1 |
Alba DÍAZ-RODRÍGUEZ, DAVIS Benjamin G. Chemical modification in the creation of novel biocatalysts[J]. Current Opinion in Chemical Biology, 2011, 15(2): 211-219.
|
2 |
ZHANG Yifei, GE Jun, LIU Zheng. Enhanced activity of immobilized or chemically modified enzymes[J]. ACS Catalysis, 2015, 5(8): 4503-4513.
|
3 |
RODRIGUES R, BERENGUER-MURCIA A, FERNANDEZ-LAFUENTE R. ChemInform abstract: coupling chemical modification and immobilization to improve the catalytic performance of enzymes[J]. Advanced Synthesis & Catalysis, 2011, 353(13): 2216-2238.
|
4 |
LIU Jianzhong, WANG Min. Improvement of activity and stability of chloroperoxidase by chemical modification[J]. BMC Biotechnology, 2007, 7: 23.
|
5 |
JAYAWARDENA Menuk B, Lachlan H YEE, POLJAK Anne, et al. Enhancement of lipase stability and productivity through chemical modification and its application to latex-based polymer emulsions[J]. Process Biochemistry, 2017, 57: 131-140.
|
6 |
ITOH Toshiyuki. Ionic liquids as tool to improve enzymatic organic synthesis[J]. Chemical Reviews, 2017, 117(15): 10567-10607.
|
7 |
DE GAETANO Yannick, MOHAMADOU Aminou, BOUDESOCQUE Stéphanie, et al. Ionic liquids derived from esters of Glycine Betaine: synthesis and characterization[J]. Journal of Molecular Liquids, 2015, 207: 60-66.
|
8 |
ITOH Toshiyuki. Activation of lipase-catalyzed reactions using ionic liquids for organic synthesis[J]. Advances in Biochemical Engineering/Biotechnology, 2019, 168: 79-104.
|
9 |
KAAR Joel L, JESIONOWSKI Anita M, BERBERICH Jason A, et al. Impact of ionic liquid physical properties on lipase activity and stability[J]. Journal of the American Chemical Society, 2003, 125(14): 4125-4131.
|
10 |
LAU R Madeira, VAN RANTWIJK F, SEDDON K R, et al. Lipase-catalyzed reactions in ionic liquids[J]. Organic Letters, 2000, 2(26): 4189-4191.
|
11 |
ZHAO Hua. Protein stabilization and enzyme activation in ionic liquids: specific ion effects[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(1): 25-50.
|
12 |
KHAN Nishat R, RATHOD Virendra K. Enzyme catalyzed synthesis of cosmetic esters and its intensification: a review[J]. Process Biochemistry, 2015, 50(11): 1793-1806.
|
13 |
PERNAK Juliusz, NIEMCZAK Michał, Łukasz CHRZANOWSKI, et al. Betaine and carnitine derivatives as herbicidal ionic liquids[J]. Chemistry, 2016, 22(34): 12012-12021.
|
14 |
NIEMCZAK Michał, Łukasz CHRZANOWSKI, PRACZYK Tadeusz, et al. Biodegradable herbicidal ionic liquids based on synthetic auxins and analogues of betaine[J]. New Journal of Chemistry, 2017, 41(16): 8066-8077.
|
15 |
ZHU Anlian, LIU Ruixia, DU Chunyan, et al. Betainium-based ionic liquids catalyzed multicomponent Hantzsch reactions for the efficient synthesis of acridinediones[J]. RSC Advances, 2017, 7(11): 6679-6684.
|
16 |
徐超, 薛誉, 陈虹月, 等. 手性脯氨酸类离子液体化学修饰猪胰脂肪酶催化性能研究[J]. 化工学报, 2019, 70(6): 2221-2228.
|
|
XU Chao, XUE Yu, CHEN Hongyue, et al. Study on catalytic properties of porcine pancreatic lipase modified by chiral proline ionic liquids[J]. CIESC Journal, 2019, 70(6): 2221-2228.
|
17 |
JIA Ru, HU Yi, LIU Luo, et al. Chemical modification for improving activity and stability of lipase B from Candida antarctica with imidazolium-functional ionic liquids[J]. Organic & Biomolecular Chemistry, 2013, 11(41): 7192-7198.
|
18 |
JIA Ru, HU Yi, LIU Luo, et al. Enhancing catalytic performance of porcine pancreatic lipase by covalent modification using functional ionic liquids[J]. ACS Catalysis, 2013, 3(9): 1976-1983.
|
19 |
XU Chao, SUO Hongbo, XUE Yu, et al. Experimental and theoretical evidence of enhanced catalytic performance of lipase B from Candida antarctica acquired by the chemical modification with amino acid ionic liquids[J]. Molecular Catalysis, 2021, 501: 111355.
|
20 |
ZOU Bin, HU Yi, JIANG Ling, et al. Mesoporous material SBA-15 modified by amino acid ionic liquid to immobilize lipase via ionic bonding and cross-linking method[J]. Industrial & Engineering Chemistry Research, 2013, 52(8): 2844-2851.
|
21 |
BEKHOUCHE Mourad, Bastien DOUMÈCHE, BLUM Loïc J. Chemical modifications by ionic liquid-inspired cations improve the activity and the stability of formate dehydrogenase in[MMIm][Me2PO4 [J]. Journal of Molecular Catalysis B: Enzymatic, 2010, 65(1/2/3/4): 73-78.
|
22 |
YANG Zhen. Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis[J]. Journal of Biotechnology, 2009, 144(1): 12-22.
|
23 |
HUA Zhao. Are ionic liquids kosmotropic or chaotropic? An evaluation of available thermodynamic parameters for quantifying the ion kosmotropicity of ionic liquids[J]. Journal of Chemical Technology & Biotechnology, 2006, 81(10): 1723.
|
24 |
ZHAO Hua, OLUBAJO Olarongbe, SONG Zhiyan, et al. Effect of kosmotropicity of ionic liquids on the enzyme stability in aqueous solutions[J]. Bioorganic Chemistry, 2006, 34(1): 15-25.
|
25 |
WAN Xiaomei, XIANG Xinran, TANG Susu, et al. Immobilization of Candida antarctic lipase B on MWNTs modified by ionic liquids with different functional groups[J]. Colloids and Surfaces B, Biointerfaces, 2017, 160: 416-422.
|
26 |
DAHANAYAKE Jayangika N, SHAHRYARI Elaheh, ROBERTS Kirsten M, et al. Protein solvent shell structure provides rapid analysis of hydration dynamics[J]. Journal of Chemical Information and Modeling, 2019, 59(5): 2407-2422.
|
27 |
GROCHULSKI P, LI Y, SCHRAG J D, et al. Insights into interfacial activation from an open structure of Candida rugosa lipase[J]. The Journal of Biological Chemistry, 1993, 268(17): 12843-12847.
|
28 |
张川, 张鲁嘉, 张洋, 等. 基于分子模拟的离子液体修饰Porcine Pancreas脂肪酶催化性能和稳定性的相关研究[J]. 化学学报, 2016, 74(1): 74-80.
|
|
ZHANG C, ZHANG L J, ZHANG Y, et al. Study on the stability and enzymatic property improvement of porcine pancreas lipase modified by ionic liquids using molecular simulation[J]. Acta Chimica Sinica, 2016, 74(1): 74-80.
|
29 |
BEKHOUCHE Mourad, BLUM Loïc J, Bastien DOUMÈCHE. Ionic liquid-inspired cations covalently bound to formate dehydrogenase improve its stability and activity in ionic liquids[J]. ChemCatChem, 2011, 3(5): 875-882.
|
30 |
TINOCO Raunel, Rafael VAZQUEZ-DUHALT. Chemical modification of cytochrome C improves their catalytic properties in oxidation of polycyclic aromatic hydrocarbons[J]. Enzyme and Microbial Technology, 1998, 22(1): 8-12.
|
31 |
LADOKHIN Alexey S, JAYASINGHE Sajith, WHITE Stephen H. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? [J]. Analytical Biochemistry, 2000, 285(2): 235-245.
|
32 |
XIANG Xinran, DING Song, SUO Hongbo, et al. Fabrication of chitosan-mesoporous silica SBA-15 nanocomposites via functional ionic liquid as the bridging agent for PPL immobilization[J]. Carbohydrate Polymers, 2018, 182: 245-253.
|
33 |
VIRGEN-ORTÍZ Jose J, TACIAS-PASCACIO Veymar G, HIRATA Daniela B, et al. Relevance of substrates and products on the desorption of lipases physically adsorbed on hydrophobic supports[J]. Enzyme and Microbial Technology, 2017, 96: 30-35.
|
34 |
ADAK Sunita, DATTA Sougata, BHATTACHARYA Santanu, et al. Role of spacer length in interaction between novel gemini imidazolium surfactants and Rhizopus oryzae lipase[J]. International Journal of Biological Macromolecules, 2015, 81: 560-567.
|