1 |
JING Y X, GUO Y, XIA Q N, et al. Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass[J]. Chem., 2019, 5(10): 2520-2546.
|
2 |
MIKA L T, CSÉFALVAY E, NÉMETH Á. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability[J]. Chemical Reviews, 2018, 118(2): 505-613.
|
3 |
WEI Z J, LOU J T, LI Z B, et al. One-pot production of 2,5-dimethylfuran from fructose over Ru/C and a Lewis-Brønsted acid mixture in N,N-dimethylformamide[J]. Catalysis Science & Technology, 2016, 6(16): 6217-6225.
|
4 |
ZHANG S, YU Y F, SHENG K C, et al. Catalytic valorization of lignocellulosics: from bulk biofuels to value-added chemicals[J]. Biofuels, Bioproducts and Biorefining, 2021, 15(2): 592-608.
|
5 |
MARULLO S, RIZZO C, MELI A, et al. Ionic liquid binary mixtures, zeolites, and ultrasound irradiation: a combination to promote carbohydrate conversion into 5-hydroxymethylfurfural[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5818-5826.
|
6 |
TEMPELMAN C, JACOBS U, HUT T, et al. Sn exchanged acidic ion exchange resin for the stable and continuous production of 5-HMF from glucose at low temperature[J]. Applied Catalysis A: General, 2019, 588: 117267.
|
7 |
ZHAO J, ZHOU C M, HE C, et al. Efficient dehydration of fructose to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid catalysts[J]. Catalysis Today, 2016, 264: 123-130.
|
8 |
KONWAR L J, MÄKI-ARVELA P, MIKKOLA J P. SO3H-containing functional carbon materials: synthesis, structure, and acid catalysis[J]. Chemical Reviews, 2019, 119(22): 11576-11630.
|
9 |
KOURIEH R, BENNICI S, MARZO M, et al. Investigation of the WO3/ZrO2 surface acidic properties for the aqueous hydrolysis of cellobiose[J]. Catalysis Communications, 2012, 19: 119-126.
|
10 |
ZHOU Y M, ZHANG L J, TAO S Y. Mesoporous ZrO2 nanopowder catalysts for the synthesis of 5-hydroxymethylfurfural[J]. ACS Applied Nano Materials, 2019, 2(8): 5125-5131.
|
11 |
BUINACHEV S, MASHKOVTSEV M A, ZHIRENKINA N, et al. A new approach for the synthesis of monodisperse zirconia powders with controlled particle size[J]. International Journal of Hydrogen Energy, 2021, 46(32): 16878-16887.
|
12 |
LIU C C, LEE S, SU D, et al. Controlling the particle size of ZrO2 nanoparticles in hydrothermally stable ZrO2/MWCNT composites[J]. Langmuir, 2012, 28(49): 17159-17167.
|
13 |
LI L, YAN B, LI H X, et al. Decreasing the acid value of pyrolysis oil via esterification using ZrO2/SBA-15 as a solid acid catalyst[J]. Renewable Energy, 2020, 146: 643-650.
|
14 |
LI X G, PANG C R, LI H, et al. Microwave energy inductive fluidized metal particles discharge behavior and its potential utilization in reaction intensification[J]. Chinese Journal of Chemical Engineering, 2021, 33: 256-267.
|
15 |
JIA X C, YU I K M, TSANG D C W, et al. Functionalized zeolite-solvent catalytic systems for microwave-assisted dehydration of fructose to 5-hydroxymethylfurfural[J]. Microporous and Mesoporous Materials, 2019, 284: 43-52.
|
16 |
CHHABRA T, BAHUGUNA A, DHANKHAR S S, et al. Sulfonated graphitic carbon nitride as a highly selective and efficient heterogeneous catalyst for the conversion of biomass-derived saccharides to 5-hydroxymethylfurfural in green solvents[J]. Green Chemistry, 2019, 21(21): 6012-6026.
|
17 |
WANG Q F, HAO J Q, ZHAO Z B. Microwave-assisted conversion of fructose to 5-hydroxymethylfurfural using sulfonated porous carbon derived from biomass[J]. Australian Journal of Chemistry, 2018, 71(1): 24.
|
18 |
QI X H, WATANABE M, AIDA T M, et al. Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating[J]. Green Chemistry, 2008, 10(7): 799.
|
19 |
JI T, LI Z, LIU C, et al. Niobium-doped TiO2 solid acid catalysts: strengthened interfacial polarization, amplified microwave heating and enhanced energy efficiency of hydroxymethylfurfural production[J]. Applied Catalysis B: Environmental, 2019, 243: 741-749.
|
20 |
JI T, TU R, MU L W, et al. Enhancing energy efficiency in saccharide-HMF conversion with core/shell structured microwave responsive catalysts[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4352-4358.
|
21 |
LI H, ZHANG C Y, PANG C R, et al. The advances in the special microwave effects of the heterogeneous catalytic reactions[J]. Frontiers in Chemistry, 2020, 8: 355.
|
22 |
SONGO M, MOUTLOALI R, RAY S. Development of TiO2-carbon composite acid catalyst for dehydration of fructose to 5-hydroxymethylfurfural[J]. Catalysts, 2019, 9(2): 126.
|
23 |
LYU X Q, LI H, XIANG H Z, et al. Energy efficient production of 5-hydroxymethylfurfural (5-HMF) over surface functionalized carbon superstructures under microwave irradiation[J]. Chemical Engineering Journal, 2022, 428: 131143.
|
24 |
吕孝琦, 李洪, 赵振宇, 等. 微波与碳基催化剂协同促进果糖制5-羟甲基糠醛[J]. 化工进展, 2022, 41(2): 637-647.
|
|
Xiaoqi LYU, LI Hong, ZHAO Zhenyu, et al. Microwave-assisted carbon-based catalysts for fructose dehydration to 5-hydroxymethylfurfural[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 637-647.
|
25 |
WEN F S, ZHANG F, LIU Z Y. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. Journal of Physical Chemistry C, 2011, 115(29): 14025-14030.
|
26 |
AI Y J, LIU L, JING K, et al. Noncovalently functionalized carbon nanotubes immobilized Fe-Bi bimetallic oxides as a heterogeneous nanocatalyst for reduction of nitroaromatics[J]. Nano-Structures & Nano-Objects, 2017, 10: 116-124.
|
27 |
JI T, TU R, MU L W, et al. Structurally tuning microwave absorption of core/shell structured CNT/polyaniline catalysts for energy efficient saccharide-HMF conversion[J]. Applied Catalysis B: Environmental, 2018, 220: 581-588.
|
28 |
SHAN Y, GAO L. Synthesis and characterization of phase controllable ZrO2-carbon nanotube nanocomposites[J]. Nanotechnology, 2005, 16(6): 625-630.
|
29 |
LAU S K, DAG D, OZTURK S, et al. A comparison between the open-ended coaxial probe method and the parallel plate method for measuring the dielectric properties of low-moisture foods[J]. LWT, 2020, 130: 109719.
|
30 |
赵振宇, 李洪, 李鑫钢, 等. 基于介电性质差异的微波诱导强化蒸馏分离[J]. 化工进展, 2020, 39(6): 2275-2283.
|
|
ZHAO Zhenyu, LI Hong, LI Xingang, et al. Microwave-induced enhancement of distillation separation based on dielectric properties difference[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2275-2283.
|
31 |
MU S Y, LIU K, LI H, et al. Microwave-assisted synthesis of highly dispersed ZrO2 on CNTs as an efficient catalyst for producing 5-hydroxymethylfurfural (5-HMF)[J]. Fuel Processing Technology, 2022, 233: 107292.
|
32 |
ROMERO-SÁEZ M, DONGIL A B, BENITO N, et al. CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: a comparison between two impregnation strategies[J]. Applied Catalysis B: Environmental, 2018, 237: 817-825.
|
33 |
QUAN Y H, ZHANG N, ZHANG Z L, et al. Enhanced performance of Ni catalysts supported on ZrO2 nanosheets for CO2 methanation: effects of support morphology and chelating ligands[J]. International Journal of Hydrogen Energy, 2021, 46(27): 14395-14406.
|
34 |
WU Y Q, WANG H J, WANG L Y, et al. Effect of iron on ZrO2-based catalysts for direct synthesis of isobutanol from syngas[J]. Fuel, 2021, 304: 121342.
|
35 |
ADDO NTIM S, MITRA S. Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification[J]. Journal of Colloid and Interface Science, 2012, 375(1): 154-159.
|
36 |
GEORGIEVA I, DANCHOVA N, GUTZOV S, et al. DFT modeling, UV-vis and IR spectroscopic study of acetylacetone-modified zirconia sol-gel materials[J]. Journal of Molecular Modeling, 2012, 18(6): 2409-2422.
|
37 |
ANKU W W, OPPONG S O B, SHUKLA S K, et al. Palladium-doped-ZrO2-multiwalled carbon nanotubes nanocomposite: an advanced photocatalyst for water treatment[J]. Applied Physics A, 2016, 122(6): 1-8.
|
38 |
LI M F, ZHANG Q T, LUO B, et al. Lignin-based carbon solid acid catalyst prepared for selectively converting fructose to 5-hydroxymethylfurfural[J]. Industrial Crops and Products, 2020, 145: 111920.
|
39 |
WHITAKER M R, PARULKAR A, RANADIVE P, et al. Examining acid formation during the selective dehydration of fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide and water[J]. ChemSusChem, 2019, 12(10): 2211-2219.
|
40 |
QI X H, WATANABE M, AIDA T M, et al. Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural[J]. Catalysis Communications, 2009, 10(13): 1771-1775.
|
41 |
WANG N N, YAO Y, LI W, et al. Catalytic dehydration of fructose to 5-hydroxymethylfurfural over a mesoscopically assembled sulfated zirconia nanoparticle catalyst in organic solvent[J]. RSC Advances, 2014, 4(100): 57164-57172.
|
42 |
LAM E, LUONG J H T. Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals[J]. ACS Catalysis, 2014, 4(10): 3393-3410.
|
43 |
ZHAO Z Y, SHEN X, LI H, et al. Frontispiz: watching microwave-induced microscopic hot spots via the thermosensitive fluorescence of europium/terbium mixed-metal organic complexes[J]. Angewandte Chemie, 2022, 134(6): e202280662.
|
44 |
ZHAO Z Y, LI H, ZHAO K, et al. Microwave-assisted synthesis of MOFs: rational design via numerical simulation[J]. Chemical Engineering Journal, 2022, 428: 131006.
|