1 |
LI Alin, LI Guohua, LU Shigang, et al. Interface stabilization of 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether to high-voltage Li-rich Mn-based layered cathode materials[J]. Rare Metals, 2022, 41(3): 822-829.
|
2 |
HU Qiao, HE Yufang, REN Dongsheng, et al. Targeted masking enables stable cycling of LiNi0.6Co0.2Mn0.2O2 at 4.6V[J]. Nano Energy, 2022, 96: 107123.
|
3 |
靳佳, 魏进平, 周震. 5V尖晶石型无钴LiNi0.5Mn1.5O4正极材料进展综述[J]. 过程工程学报, 2022, 22(4): 421-437.
|
|
JIN Jia, WEI Jinping, ZHOU Zhen. Review on progress of 5V spinel Co-free LiNi0.5Mn1.5O4 cathode material[J]. The Chinese Journal of Process Engineering, 2022, 22(4): 421-437.
|
4 |
FAN Ersha, LI Li, WANG Zhenpo, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063.
|
5 |
SANTHANAM R, RAMBABU B. Research progress in high voltage spinel LiNi0.5Mn1.5O4 material[J]. Journal of Power Sources, 2010, 195(17): 5442-5451.
|
6 |
LI Y, ZHAO HC, BAI Y, et al. Research progress on modification of high energy density layered Li-rich manganese-based cathode materials[J]. Energy Storage Science and Technology, 2018, 7(3): 10.
|
7 |
LIN Mingxiang, Liubin BEN, SUN Yang, et al. Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle[J]. Chemistry of Materials, 2015, 27(1): 292-303.
|
8 |
LIU Qi, SU Xin, LEI Dan, et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping[J]. Nature Energy, 2018, 3(11): 936-943.
|
9 |
WANG J L, LI Z H, YANG J, et al. Effect of Al-doping on the electrochemical properties of a three-dimensionally porous lithium manganese oxide for lithium-ion batteries[J]. Electrochimica Acta, 2012, 75: 115-122.
|
10 |
JIN Xue, XU Qunjie, LIU Haimei, et al. Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery[J]. Electrochimica Acta, 2014, 136: 19-26.
|
11 |
WANG J X, WANG N, NAN W Z, et al. Enhancement of electrochemical performance of LiCoO2 cathode material at high cut-off voltage (4.5V) by partial surface coating with graphene nanosheets[J]. Int. J. Electrochem. Sci., 2020, 15: 9282-9293.
|
12 |
LI Xiangjun, XIN Hongxing, LIU Yongfei, et al. Effect of niobium doping on the microstructure and electrochemical properties of lithium-rich layered Li[Li0.2Ni0.2Mn0.6]O2 as cathode materials for lithium ion batteries[J]. RSC Advances, 2015, 5(56): 45351-45358.
|
13 |
LI Ning, AN Ran, SU Yuefeng, et al. The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(34): 9760-9767.
|
14 |
KIM Min Cheol, LEE Young Woo, PHAM Tuan Kiet, et al. Chemical valence electron-engineered LiNi0.4Mn1.5MtO4 (Mt=Co and Fe) cathode materials with high-performance electrochemical properties[J]. Applied Surface Science, 2020, 504: 144514.
|
15 |
GUO Xueyi, YANG Chenlin, CHEN Jinxiu, et al. Facile synthesis of spinel LiNi0.5Mn1.5O4 as 5.0V-class high-voltage cathode materials for Li-ion batteries[J]. Chinese Journal of Chemical Engineering, 2021, 39: 247-254.
|
16 |
HUANG Guoyong, XU Shengming, XU Zhenghe, et al. Core-shell ellipsoidal MnCo2O4 anode with micro-/nano-structure and concentration gradient for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21325-21334.
|
17 |
WANG Hao, Liubin BEN, YU Hailong, et al. Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures[J]. Journal of Materials Chemistry A, 2017, 5(2): 822-834.
|
18 |
WANG Jiangan, LIU Huanyan, LIU Hongzhen, et al. Electrospun LiMn1.5Ni0.5O4 hollow nanofibers as advanced cathodes for high rate and long cycle life Li-ion batteries[J]. Journal of Alloys and Compounds, 2017, 729: 354-359.
|
19 |
LUO Ying, LI Haiyan, LU Taolin, et al. Fluorine gradient-doped LiNi0.5Mn1.5O4 spinel with improved high voltage stability for Li-ion batteries[J]. Electrochimica Acta, 2017, 238: 237-245.
|
20 |
WANG Jiang, NIE Ping, XU Guiyin, et al. High-voltage LiNi0.45Cr0.1Mn1.45O4 cathode with superlong cycle performance for wide temperature lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(4): 1704808.
|
21 |
LIU Jun, MANTHIRAM Arumugam. Understanding the improvement in the electrochemical properties of surface modified 5V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells[J]. Chemistry of Materials, 2009, 21(8): 1695-1707.
|
22 |
BAI Y, KNITTLMAYER C, GLEDHILL S, et al. Preparation and characterization of Li2CoMn3O8 thin film cathodes for high energy lithium batteries[J]. Ionics, 2009, 15(1): 11-17.
|
23 |
NAYAKA G P, PAI K V, MANJANNA J, et al. Structural, electrical and electrochemical studies of LiNi0.4M0.1Mn1.5O4 (M = Co, Mg) solid solutions for lithium ion battery[J]. Bulletin of Materials Science, 2016, 39(5): 1279-1284.
|
24 |
LUO Ying, LU Taolin, ZHANG Yixiao, et al. Surface-segregated, high-voltage spinel lithium-ion battery cathode material LiNi0.5Mn1.5O4 cathodes by aluminium doping with improved high-rate cyclability[J]. Journal of Alloys and Compounds, 2017, 703: 289-297.
|
25 |
ZHAO Qing, WU Yue, YANG Zewen, et al. A fluorinated electrolyte stabilizing high-voltage graphite/NCM811 batteries with an inorganic-rich electrode-electrolyte interface[J]. Chemical Engineering Journal, 2022, 440: 135939.
|
26 |
VON CRESCE Arthur, XU Kang. Electrolyte additive in support of 5V Li ion chemistry[J]. Journal of the Electrochemical Society, 2011, 158(3): A337.
|
27 |
LI Weikang, CHO Yoon Gyo, YAO Weiliang, et al. Enabling high areal capacity for Co-free high voltage spinel materials in next-generation Li-ion batteries[J]. Journal of Power Sources, 2020, 473: 228579.
|