2338. |
BAO Weijun, LI Huiquan, ZHANG Yi. Process analysis and mechanism discussion of enhanced carbonation fixation of CO2[J]. CIESC Journal, 2009, 60(9): 2332-2338. | |
46 | WANG X L, MAROTO-VALER M M. Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation[J]. Fuel, 2011, 90: 1229-1237. |
47 | WANG X L, MAROTO-VALER M M. Integration of CO2 capture and mineral carbonation by using recyclable ammonium salts[J]. ChemSusChem, 2011, 4: 1291-1300. |
48 | JI Long, YU Hai, YU Bing, et al. Integrated absorption-mineralization for energy-efficient CO2 sequestration: reaction mechanism and feasibility of using fly ash as a feedstock[J]. Chemical Engineering Journal, 2018, 352: 151-162. |
49 | 林海周, 裴爱国, 方梦祥. 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J]. 化工进展, 2018, 37(12): 4874-4886. |
LIN Haizhou, PEI Aiguo, FANG Mengxiang. Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886. | |
50 | YU C H, HUANG C H, TAN C S, et al. A review of CO2 capture by absorption and adsorption[J]. Aerosol and Air Quality Research, 2012, 12: 745-769. |
51 | LI Kangkang, LEIGH W, FERON P, et al. Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: techno-economic assessment of the MEA process and its improvements[J]. Applied Energy, 2016, 165: 648-659. |
52 | SHAKERIAN F, KIM K H, SZULEJKO J E, et al. A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture[J]. Applied Energy, 2015, 148: 10-22. |
53 | HANG Deng, BIELICK J M, OPPENHEIMER M, et al. Leakage risks of geologic CO2 storage and the impacts on the global energy system and climate change mitigation[J]. Climatic Change, 2017, 144: 151-163. |
54 | PARK S, MIN J, LEE M G, et al. Characteristics of CO2 fixation by chemical conversion to carbonate salts[J]. Chemical Engineering Journal, 2013, 231: 287-293. |
55 | KANG J M, MURNANDARI A, YOUN M H, et al. Energy-efficient chemical regeneration of AMP using calcium hydroxide for operating carbon dioxide capture process[J]. Chemical Engineering Journal, 2018, 335: 338-344. |
56 | ARTI M, YOUN M H, PARK K T, et al. Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride[J]. Energy & Fuels, 2017, 31(1): 763-769. |
57 | LIU Meishen, GADIKOTA G. Integrated CO2 capture, conversion, and storage to produce calcium carbonate using an amine looping strategy[J]. Energy & Fuels, 2019, 33: 1722-1733. |
58 | JI Long, YU Hai, LI Kangkang, et al. Integrated absorption-mineralization for low-energy CO2 capture and sequestration[J]. Applied Energy, 2018, 225: 356-366. |
59 | YU Bing, LI Kangkang, JI Long, et al. Coupling a sterically hindered amine-based absorption and coal fly ash triggered amine regeneration: a high energy-saving process for CO2 absorption and sequestration[J]. International Journal of Greenhouse Gas Control, 2019, 87: 58-65. |
[1] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[2] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[3] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[4] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[5] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[6] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[7] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[8] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[9] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[10] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[11] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[12] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[13] | 吕超, 张习文, 金理健, 杨林军. 新型两相吸收剂-离子液体系统高效捕获CO2[J]. 化工进展, 2023, 42(6): 3226-3232. |
[14] | 王科菊, 赵成, 胡晓玫, 云军阁, 魏凝涵, 姜雪迎, 邹昀, 陈志航. 金属氧化物低温催化氧化VOCs的研究进展[J]. 化工进展, 2023, 42(5): 2402-2412. |
[15] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |