化工进展 ›› 2022, Vol. 41 ›› Issue (11): 5870-5878.DOI: 10.16085/j.issn.1000-6613.2022-0026
刘瑞琴1(), 孟凡会1(
), 王立言2, 张鹏1, 张俊峰2, 谭猗生2, 李忠1(
)
收稿日期:
2022-01-05
修回日期:
2022-03-10
出版日期:
2022-11-25
发布日期:
2022-11-28
通讯作者:
孟凡会,李忠
作者简介:
刘瑞琴(1995—),女,硕士研究生,研究方向为合成气催化转化。E-mail: liuruiqin333@163.com。
基金资助:
LIU Ruiqin1(), MENG Fanhui1(
), WANG Liyan2, ZHANG Peng1, ZHANG Junfeng2, TAN Yisheng2, LI Zhong1(
)
Received:
2022-01-05
Revised:
2022-03-10
Online:
2022-11-25
Published:
2022-11-28
Contact:
MENG Fanhui, LI Zhong
摘要:
改性费托合成催化剂(尤其是CuCo催化剂)在合成气制乙醇及高级醇反应中具有高的催化活性和总醇选择性,被认为是潜在的工业催化剂。采用蒸发诱导自组装(EISA)法和共沉淀(CP)法制备了一系列CuCoZr催化剂,考察了制备方法及EISA法制备的催化剂Cu/Co原子比对合成气制乙醇及高级醇性能的影响。采用N2物理吸附-脱附、小角X射线衍射(XRD)、原位XRD、透射电镜(TEM)、H2-程序升温还原(TPR)、CO-程序升温脱附(TPD)和原位红外漫反射光谱(DRIFT)对催化剂进行表征,分析了合成气在Cu/Co原子比为3∶1的Cu3Co1Zr催化剂表面的反应路径。结果表明,EISA法制备的CuCoZr催化剂为有序介孔结构,比表面积随Cu/Co原子比的增加先增大后减小,其中Cu3Co1Zr催化剂比表面积和CO吸附量均为最大,分别为143m2/g和0.33mmol/g,催化剂的Cu晶粒尺寸仅为9.1nm。在催化合成气制醇的反应中CO转化率达到74.9%,总醇中的高级醇时空收率达到75.2mg/(gcat·h),乙醇物质的量分数为31.0%,明显优于共沉淀法制备的组成相同的CuCoZr-CP催化剂。
中图分类号:
刘瑞琴, 孟凡会, 王立言, 张鹏, 张俊峰, 谭猗生, 李忠. 有序介孔CuCoZr催化剂的制备及其催化合成气制乙醇及高级醇性能[J]. 化工进展, 2022, 41(11): 5870-5878.
LIU Ruiqin, MENG Fanhui, WANG Liyan, ZHANG Peng, ZHANG Junfeng, TAN Yisheng, LI Zhong. Preparation of ordered mesoporous CuCoZr catalyst and its catalytic performance for syngas to ethanol and higher alcohols[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5870-5878.
催化剂 | 比表面积①/m2·g-1 | 孔容②/cm3·g-1 | 孔径③/nm | Cu平均晶粒尺寸④/nm |
---|---|---|---|---|
CuZr | 109 | 0.11 | 3.9 | 15.3 |
Cu4Co1Zr | 121 | 0.12 | 3.5 | — |
Cu3Co1Zr | 143 | 0.17 | 5.9 | 9.1 |
Cu1Co2Zr | 106 | 0.12 | 5.1 | — |
CoZr | 93 | 0.11 | 4.8 | — |
CuCoZr-CP | 51 | 0.04 | 2.8 | 11.8 |
表1 不同催化剂的织构性质及Cu晶粒尺寸
催化剂 | 比表面积①/m2·g-1 | 孔容②/cm3·g-1 | 孔径③/nm | Cu平均晶粒尺寸④/nm |
---|---|---|---|---|
CuZr | 109 | 0.11 | 3.9 | 15.3 |
Cu4Co1Zr | 121 | 0.12 | 3.5 | — |
Cu3Co1Zr | 143 | 0.17 | 5.9 | 9.1 |
Cu1Co2Zr | 106 | 0.12 | 5.1 | — |
CoZr | 93 | 0.11 | 4.8 | — |
CuCoZr-CP | 51 | 0.04 | 2.8 | 11.8 |
催化剂 | CO转化率/% | 选择性(C物质的量分数)/% | 醇分布(C物质的量分数)/% | 醇时空收率/mg·gcat-1·h-1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | CO2 | C2+H | DME | ROH | MeOH | EtOH | PrOH | BuOH | C5+OH | ROH | C2+OH | ||||
CuZr | 24.8 | 9.7 | 21.4 | 4.9 | 3.0 | 61.0 | 96.9 | 0.9 | 0.8 | 1.1 | 0.3 | 186.1 | 25.7 | ||
Cu4Co1Zr | 52.1 | 32.6 | 27.7 | 24.4 | 0.8 | 14.5 | 55.5 | 24.0 | 10.8 | 7.6 | 2.1 | 92.7 | 41.2 | ||
Cu3Co1Zr | 74.9 | 38.9 | 5.4 | 33.6 | 3.7 | 18.4 | 45.1 | 31.0 | 11.5 | 8.7 | 3.7 | 137.0 | 75.2 | ||
Cu1Co2Zr | 99.0 | 41.8 | 8.1 | 43.6 | 0.4 | 6.2 | 24.3 | 31.9 | 25.8 | 13.0 | 5.0 | 57.0 | 35.5 | ||
CoZr | 97.3 | 37.7 | 2.3 | 48.5 | 7.0 | 4.5 | 37.7 | 8.6 | 24.3 | 29.1 | 0.3 | 42.8 | 25.7 | ||
CuCoZr-CP | 31.5 | 28.2 | 44.7 | 10.5 | 0.8 | 15.8 | 56.3 | 28.2 | 9.7 | 5.7 | 0.1 | 49.8 | 21.7 |
表2 不同催化剂CO加氢反应合成乙醇及高级醇的性能
催化剂 | CO转化率/% | 选择性(C物质的量分数)/% | 醇分布(C物质的量分数)/% | 醇时空收率/mg·gcat-1·h-1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | CO2 | C2+H | DME | ROH | MeOH | EtOH | PrOH | BuOH | C5+OH | ROH | C2+OH | ||||
CuZr | 24.8 | 9.7 | 21.4 | 4.9 | 3.0 | 61.0 | 96.9 | 0.9 | 0.8 | 1.1 | 0.3 | 186.1 | 25.7 | ||
Cu4Co1Zr | 52.1 | 32.6 | 27.7 | 24.4 | 0.8 | 14.5 | 55.5 | 24.0 | 10.8 | 7.6 | 2.1 | 92.7 | 41.2 | ||
Cu3Co1Zr | 74.9 | 38.9 | 5.4 | 33.6 | 3.7 | 18.4 | 45.1 | 31.0 | 11.5 | 8.7 | 3.7 | 137.0 | 75.2 | ||
Cu1Co2Zr | 99.0 | 41.8 | 8.1 | 43.6 | 0.4 | 6.2 | 24.3 | 31.9 | 25.8 | 13.0 | 5.0 | 57.0 | 35.5 | ||
CoZr | 97.3 | 37.7 | 2.3 | 48.5 | 7.0 | 4.5 | 37.7 | 8.6 | 24.3 | 29.1 | 0.3 | 42.8 | 25.7 | ||
CuCoZr-CP | 31.5 | 28.2 | 44.7 | 10.5 | 0.8 | 15.8 | 56.3 | 28.2 | 9.7 | 5.7 | 0.1 | 49.8 | 21.7 |
1 | ATALLA Tarek, GUALDI Silvio, LANZA Alessandro. A global degree days database for energy-related applications[J]. Energy, 2018, 143: 1048-1055. |
2 | XUE Xiaoxiao, WENG Yujing, YANG Shicheng, et al. Research progress of catalysts for synthesis of low-carbon alcohols from synthesis gas[J]. RSC Advances, 2021, 11(11): 6163-6172. |
3 | LIU Yongjun, DENG Xuan, HAN Peide, et al. Higher alcohols synthesis from syngas over P-promoted non-noble metal Cu-based catalyst[J]. Fuel, 2017, 208: 423-429. |
4 | SUN K, LIU Z, SONG S, et al. Effect of hydroxyl groups on CuCoMg nanosheets for ethanol and higher alcohol synthesis from syngas[J]. Industrial & Engineering Chemistry Research, 2021, 60(6): 2388-2399. |
5 | KHAN Wasim U, BAHARUDIN Luqmanulhakim, CHOI Jungkyu, et al. Recent progress in CO hydrogenation over bimetallic catalysts for higher alcohol synthesis[J]. ChemCatChem, 2021, 13(1): 111-120. |
6 | AO Min, PHAM Gia Hung, SUNARSO Jaka, et al. Active centers of catalysts for higher alcohol synthesis from syngas: a review[J]. ACS Catalysis, 2018, 8(8): 7025-7050. |
7 | LIU Guoqing, FANG Huihuang, WANG Gang, et al. Dispersion of Rh-W x C nanocomposites on carbon nanotubes by one-pot carburization for synthesis of higher alcohols from syngas[J]. Fuel, 2021, 305: 121533. |
8 | ZHONG H, WANG Jiaming, GUO Shaoxia, et al. Mutual tailored bimetallic Rh-Co supported on La modified SiO2 for direct ethanol synthesis from syngas[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 2631-2643. |
9 | SURISETTY Venkateswara Rao, DALAI Ajay Kumar, KOZINSKI Janusz. Synthesis of higher alcohols from synthesis gas over Co-promoted alkali-modified MoS2 catalysts supported on MWCNTs[J]. Applied Catalysis A: General, 2010, 385(1/2): 153-162. |
10 | ASLAM Waqas, BELTRAMINI Jorge N, ATANDA Luqman A, et al. The catalytic activity of KMoCo carbon spheres for higher alcohols synthesis from syngas[J]. Applied Catalysis A: General, 2020, 605: 117803. |
11 | GAO Xiaofeng, WU Yingquan, ZHANG Tao, et al. Binary ZnO/Zn-Cr nanospinel catalysts prepared by a hydrothermal method for isobutanol synthesis from syngas[J]. Catalysis Science & Technology, 2018, 8(11): 2975-2986. |
12 | LIU Yongjun, CUI Nan, JIA Penglong, et al. Synergy between active sites of ternary CuZnAlOOH catalysts in CO hydrogenation to ethanol and higher alcohols[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6634-6646. |
13 | SUN Kai, TAN Minghui, BAI Yunxing, et al. Design and synthesis of spherical-platelike ternary copper-cobalt-manganese catalysts for direct conversion of syngas to ethanol and higher alcohols[J]. Journal of Catalysis, 2019, 378: 1-16. |
14 | WANG Peng, ZHANG Junfeng, BAI Yunxing, et al. Ternary copper-cobalt-cerium catalyst for the production of ethanol and higher alcohols through CO hydrogenation[J]. Applied Catalysis A: General, 2016, 514: 14-23. |
15 | HE Shun, WANG Wei, SHEN Zheng, et al. Carbon nanotube-supported bimetallic Cu-Fe catalysts for syngas conversion to higher alcohols[J]. Molecular Catalysis, 2019, 479: 110610. |
16 | WANG Xiuyun, WEN Wu, SU Yanqing, et al. Influence of transition metals (M = Co, Fe and Mn) on ordered mesoporous CuM/CeO2 catalysts and applications in selective catalytic reduction of NO x with H2 [J]. RSC Advances, 2015, 5(77): 63135-63141. |
17 | SU Junjie, ZHANG Zhengpai, FU Donglong, et al. Higher alcohols synthesis from syngas over CoCu/SiO2 catalysts: dynamic structure and the role of Cu[J]. Journal of Catalysis, 2016, 336: 94-106. |
18 | SUN Kai, GAO Xiaofeng, BAI Yunxing, et al. Synergetic catalysis of bimetallic copper-cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas[J]. Catalysis Science & Technology, 2018, 8(15): 3936-3947. |
19 | HUANG Chao, MA Peiyu, WANG Ruyang, et al. CuCo alloy nanonets derived from CuCo2O4 spinel oxides for higher alcohols synthesis from syngas[J]. Catalysis Science & Technology, 2021, 11(23): 7617-7623. |
20 | PRIETO Gonzalo, BEIJER Steven, SMITH Miranda L, et al. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols[J]. Angewandte Chemie International Edition, 2014, 53(25): 6397-6401. |
21 | Dong LYU, ZHU Yan, SUN Yuhan. Cu nanoclusters supported on Co nanosheets for selective hydrogenation of CO[J]. Chinese Journal of Catalysis, 2013, 34(11): 1998-2003. |
22 | WANG Zi, SPIVEY James J. Effect of ZrO2, Al2O3 and La2O3 on cobalt-copper catalysts for higher alcohols synthesis[J]. Applied Catalysis A: General, 2015, 507: 75-81. |
23 | LI Zhuoshi, ZENG Zhuang, YAO Dawei, et al. High-performance CoCu catalyst encapsulated in KIT-6 for higher alcohol synthesis from syngas[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 200-209. |
24 | DEINEGA I V, L Yu DOLGYKH, STOLYARCHUK I L, et al. Catalytic properties of M-Cu/ZrO2 (M = Fe, Co, Ni) in steam reforming of ethanol[J]. Theoretical and Experimental Chemistry, 2013, 48(6): 386-393. |
25 | HUANG Chao, ZHU Can, ZHANG Mingwei, et al. Direct conversion of syngas to higher alcohols over a CuCoAl/t-ZrO2 multifunctional catalyst[J]. ChemCatChem, 2021, 13(13): 3184-3197. |
26 | LIU Guilong, GENG Yuxia, PAN Dongming, et al. Bi-metal Cu-Co from LaCo1- x Cu x O3 perovskite supported on zirconia for the synthesis of higher alcohols[J]. Fuel Processing Technology, 2014, 128: 289-296. |
27 | LIU Guilong, NIU Ting, CAO Ang, et al. The deactivation of Cu-Co alloy nanoparticles supported on ZrO2 for higher alcohols synthesis from syngas[J]. Fuel, 2016, 176: 1-10. |
28 | 黄文斌, 魏强, 周亚松. 均一介孔Al2O3劣质蜡油加氢脱氮催化剂研究进展[J]. 化工进展, 2020, 39(S2): 196-203. |
HUANG Wenbin, WEI Qiang, ZHOU Yasong. Research progress of homogeneous mesoporous Al2O3 of hydrodenitrogenation catalyst for inferior gas oil[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 196-203. | |
29 | 曹正凯, 张霞, 段爱军. 有序介孔材料Al-FDU-12的合成及其加氢精制应用[J]. 化工进展, 2021, 40(3): 1449-1455. |
CAO Zhengkai, ZHANG Xia, DUAN Aijun. Synthesis of well ordered Al-FDU-12 mesoporous materials and their application in hydrogenation[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1449-1455. | |
30 | FU Zihao, ZHANG Guodong, TANG Zhicheng, et al. Preparation and application of ordered mesoporous metal oxide catalytic materials[J]. Catalysis Surveys from Asia, 2020, 24(1): 38-58. |
31 | 严润华, 蔡卫权, 卓俊琳, 等. 一锅溶剂蒸发诱导自组装法制备助剂体相分布的Pd-Ba-Zn/γ-Al2O3催化剂及其蒽醌加氢性能[J]. 化工进展, 2018, 37(3): 1014-1020. |
YAN Runhua, CAI Weiquan, ZHUO Junlin, et al. One-pot solvent evaporation induced self-assembly synthesis of Pd-Ba-Zn/γ-Al2O3 catalyst with homogeneous distribution of the promoters and its hydrogenation performance of anthraquinone[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1014-1020. | |
32 | YUAN Quan, LI Lele, LU Shuliang, et al. Facile synthesis of Zr-based functional materials with highly ordered mesoporous structures[J]. The Journal of Physical Chemistry C, 2009, 113(10): 4117-4124. |
33 | CAI Weiquan, YU Jiaguo, ANAND Chokkalingam, et al. Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties[J]. Chemistry of Materials, 2011, 23(5): 1147-1157. |
34 | YANG Jiaqian, GONG Nana, WANG Liyan, et al. Tuning the Cu+ species of Cu-based catalysts for direct synthesis of ethanol from syngas[J]. New Journal of Chemistry, 2021, 45(44): 20832-20839. |
35 | GAO Wa, ZHAO Yufei, CHEN Haoran, et al. Core-shell Cu@(CuCo-alloy)/Al2O3 catalysts for the synthesis of higher alcohols from syngas[J]. Green Chemistry, 2015, 17(3): 1525-1534. |
36 | PEI Yongli, ZHAO Jinxian, SHI Ruina, et al. Hierarchical porous carbon-supported copper nanoparticles as an efficient catalyst for the dimethyl carbonate synthesis[J]. Catalysis Letters, 2019, 149(11): 3184-3193. |
37 | CHARY Komandur V R, SEELA Kothapalli Kalyana, SAGAR Guggilla Vidya, et al. Characterization and reactivity of niobia supported copper oxide catalysts[J]. The Journal of Physical Chemistry B, 2004, 108(2): 658-663. |
38 | WANG Jingjuan, CHERNAVSKII Petr A, WANG Ye, et al. Influence of the support and promotion on the structure and catalytic performance of copper-cobalt catalysts for carbon monoxide hydrogenation[J]. Fuel, 2013, 103: 1111-1122. |
39 | FIERRO G, JACONO M LO, INVERSI M, et al. TPR and XPS study of cobalt-copper mixed oxide catalysts: evidence of a strong Co-Cu interaction[J]. Topics in Catalysis, 2000, 10(1/2): 39-48. |
40 | TIEN THAO Nguyen, KIM HUYEN le Thi. Catalytic oxidation of styrene over Cu-doped hydrotalcites[J]. Chemical Engineering Journal, 2015, 279: 840-850. |
41 | Ho Ting LUK, MONDELLI Cecilia, FERRÉ Daniel Curulla, et al. Status and prospects in higher alcohols synthesis from syngas[J]. Chemical Society Reviews, 2017, 46(5): 1358-1426. |
42 | SHA Feng, TANG Chizhou, TANG Shan, et al. The promoting role of Ga in ZnZrO x solid solution catalyst for CO2 hydrogenation to methanol[J]. Journal of Catalysis, 2021, 404: 383-392. |
43 | RYCZKOWSKI Robert, Marcin JĘDRZEJCZYK, MICHALKIEWICZ Beata, et al. Impact of the modification method of Ni/ZrO2 catalyst by alkali and alkaline earth metals on its activity in thermo-chemical conversion of cellulose[J]. International Journal of Hydrogen Energy, 2018, 43(49): 22303-22314. |
44 | ZHANG Peng, MA Lixuan, MENG Fanhui, et al. Boosting CO2 hydrogenation performance for light olefin synthesis over GaZrO x combined with SAPO-34[J]. Applied Catalysis B: Environmental, 2022, 305: 121042. |
45 | SUN Kai, WU Yingquan, TAN Minghui, et al. Ethanol and higher alcohols synthesis from syngas over CuCoM (M=Fe, Cr, Ga and Al) nanoplates derived from hydrotalcite-like precursors[J]. ChemCatChem, 2019, 11(11): 2695-2706. |
46 | AN Zhe, NING Xun, HE Jing. Ga-promoted CO insertion and C—C coupling on Co catalysts for the synthesis of ethanol and higher alcohols from syngas[J]. Journal of Catalysis, 2017, 356: 157-164. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[13] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 623
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 311
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |