化工进展 ›› 2019, Vol. 38 ›› Issue (10): 4363-4373.DOI: 10.16085/j.issn.1000-6613.2019-0224
收稿日期:
2019-02-18
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
王涛
作者简介:
黄浩(1992—),男,博士研究生,研究方向为二氧化碳矿化利用技术、全生命周期建模等。E-mail:基金资助:
Hao HUANG(),Tao WANG(),Mengxiang FANG
Received:
2019-02-18
Online:
2019-10-05
Published:
2019-10-05
Contact:
Tao WANG
摘要:
CO2矿化养护技术利用早期成型后的混凝土材料和CO2之间的碳酸化反应和产物沉积过程实现产品力学强度等特性的提升,主要关注的是预养护/早期水化成型后的混凝土中胶凝成分和CO2之间的矿化反应(即加速碳酸化)。此过程中胶凝材料的水化过程不再是强度形成的主要反应,因此为了充分实现矿化成型和CO2固定,实现环境效益最大化,研究者近几年积极开发具有CO2矿化潜力的碱金属矿物材料,并探究其反应后对于混凝土微观结构和性能的促进效应。本文综述了CO2矿化养护技术在新型混凝土材料方面的研究进展,分别对传统混凝土采用的水化活性硅酸钙材料、水化惰性硅酸钙材料、镁基水泥材料以及工业固废材料等进行了具体介绍,比较了在不同材料与CO2反应特性以及养护后建材制品性能优化方面的最新成果,并对CO2矿化养护技术的后续发展进行了展望。主要建议:一是着眼于微观反应机制和矿物材料特性,开发有效的矿化反应强化方法;二是开发水化惰性的低钙硅比硅酸钙材料;三是将工业固废资源化与矿化养护技术结合,实现固废和气废利用流程耦合,推进特定工艺开发和装置研发。
中图分类号:
黄浩,王涛,方梦祥. 二氧化碳矿化养护混凝土技术及新型材料研究进展[J]. 化工进展, 2019, 38(10): 4363-4373.
Hao HUANG,Tao WANG,Mengxiang FANG. Review on carbon dioxide mineral carbonation curing technology of concrete and novel material development[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4363-4373.
1 | ROGELJ J , ELZEN M DEN , HÖHNE N , et al . Paris Agreement climate proposals need a boost to keep warming well below 2℃ [J]. Nature, 2016, 534(7609): 631. |
2 | 何卉, 方梦祥, 王涛, 等 . 燃煤烟气化学吸收碳捕集系统分析与优化[J]. 化工进展, 2018, 37(6): 2406-2412. |
HE Hui , FANG Mengxiang , WANG Tao , et al . Analysis and optimization of post-combustion CO2 capture system based on chemical absorption [J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2406-2412. | |
3 | 林海周, 裴爱国, 方梦祥 . 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J]. 化工进展, 2018, 37(12): 4874-4886. |
LIN Haizhou , PEI Aiguo , FANG Mengxiang . Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886. | |
4 | 梁志武, 奚飞, 那艳清, 等 . 燃烧后CO2捕获流程模拟研究进展[J]. 化工进展, 2010, 29(s1): 28-33. |
LIANG Zhiwu , XI Fei , NA Yanqing , et al . Progress of research on process modifications for post combustion CO2 capture [J]. Chemical Industry and Engineering Progress, 2010, 29(s1): 28-33. | |
5 | XIE Heping , TANG Liang , WANG Yufei , et al . Feedstocks study on CO2 mineralization technology [J]. Environmental Earth Sciences, 2016, 75(7): 615. |
6 | SANNA A , UIBU M , CARAMANNA G , et al . A review of mineral carbonation technologies to sequester CO2 [J]. Chemical Society Reviews, 2014, 43(23): 8049-8080. |
7 | HEWLETT PC . Lea's chemistry of cement and concrete [M]. 5th ed. Oxford: Butterworth-Heinemann, 2019. |
8 | WANG Tao , HUANG Hao , HU Xutao , et al . Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate [J]. Chemical Engineering Journal, 2017, 323: 320-329. |
9 | ROSTAMI V , SHAO Yixin , BOYD A J . Carbonation curing versus steam curing for precast concrete production [J]. Journal of Materials in Civil Engineering, 2012, 24(9): 1221-1229. |
10 | HUANG Hao , GUO Ruonan , WANG Tao , et al . Carbonation curing for wollastonite-Portland cementitious materials: CO2 sequestration potential and feasibility assessment [J]. Journal of Cleaner Production, 2019, 211: 830-841. |
11 | MONTEIRO P J M , MEHTA P K . Concrete: microstructure, properties and materials [M]. 3rd ed. McGraw Hill, 2006: 499-499. |
12 | KASHEF-HAGHIGHI S , SHAO Y , GHOSHAL S . Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing [J]. Cement & Concrete Research, 2015, 67: 1-10. |
13 | SHAO Yixin , MIRZA M S , WU Xiaorong . CO2 sequestration using calcium-silicate concrete [J]. Canadian Journal of Civil Engineering, 2006, 33(6): 776-784. |
14 | ROSTAMI V , SHAO Yixin , BOYD A J , et al . Microstructure of cement paste subject to early carbonation curing [J]. Cement & Concrete Research, 2012, 42: 186-193. |
15 | SHI Caijun , WU Yanzhong . Studies on some factors affecting CO2 curing of lightweight concrete products [J]. Resources Conservation & Recycling, 2008, 52(8/9): 1087-1092. |
16 | SHI Caijun , HE Fuqiang , WU Yanzhong . Effect of pre-conditioning on CO2 curing of lightweight concrete blocks mixtures [J]. Construction & Building Materials, 2012, 26(1): 257-267. |
17 | KASHEF-HAGHIGHI S , GHOSHAL S . CO2 sequestration in concrete through accelerated carbonation curing in a flow-through reactor [J]. Industrial & Engineering Chemistry Research, 2009, 49(3): 1143-1149. |
18 | KASHEF-HAGHIGHI S , GHOSHAL S . Physico-chemical processes limiting CO2 uptake in concrete during accelerated carbonation curing [J]. Industrial & Engineering Chemistry Research, 2013, 52(16): 5529-5537. |
19 | NEVES JR A , TOLEDO FILHO R D , DE MORAES REGO FAIRBAIRN E, et al . The effects of the early carbonation curing on the mechanical and porosity properties of high initial strength Portland cement pastes [J]. Construction and Building Materials, 2015, 77: 448-454. |
20 | NEVES JR A , TOLEDO FILHO R D , DWECK J , et al . A study of CO2 capture by high initial strength Portland cement pastes at early curing stages by new non-conventional thermogravimetry and non-conventional differential thermal analysis [J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(3): 1341-1352. |
21 | EL-HASSAN H , SHAO Yixin , GHOULEH Z . Reaction products in carbonation-cured lightweight concrete [J]. Journal of Materials in Civil Engineering, 2013, 25(6): 799-809. |
22 | SHI Caijun , WANG Dehui , HE Fuqiang , et al . Weathering properties of CO2-cured concrete blocks [J]. Resources, Conservation and Recycling, 2012, 65: 11-17. |
23 | TU Zhenjun , GUO Mingzhi , POON C S ,et al . Effects of limestone powder on CaCO3 precipitation in CO2 cured cement pastes [J]. Cement & Concrete Composites, 2016, 72: 9-16. |
24 | TU Zhenjun , SHI Caijun , FARZADNIA N . Effect of limestone powder content on the early-age properties of CO2-cured concrete [J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018164. |
25 | SHARMA D , GOYAL S . Accelerated carbonation curing of cement mortars containing cement kiln dust: an effective way of CO2 sequestration and carbon footprint reduction [J]. Journal of Cleaner Production, 2018, 192: 844-854. |
26 | TONOLI G , PIZZOL V , URREA G , et al . Rationalizing the impact of aging on fiber-matrix interface and stability of cement-based composites submitted to carbonation at early ages [J]. Journal of Materials Science, 2016, 51(17): 7929-7943. |
27 | PIZZOL V D , MENDES L M , SAVASTANO JR H , et al . Mineralogical and microstructural changes promoted by accelerated carbonation and ageing cycles of hybrid fiber-cement composites [J]. Construction and Building Materials, 2014, 68: 750-756. |
28 | HUIJGEN W J , G-J WITKAMP , COMANS R N . Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process [J]. Chemical Engineering Science, 2006, 61(13): 4242-4251. |
29 | SAHU S , DECRISTOFARO N , CEMENT™ S . Solidia technology,white paper [EB/OL]. . |
30 | JAIN J A , SETH A , DECRISTOFARO N . Environmental impact and durability of carbonated calcium silicate concrete [J]. Proceedings of the Institution of Civil Engineers: Construction Materials, 2019, 172(4): 179-191. |
31 | ASHRAF W , OLEK J . Carbonation behavior of hydraulic and non-hydraulic calcium silicates: potential of utilizing low-lime calcium silicates in cement-based materials [J]. Journal of Materials Science, 2016, 51(13): 6173-6191. |
32 | ASHRAF W , OLEK J . Elucidating the accelerated carbonation products of calcium silicates using multi-technique approach [J]. Journal of CO2 Utilization, 2018, 23: 61-74. |
33 | FARNAM Y , VILLANI C , WASHINGTON T , et al . Performance of carbonated calcium silicate based cement pastes and mortars exposed to NaCl and MgCl2 deicing salt [J]. Construction & Building Materials, 2016, 111: 63-71. |
34 | GHOSH S N , RAO P B , PAUL A , et al . The chemistry of dicalcium silicate mineral [J]. Journal of Materials Science, 1979, 14(7): 1554-1566. |
35 | EL-DIDAMONY H , SHARARA A , HELMY I , et al . Hydration characteristics of β-C2S in the presence of some accelerators [J]. Cement and Concrete Research, 1996, 26(8): 1179-1187. |
36 | STANĚK T , SULOVSKÝ P . Active low-energy Belite cement [J]. Cement and Concrete Research, 2015, 68: 203-210. |
37 | JANG J G , LEE H K . Microstructural densification and CO2 uptake promoted by the carbonation curing of Belite-rich Portland cement [J]. Cement & Concrete Research, 2016, 82: 50-57. |
38 | FANG Yanfeng , CHANG Jun . Rapid hardening β-C2S mineral and microstructure changes activated by accelerated carbonation curing [J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(2): 681-689. |
39 | SAKAI E , NAKAJIMA K , KUBOKAWA T , et al . Polymer-modified cement using belite-rich cement and carbonation reaction [J]. Construction & Building Materials, 2016, 110: 333-336. |
40 | HIGUCHI T , MORIOKA M , YOSHIOKA I , et al . Development of a new ecological concrete with CO2 emissions below zero [J]. Construction and Building Materials, 2014, 67: 338-343. |
41 | YOSHIOKA K , OBATA D , NANJO H , et al . New ecological concrete that reduces CO2 emissions below zero level: new method for CO2 capture and storage[J]. Energy Procedia, 2013, 37: 6018-6025. |
42 | MU Yuandong , LIU Zhichao , WANG Fazhou , et al . Carbonation characteristics of γ-dicalcium silicate for low-carbon building material [J]. Construction and Building Materials, 2018, 177: 322-331. |
43 | CHANG Jun , FANG Yanfeng , SHANG Xiaopeng . The role of β-C2S and γ-C2S in carbon capture and strength development [J]. Materials and Structures, 2016, 49(10): 4417-4424. |
44 | LU Bao , SHI Caijun , HOU Guihua . Strength and microstructure of CO2 cured low-calcium clinker [J]. Construction and Building Materials, 2018, 188: 417-423. |
45 | RUAN S , UNLUER C . Comparative life cycle assessment of reactive MgO and Portland cement production [J]. Journal of Cleaner Production, 2016, 137: 258-273. |
46 | VANDEPERRE L , AL-TABBAA A . Accelerated carbonation of reactive MgO cements [J]. Advances in Cement Research, 2007, 19(2): 67-79. |
47 | UNLUER C , AL-TABBAA A . Enhancing the carbonation of MgO cement porous blocks through improved curing conditions [J]. Cement & Concrete Research, 2014, 59(10): 55-65. |
48 | UNLUER C , AL-TABBAA A . Impact of hydrated magnesium carbonate additives on the carbonation of reactive MgO cements [J]. Cement and Concrete Research, 2013, 54: 87-97. |
49 | UNLUER C , AL-TABBAA A . The role of brucite, ground granulated blastfurnace slag, and magnesium silicates in the carbonation and performance of MgO cements [J]. Construction and Building Materials, 2015, 94: 629-643. |
50 | RUAN S , UNLUER C . Influence of supplementary cementitious materials on the performance and environmental impacts of reactive magnesia cement concrete [J]. Journal of Cleaner Production, 2017, 159: 62-73. |
51 | MO Liwu , PANESAR D K . Accelerated carbonation—A potential approach to sequester CO2 in cement paste containing slag and reactive MgO [J]. Cement & Concrete Composites, 2013, 43: 69-77. |
52 | PANESAR D K , MO Liwu . Properties of binary and ternary reactive MgO mortar blends subjected to CO2 curing [J]. Cement and Concrete Composites, 2013, 38: 40-49. |
53 | MO Liwu , ZHANG Feng , DENG Min . Effects of carbonation treatment on the properties of hydrated fly ash-MgO-Portland cement blends [J]. Construction & Building Materials, 2015, 96: 147-154. |
54 | MO Liwu , ZHANG Feng , PANESAR D K , et al . Development of low-carbon cementitious materials via carbonating Portland cement-fly ash-magnesia blends under various curing scenarios: a comparative study [J]. Journal of Cleaner Production, 2017, 163: 252-261. |
55 | MO Liwu , ZHANG Feng , DENG Min , et al . Effectiveness of using CO2 pressure to enhance the carbonation of Portland cement-fly ash-MgO mortars [J]. Cement & Concrete Composites, 2016, 70: 78-85. |
56 | MORRISON J , JAUFFRET G , GALVEZ-MARTOS J L , et al . Magnesium-based cements for CO2 capture and utilisation [J]. Cement and Concrete Research, 2016, 85: 183-191. |
57 | ZHANG Duo , GHOULEH Z , SHAO Y . Review on carbonation curing of cement-based materials [J]. Journal of CO2 Utilization, 2017, 21: 119-131. |
58 | DAVIES P J , BUBELA B . The transformation of nesquehonite into hydromagnesite [J]. Chemical Geology, 1973, 12(4): 289-300. |
59 | WEI Zhenhua , WANG Bu , FALZONE G , et al . Clinkering-free cementation by fly ash carbonation [J]. Journal of CO2 Utilization, 2018, 23: 117-127. |
60 | MONKMAN S , SHAO Yixin . Assessing the carbonation behavior of cementitious materials [J]. Journal of Materials in Civil Engineering, 2006, 18(6): 768-776. |
61 | MAHOUTIAN M , GHOULEH Z , SHAO Yixin . Carbon dioxide activated ladle slag binder [J]. Construction and Building Materials, 2014, 66: 214-221. |
62 | MAHOUTIAN M , GHOULEH Z , SHAO Yixin . Synthesis of waste-based carbonation cement [J]. Materials and Structures, 2016, 49(11): 4679-4690. |
63 | MAHOUTIAN M , SHAO Yixin . Production of cement-free construction blocks from industry wastes [J]. Journal of Cleaner Production, 2016, 137: 1339-1346. |
64 | GHOULEH Z , GUTHRIE R I L , SHAO Yixin . High-strength KOBM steel slag binder activated by carbonation [J]. Construction and Building Materials, 2015, 99: 175-183. |
65 | ZHAN Baojian , POON C S , SHI Caijun . CO2 curing for improving the properties of concrete blocks containing recycled aggregates [J]. Cement & Concrete Composites, 2013, 42(9): 1-8. |
66 | ZHAN Baojian , POON C S , LIU Qiong , et al . Experimental study on CO2 curing for enhancement of recycled aggregate properties [J]. Construction & Building Materials, 2013, 67: 3-7. |
67 | ZHAN Baojun , XUAN Dongxing , POON C S , et al . Effect of curing parameters on CO2 curing of concrete blocks containing recycled aggregates [J]. Cement & Concrete Composites, 2016, 71: 122-130. |
68 | HE Pingping , SHI Caijun , TU Zhenjun , et al . Effect of further water curing on compressive strength and microstructure of CO2-cured concrete [J]. Cement and Concrete Composites, 2016, 72: 80-88. |
69 | PAN Ganghua , ZHAN Mimi , FU Minghua , et al . Effect of CO2 curing on demolition recycled fine aggregates enhanced by calcium hydroxide pre-soaking [J]. Construction and Building Materials, 2017, 154: 810-818. |
70 | ZHAN Baojian , XUAN Dongxing , POON C S . Enhancement of recycled aggregate properties by accelerated CO2 curing coupled with limewater soaking process [J]. Cement and Concrete Composites, 2018, 89: 230-237. |
71 | KOU Shicong , ZHAN Baojian , POON C S . Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates [J]. Cement & Concrete Composites, 2014, 45(1): 22-28. |
72 | ZHU Chenhui , FANG Yonghao , WEI Hua . Carbonation-cementation of recycled hardened cement paste powder [J]. Construction and Building Materials, 2018, 192: 224-232. |
73 | FANG Yanfeng , CHANG Jun . Microstructure changes of waste hydrated cement paste induced by accelerated carbonation [J]. Construction & Building Materials, 2015, 76: 360-365. |
74 | WANG Lei , YEUNG T L K , LAU A Y T, et al . Recycling contaminated sediment into eco-friendly paving blocks by a combination of binary cement and carbon dioxide curing [J]. Journal of Cleaner Production, 2017, 164: 1279-1288. |
75 | HOSSAIN M U , WANG Lei , YU I K M , et al . Environmental and technical feasibility study of upcycling wood waste into cement-bonded particleboard [J]. Construction and Building Materials, 2018, 173: 474-480. |
76 | GUO Mingzhi , TU Zhenjun , POON C S , et al . Improvement of properties of architectural mortars prepared with 100% recycled glass by CO2 curing [J]. Construction and Building Materials, 2018, 179: 138-150. |
77 | CABRAL M R , NAKANISHI E Y , SANTOS V DOS , et al . Evaluation of accelerated carbonation curing in cement-bonded balsa particleboard [J]. Materials and Structures, 2018, 51: 52. |
78 | E-J MOON , CHOI Y C . Development of carbon-capture binder using stainless steel argon oxygen decarburization slag activated by carbonation [J]. Journal of Cleaner Production, 2018, 180: 642-654. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[3] | 赵健, 卓泽文, 董航, 高文健. 含蜡原油及其乳状液体系微观结构观测的新方法[J]. 化工进展, 2023, 42(8): 4372-4384. |
[4] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[5] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[6] | 符乐, 杨阳, 徐文青, 耿錾卜, 朱廷钰, 郝润龙. 新型相变有机胺吸收捕集CO2技术研究进展[J]. 化工进展, 2023, 42(4): 2068-2080. |
[7] | 李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
[8] | 尚玉, 肖满, 崔秋芳, 涂特, 晏水平. CO2捕集工艺中热再生气余热的PVDF/BN-OH平板复合膜回收特性[J]. 化工进展, 2023, 42(3): 1618-1628. |
[9] | 沈天绪, 沈来宏. 基于3kW塔式串行流化床差异燃料的化学链燃烧解析[J]. 化工进展, 2023, 42(1): 138-147. |
[10] | 王璐, 张磊, 都健. 机器学习高效筛选用于CO2/N2选择性吸附分离的沸石材料[J]. 化工进展, 2023, 42(1): 148-158. |
[11] | 王一茹, 宋小三, 水博阳, 王三反. 胺功能化介孔二氧化硅捕集CO2的研究进展[J]. 化工进展, 2022, 41(S1): 536-544. |
[12] | 曾一凡, 舒建成, 杨慧敏, 赵志胜, 陈梦君, 杨勇, 刘仁龙. 铵盐体系电解锰渣中石膏的转变规律[J]. 化工进展, 2022, 41(9): 5115-5121. |
[13] | 龚鑫, 刘小冬, 温福山, 师楠, 刘东. 中间相炭微球乳化-聚合法制备及电化学性能[J]. 化工进展, 2022, 41(5): 2379-2388. |
[14] | 何民宇, 刘维燥, 刘清才, 秦治峰. CO2矿物封存技术研究进展[J]. 化工进展, 2022, 41(4): 1825-1833. |
[15] | 周红军, 周颖, 徐春明. 中国碳达峰碳中和目标下炼化一体化新路径与实践[J]. 化工进展, 2022, 41(4): 2226-2230. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |