化工进展 ›› 2022, Vol. 41 ›› Issue (11): 5709-5721.DOI: 10.16085/j.issn.1000-6613.2022-0158
林清宇1,2(), 王祝1, 冯振飞1,2(), 凌彪1, 陈镇1
收稿日期:
2022-01-24
修回日期:
2022-04-01
出版日期:
2022-11-25
发布日期:
2022-11-28
通讯作者:
冯振飞
作者简介:
林清宇(1969—),女,博士,教授,研究方向为过程设备强化传热技术。E-mail:linqy121@gxu.edu.cn。
基金资助:
LIN Qingyu1,2(), WANG Zhu1, FENG Zhenfei1,2(), LING Biao1, CHEN Zhen1
Received:
2022-01-24
Revised:
2022-04-01
Online:
2022-11-25
Published:
2022-11-28
Contact:
FENG Zhenfei
摘要:
随着工业技术不断发展,传统换热管的传热方式已经无法满足高热流密度下的热量输运要求。扭带插入物是一种能够有效提高换热管传热效率的强化传热元件,以其结构简单、加工容易的特点受到了很多学者的关注和研究。管内流体的传热性能及熵产往往作为评价换热管性能的重要参数,因此扭带结构与流动工质对这些参数的影响成为近年来研究的重点。本文主要综述了近十年来不同结构扭带对管内传热与熵产影响的研究进展。首先,将文献中研究的扭带按照几何结构进行分类,阐述和分析了不同类型扭带对换热管的传热、熵产以及综合性能的影响,试图找出几何结构与换热管传热性能以及熵产之间的联系。其次,介绍了扭带与纳米流体复合传热技术的研究进展。最后,归纳了研究人员为达到传热性能最大化以及熵产最小化而建立的传热和熵产模型,并对模型的优缺点进行了评价。
中图分类号:
林清宇, 王祝, 冯振飞, 凌彪, 陈镇. 扭带结构影响管内传热与熵产的研究进展[J]. 化工进展, 2022, 41(11): 5709-5721.
LIN Qingyu, WANG Zhu, FENG Zhenfei, LING Biao, CHEN Zhen. Review progress on twisted tape structure for heat transfer and entropy generation in tube[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5709-5721.
研究者 | 工质 | 流动状态 | 参数 | 提出或建议使用的关联式 | 结论 |
---|---|---|---|---|---|
Sowi等[ | 湍流 | LIPR=0.2~0.3,φ=0~3%,Re=4000~16000 | LIPR=0.25的扭带在10000雷诺数下,实现了最大的整体增强率 | ||
Dagdevir等[ | 水 | 湍流 | σ=1mm,W=17mm,Re=5217~22754 | 与带孔的和普通的扭结带相比,使用凹陷的扭结带在传热性能上有优势。节距比为0.25的凹陷扭结带在实验中显示出最好的传热性能 | |
Sheikholeslami等[ | CuO | 湍流 | PR=1.5~3,BR=0.25~0.75,Re=5000~15000 | 努塞尔数是宽度比和雷诺数的一个递增函数,和间距比是一个递减函数。摩擦系数随着扭率的减小而增加 | |
Wongcharee等[ | CuO | 层流 | φ=0.3%~0.7%,Re=830~1990 | 交替轴 普通扭带 | Nu随着Re和纳米流体浓度的增加而增加。在Re=1990,体积分数0.7%的CuO纳米流体协同交替轴可以获得最大PEC为5.53 |
Oni等[ | 水 | 湍流 | w=18mm,σ=1mm,y=54mm,Re=5000~20000 | 交替轴三角形切割的管子性能最好,其努塞尔数和摩擦系数分别是装有普通扭带管子的1.63~2.18倍和2.60~3.15倍,而其PEC最大值为1.43 | |
Eiamsa-ard等[ | TiO2 | 湍流 | N=1~4,φ=0.07%~0.21%,Re=5400~15200 | 同向布置的多扭带 反向布置的多扭带 反向交叉布置的多扭带 | 努塞尔数和摩擦系数都随着扭带数量的增加而变大。实验结果表明,反向排列传热性能更好 |
Eiamsa-ard等[ | TiO2 | 湍流 | φ=0.07%~0.21%,y0/y=1.5~2.5,σ=0.8mm,W=8mm,Re=5400~15200 | 努塞尔数、摩擦系数和热性能随着重叠旋流比的减少和TiO2体积分数的增加而增加 | |
Dalkılıç等[ | SiO2+ 石墨/水 | 湍流 | φ=0.5%~1%,l=0~42cm,L=2m,H/D=5,Re=3400~11000 | 在高雷诺数下,努塞尔数随着混合纳米流体浓度的增加和扭带插入长度的增加而增加,而摩擦系数随着雷诺数的增加而减小 | |
Sundar等[ | 湍流 | H=0.09~1.5m,D=0.018m,Re=9000~22500 | 在雷诺数为10000和22000的情况下,使用体积分数为0.5%的纳米流体的摩擦系数是水的1.096倍和1.2657倍,传热系数也分别提高了22.76%和33.3% | ||
Xiong等[ | CuO | 湍流 | b=5~15mm,σ=1mm,Re=5000~15000 | 扭带宽度的增加会导致更强的旋涡,这有助于对流,所以Nu随着b的增加而增加 | |
研究者 | 工质 | 流动状态 | 参数 | 提出或建议使用的关联式 | 结论 |
Seemawute等[ | 水 | 湍流 | Re=5000~20000 | 边缘切割和交替轴 边缘切割 | 相同条件下,边缘切割和交替轴的PEC最高,可以达到1.25 |
Wongcharee等[ | 水 | 层流 | y/W=3~5,Re=830~1990 | 交替轴 普通扭带 | 层流下,相较于普通扭带,交替轴传热性能要高得多。在扭率为3和雷诺数830的情况下,使用交替轴的最大PEC为5.25 |
Maddah等[ | Al2O3 | 湍流 | Re=5000~21000,GPR=0.6~2,W=18mm | ||
Dong等[ | Al2O3 | 湍流 | Re=19322~64407 | 研究氧化铝纳米颗粒和扭带对管内热性能的综合影响,建立新的传热模型 |
表1 内插扭带管内传热模型 (续表1)
研究者 | 工质 | 流动状态 | 参数 | 提出或建议使用的关联式 | 结论 |
---|---|---|---|---|---|
Sowi等[ | 湍流 | LIPR=0.2~0.3,φ=0~3%,Re=4000~16000 | LIPR=0.25的扭带在10000雷诺数下,实现了最大的整体增强率 | ||
Dagdevir等[ | 水 | 湍流 | σ=1mm,W=17mm,Re=5217~22754 | 与带孔的和普通的扭结带相比,使用凹陷的扭结带在传热性能上有优势。节距比为0.25的凹陷扭结带在实验中显示出最好的传热性能 | |
Sheikholeslami等[ | CuO | 湍流 | PR=1.5~3,BR=0.25~0.75,Re=5000~15000 | 努塞尔数是宽度比和雷诺数的一个递增函数,和间距比是一个递减函数。摩擦系数随着扭率的减小而增加 | |
Wongcharee等[ | CuO | 层流 | φ=0.3%~0.7%,Re=830~1990 | 交替轴 普通扭带 | Nu随着Re和纳米流体浓度的增加而增加。在Re=1990,体积分数0.7%的CuO纳米流体协同交替轴可以获得最大PEC为5.53 |
Oni等[ | 水 | 湍流 | w=18mm,σ=1mm,y=54mm,Re=5000~20000 | 交替轴三角形切割的管子性能最好,其努塞尔数和摩擦系数分别是装有普通扭带管子的1.63~2.18倍和2.60~3.15倍,而其PEC最大值为1.43 | |
Eiamsa-ard等[ | TiO2 | 湍流 | N=1~4,φ=0.07%~0.21%,Re=5400~15200 | 同向布置的多扭带 反向布置的多扭带 反向交叉布置的多扭带 | 努塞尔数和摩擦系数都随着扭带数量的增加而变大。实验结果表明,反向排列传热性能更好 |
Eiamsa-ard等[ | TiO2 | 湍流 | φ=0.07%~0.21%,y0/y=1.5~2.5,σ=0.8mm,W=8mm,Re=5400~15200 | 努塞尔数、摩擦系数和热性能随着重叠旋流比的减少和TiO2体积分数的增加而增加 | |
Dalkılıç等[ | SiO2+ 石墨/水 | 湍流 | φ=0.5%~1%,l=0~42cm,L=2m,H/D=5,Re=3400~11000 | 在高雷诺数下,努塞尔数随着混合纳米流体浓度的增加和扭带插入长度的增加而增加,而摩擦系数随着雷诺数的增加而减小 | |
Sundar等[ | 湍流 | H=0.09~1.5m,D=0.018m,Re=9000~22500 | 在雷诺数为10000和22000的情况下,使用体积分数为0.5%的纳米流体的摩擦系数是水的1.096倍和1.2657倍,传热系数也分别提高了22.76%和33.3% | ||
Xiong等[ | CuO | 湍流 | b=5~15mm,σ=1mm,Re=5000~15000 | 扭带宽度的增加会导致更强的旋涡,这有助于对流,所以Nu随着b的增加而增加 | |
研究者 | 工质 | 流动状态 | 参数 | 提出或建议使用的关联式 | 结论 |
Seemawute等[ | 水 | 湍流 | Re=5000~20000 | 边缘切割和交替轴 边缘切割 | 相同条件下,边缘切割和交替轴的PEC最高,可以达到1.25 |
Wongcharee等[ | 水 | 层流 | y/W=3~5,Re=830~1990 | 交替轴 普通扭带 | 层流下,相较于普通扭带,交替轴传热性能要高得多。在扭率为3和雷诺数830的情况下,使用交替轴的最大PEC为5.25 |
Maddah等[ | Al2O3 | 湍流 | Re=5000~21000,GPR=0.6~2,W=18mm | ||
Dong等[ | Al2O3 | 湍流 | Re=19322~64407 | 研究氧化铝纳米颗粒和扭带对管内热性能的综合影响,建立新的传热模型 |
研究者 | 扭带类型 | 公式 | 主要研究内容 |
---|---|---|---|
Shafee等[ | 双螺旋扭带 | 利用数值模拟建立了一个关于双螺旋扭带㶲损失分布的预测模型 | |
Sheikholeslami等[ | 交替轴扭带 | 基于㶲损失和第二定律建立纳米流体湍流状态下的预测模型 | |
Sheikholeslami等[ | 双螺旋扭带 | 在均匀热流的影响下,建立了双螺旋扭带的熵产模型,能够预测管内传热熵产的流动熵产 | |
Sheikholeslami等[ | 组合式扭带 | 在湍流状态下,建立了组合式扭带的熵产模型,能够预测Re和扭带宽度对㶲损失的影响 | |
Sheikholeslami等[ | 组合式扭带 | 利用模拟数据建立了组合扭带熵产预测模型,对管内的流动熵产和传热熵产进行预测 | |
Li等[ | 螺旋扭带 | 基于有限体积法建立了内插螺旋扭带管内熵产预测模型 | |
Sheikholeslami等[ | 螺旋扭带 | 基于内插新型螺旋扭带圆管的流动,建立一种预测管内㶲损失和贝扬数的模型 |
表2 内插扭带管内熵产模型
研究者 | 扭带类型 | 公式 | 主要研究内容 |
---|---|---|---|
Shafee等[ | 双螺旋扭带 | 利用数值模拟建立了一个关于双螺旋扭带㶲损失分布的预测模型 | |
Sheikholeslami等[ | 交替轴扭带 | 基于㶲损失和第二定律建立纳米流体湍流状态下的预测模型 | |
Sheikholeslami等[ | 双螺旋扭带 | 在均匀热流的影响下,建立了双螺旋扭带的熵产模型,能够预测管内传热熵产的流动熵产 | |
Sheikholeslami等[ | 组合式扭带 | 在湍流状态下,建立了组合式扭带的熵产模型,能够预测Re和扭带宽度对㶲损失的影响 | |
Sheikholeslami等[ | 组合式扭带 | 利用模拟数据建立了组合扭带熵产预测模型,对管内的流动熵产和传热熵产进行预测 | |
Li等[ | 螺旋扭带 | 基于有限体积法建立了内插螺旋扭带管内熵产预测模型 | |
Sheikholeslami等[ | 螺旋扭带 | 基于内插新型螺旋扭带圆管的流动,建立一种预测管内㶲损失和贝扬数的模型 |
1 | 杨光, 邵卫卫. 印刷电路板换热器结构及传热关联式研究进展[J]. 化工进展, 2021, 40(S1): 13-26. |
YANG Guang, SHAO Weiwei. Review of optimization and heat transfer correlations of printed circuit heat exchanger[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 13-26. | |
2 | 周贺义, 嵇道峰, 张晓军. 半壁受热管内插扭带的过冷流动沸腾传热特性数值模拟[J]. 热力发电, 2020, 49(7): 106-114. |
ZHOU Heyi, JI Daofeng, ZHANG Xiaojun. Numerical simulation for subcooled flow boiling heat transfer characteristics in tube with twisted-tape insert under half heated wall[J]. Thermal Power Generation, 2020, 49(7): 106-114. | |
3 | BUCAK H, YILMAZ F. The current state on the thermal performance of twisted tapes: a geometrical categorisation approach[J]. Chemical Engineering and Processing, 2020, 153: 107929. |
4 | ZHANG C, WANG D, REN K, et al. A comparative review of self-rotating and stationary twisted tape inserts in heat exchanger[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 433-449. |
5 | VARUN, GARG M O, NAUTIYAL H, et al. Heat transfer augmentation using twisted tape inserts: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 63: 193-225. |
6 | ALLAM M, TAWFIK M, BEKHEIT M, et al. Heat transfer enhancement in parabolic trough receivers using inserts: a review[J]. Sustainable Energy Technologies and Assessments, 2021, 48: 101671. |
7 | EIAMSA-ARD S, WONGCHAREE K, SRIPATTANAPIPAT S. 3-D Numerical simulation of swirling flow and convective heat transfer in a circular tube induced by means of loose-fit twisted tapes[J]. International Communications in Heat and Mass Transfer, 2009, 36(9): 947-955. |
8 | CHANG C, XU C, WU Z Y,et al. Heat transfer enhancement and performance of solar thermal absorber tubes with circumferentially non-uniform heat flux[J]. Energy Procedia, 2015, 69: 320-327. |
9 | GUO Jian, FAN Aiwu, ZHANG Xiaoyu, et al. A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape[J]. International Journal of Thermal Sciences, 2011, 50: 1263-1270. |
10 | NAVEENKUMAR R, KUMAR S R, GIRIDHARAN R, et al. Thermal performance enhancement in a plain tube fitted with perforated twisted tape insert using water based Al2O3 nanofluid[J]. Materials Today: Proceedings, 2020, 22: 2274-2282. |
11 | JAFAR K S, SIVARAMAN B. Optimization of performance characteristics in the absorber with twisted tapes inserts of parabolic trough collector using response surface methodology[J]. ARPN Journal of Engineering and Applied Sciences, 2015, 10(8). |
12 | SINGH S K, SARKAR J. Hydrothermal performance comparison of modified twisted tapes and wire coils in tubular heat exchanger using hybrid nanofluid[J]. International Journal of Thermal Sciences, 2021, 166: 106990. |
13 | KUMAR R, NANDAN G, DWIVEDI G, et al. Modeling of triangular perforated twisted tape with V-cuts in double pipe heat exchanger[J]. Materials Today: Proceedings, 2020, 46: 5389-5395. |
14 | KOLA P V K V, PISIPATY S K, MENDU S S, et al. Optimization of performance parameters of a double pipe heat exchanger with cut twisted tapes using CFD and RSM[J]. Chemical Engineering and Processing - Process Intensification, 2021, 163: 108362. |
15 | SHEIKHOLESLAMI M, ABOHAMZEH E, JAFARYAR M, et al. CuO nanomaterial two-phase simulation within a tube with enhanced turbulator[J]. Powder Technology, 2020, 373: 1-13. |
16 | FAN F, QI C, LIU Q, et al. Effect of twisted turbulator perforated ratio on thermal and hydraulic performance of magnetic nanofluids in a novel thermal exchanger system[J]. Case Studies in Thermal Engineering, 2020, 22: 100761. |
17 | 陶振宇, 刘京雷, 徐鹏. 自旋扭带强化传热及旋转特性[J]. 化工进展, 2015, 34(6): 1576-1581. |
TAO Z Y, LIU J L, XU P. Enhancement of heat transfer and rotation characteristics of self-rotating twisted tape[J]. Chemical Industry and Engineering Progress, 2015, 34(6): 1576-1581. | |
18 | DONG Chuanshuai, LU Lin, WEN Tao, et al. Thermal performance assessment of self-rotating twisted tapes and Al2O3 nanoparticle in a circular pipe[J]. Chinese Journal of Chemical Engineering, 2021, 32: 77-86. |
19 | BAHIRAEI M, MAZAHERI N, ALIEE F, et al. Thermo-hydraulic performance of a biological nanofluid containing graphene nanoplatelets within a tube enhanced with rotating twisted tape[J]. Powder Technology, 2019, 355: 278-288. |
20 | ARASTEH H, RAHBARI A, MASHAYEKHI R, et al. Effect of pitch distance of rotational twisted tape on the heat transfer and fluid flow characteristics[J]. International Journal of Thermal Sciences, 2021, 170: 106966. |
21 | BAHIRAEI M, MAZAHERI N, MOHAMMADI M S, et al. Thermal performance of a new nanofluid containing biologically functionalized graphene nanoplatelets inside tubes equipped with rotating coaxial double-twisted tapes[J]. International Communications in Heat and Mass Transfer, 2019, 108: 104305. |
22 | 昝永超. 内插扰流元件换热管流动和传热特性数值模拟[D]. 北京: 华北电力大学, 2019. |
ZAN Y C. Numercial simulation of flow and heat transfer characteristics of heat exchanger tube with interpolated diffusion components[D]. Beijing: North China Electric Power University, 2019. | |
23 | WONGCHAREE K, EIAMSA-ARD S. Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis[J]. International Communications in Heat & Mass Transfer, 2011, 38(6): 742-748. |
24 | NAKHCHI M E, ESFAHANI J A. Cu-water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape[J]. Powder Technology, 2018, 339: 985-994. |
25 | EIAMSA-ARD S, PROMVONGE P. Performance assessment in a heat exchanger tube with alternate clockwise and counter-clockwise twisted-tape inserts[J]. International Journal of Heat and Mass Transfer, 2010, 53(7/8): 1364-1372. |
26 | 胡斐, 陆晓峰, 朱晓磊. 高黏介质中内插扭带对换热管换热性能影响[J]. 化工进展, 2015, 34(9): 3232-3237. |
HU F, LU X F, ZHU X L. Influences of an inserted twisted tape on the heat transfer performances of a tube with high viscous medium[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3232-3237. | |
27 | 郑年本, 刘志春, 刘伟. 圆管内插入螺旋片强化传热数值模拟及( )耗散分析[J]. 工程热物理学报, 2016, 37(1): 155-159. |
ZHENG N B, LIU Z C, LIU W. numerical studies on heat transfer enhancement in a circular tube fitted with helical screw tape and entransy dissipation analysis[J]. Journal of Engineering Thermopysics, 2016, 37(1): 155-159. | |
28 | ALNAQI A A, ALSARRAF J, AL-RASHED A A. Hydrothermal effects of using two twisted tape inserts in a parabolic trough solar collector filled with MgO-MWCNT/thermal oil hybrid nanofluid[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101331. |
29 | EIAMSA-ARD S, KIATKITTIPONG K. Heat transfer enhancement by multiple twisted tape inserts and TiO2/water nanofluid[J]. Applied Thermal Engineering, 2014, 70(1): 896-924. |
30 | BAHIRAEI M, MAZAHERI N, HASSANZAMANI S M. Efficacy of a new graphene-platinum nanofluid in tubes fitted with single and twin twisted tapes regarding counter and co-swirling flows for efficient use of energy[J]. International Journal of Mechanical Sciences, 2018, 150: 290-303. |
31 | EIAMSA-ARD S, THIANPONG C, EIAMSA-ARD P. Turbulent heat transfer enhancement by counter/co-swirling flow in a tube fitted with twin twisted tapes[J]. Experimental Thermal & Fluid Science, 2010, 34(1): 53-62. |
32 | ZHENG L, XIE Y, ZHANG D. Numerical investigation on heat transfer performance and flow characteristics in circular tubes with dimpled twisted tapes using Al2O3-water nanofluid[J]. International Journal of Heat and Mass Transfer, 2017, 111: 962-981. |
33 | EIAMSA-ARD S, WONGCHAREE K, EIAMSA-ARD P, et al. Heat transfer enhancement in a tube using delta-winglet twisted tape inserts[J]. Applied Thermal Engineering, 2010, 30(4): 310-318. |
34 | WONGCHAREE K, EIAMSA-ARD S. Heat transfer enhancement by twisted tapes with alternate-axes and triangular, rectangular and trapezoidal wings[J]. Chemical Engineering and Processing, 2011, 50(2): 211-219. |
35 | EIAMSA-ARD S, WONGCHAREE K, EIAMSA-ARD P, et al. Thermohydraulic investigation of turbulent flow through a round tube equipped with twisted tapes consisting of centre wings and alternate-axes[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1151-1161. |
36 | 陈林根, 夏少军. 不可逆过程广义热力学动态优化研究进展[J]. 中国科学: 技术科学, 2019, 49(9): 981-1022. |
CHEN L G, XIA S J. Progresses in generalized thermodynamic dynamic-optimization of irreversible processes[J]. Science China: Technological Sciences, 2019, 49(9): 981-1022. | |
37 | FARSHAD S A, SHEIKHOLESLAMI M. Simulation of nanoparticles second law treatment inside a solar collector considering turbulent flow[J]. Physica A: Statistical Mechanics and its Applications, 2019, 525: 1-12. |
38 | KHETIB Y, SAIT H, HABEEBULLAH B, et al. Numerical study of the effect of curved turbulators on the exergy efficiency of solar collector containing two-phase hybrid nanofluid[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101436. |
39 | JAFARYAR M, SHEIKHOLESLAMI M. Intensification of performance of pipe with nanoparticle flow along turbulator with obstacles[J]. Chemical Engineering and Processing-Process Intensification, 2021, 165: 108426. |
40 | SHAFEE A, ARABKOOHSAR A, SHEIKHOLESLAMI M, et al. Numerical simulation for turbulent flow in a tube with combined swirl flow device considering nanofluid exergy loss[J]. Physica A: Statistical Mechanics and its Applications, 2020, 542: 122161. |
41 | SHEIKHOLESLAMI M, FARSHAD S A, SAID Z. Analyzing entropy and thermal behavior of nanomaterial through solar collector involving new tapes[J]. International Communications in Heat and Mass Transfer, 2021, 123: 105190. |
42 | BAHIRAEI M, MAZAHERI N, ALIEE F. Second law analysis of a hybrid nanofluid in tubes equipped with double twisted tape inserts[J]. Powder Technology, 2019, 345: 692-703. |
43 | BAHIRAEI M, MAZAHERI N, MOAYEDI H. Entropy generation and exergy destruction for flow of a biologically functionalized graphene nanoplatelets nanofluid within tube enhanced with a novel rotary coaxial cross double-twisted tape[J]. International Communications in Heat and Mass Transfer, 2020, 113: 104546. |
44 | BAHIRAEI M, MAZAHERI N, DANESHYAR M R. CFD analysis of second law characteristics for flow of a hybrid biological nanofluid under rotary motion of a twisted tape: exergy destruction and entropy generation analyses[J]. Powder Technology, 2020, 372: 351-361. |
45 | EBRAHIMPOUR Z, SHEIKHOLESLAMI M. Nanofluid thermal performance inside an absorber tube of LFR unit equipped with helical T-shape tape[J]. Journal of Molecular Liquids, 2020, 325: 115202. |
46 | EBRAHIMPOUR Z, SHEIKHOLESLAMI M. Intensification of nanofluid thermal performance with install of turbulator in a LFR system[J]. Chemical Engineering and Processing-Process Intensification, 2021, 161: 108322. |
47 | 李强, 宣益民, 姜军,等. 航天用传热强化工质导热系数和粘度的实验研究[J]. 宇航学报, 2002, 23(6): 73-76. |
LI Q, XUAN Y M, JIANG J, et al. Experimental investigation on thermal conductivity and viscosity of enhanced heat transfer process fluids for aerospace[J]. Journal of Astronautics, 2002, 23(6): 73-76. | |
48 | 程想, 冯松, 陈强, 等. 纽带管内吸热型碳氢燃料结焦及流动换热特性实验研究[J]. 西安交通大学学报, 2020, 54(6): 133-139. |
CHENG X, FENG S, CHEN Q, et al. Experimental investigation on the flow and heat transfer characteristics of endothermic hydrocarbon fuel during coking in circular tubes with twisted-tape inserts[J]. Journal of Xi’an Jiaotong University, 2020, 54(6): 133-139. | |
49 | SUNDAR L S, SHARMA K V. Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts[J]. International Journal of Heat and Mass Transfer, 2010, 53(7/8): 1409-1416. |
50 | KRISHNAN S S J, NAGARAJAN P K. Influence of stability and particle shape effects for an entropy generation based optimized selection of magnesia nanofluid for convective heat flow applications[J]. Applied Surface Science, 2019, 489: 560-575. |
51 | VALLEJO J P, PRADO J I, LUGO L. Hybrid or mono nanofluids for convective heat transfer applications. A critical review of experimental research[J]. Applied Thermal Engineering, 2022, 203: 117926. |
52 | 翟玉玲, 王江, 李龙 等. 粒径混合比对Al2O3/水纳米流体传热性能影响及评价[J]. 化工进展, 2019, 38(11): 4865-4872. |
ZHAI Y L, WANG J, LI L, et al. Evaluation and effect of mixture ratio on heat transfer performance of Al2O3 /water nanofluids[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4865-4872. | |
53 | KHETIB Y, ALZAED A, ALAHMADI A, et al. Application of hybrid nanofluid and a twisted turbulator in a parabolic solar trough collector: energy and exergy models[J]. Sustainable Energy Technologies and Assessments, 2022, 49: 101708. |
54 | SOWI S A, ABDULLAH S, SOPIAN K. The effect of linearly increasing/decreasing pitch ratio twisted tape with various progression rate and nanofluid towards the system performance[J]. Thermal Science and Engineering Progress, 2021, 25: 100979. |
55 | DAGDEVIR T, OZCEYHAN V. An experimental study on heat transfer enhancement and flow characteristics of a tube with plain, perforated and dimpled twisted tape inserts[J]. International Journal of Thermal Sciences, 2021, 159: 106564. |
56 | SHEIKHOLESLAMI M, JAFARYAR M, LI Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles[J]. International Journal of Heat and Mass Transfer, 2018, 124: 980-989. |
57 | ONI T O, PAUL M C. Numerical investigation of heat transfer and fluid flow of water through a circular tube induced with divers’ tape inserts[J]. Applied Thermal Engineering, 2016, 98: 157-168. |
58 | EIAMSA-ARD S, KIATKITTIPONG K, JEDSADARATANACHAI W. Heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes[J]. Engineering Science and Technology, an International Journal, 2015, 18(3): 336-350. |
59 | DALKLIÇ A S, TURK O A, MERCAN H, et al. An experimental investigation on heat transfer characteristics of graphite-SiO2/water hybrid nanofluid flow in horizontal tube with various quad-channel twisted tape inserts[J]. International Communications in heat and mass transfer, 2019, 107: 1-13. |
60 | XIONG Q, JAFARYAR M, DIVSALAR A, et al. Macroscopic simulation of nanofluid turbulent flow due to compound turbulator in a pipe[J]. Chemical Physics, 2019, 527: 110475. |
61 | SEEMAWUTE P, EIAMSA-ARD S. Thermohydraulics of turbulent flow through a round tube by a peripherally-cut twisted tape with an alternate axis[J]. International Communications in Heat and Mass Transfer, 2010, 37(6): 652-659. |
62 | WONGCHAREE K, EIAMSA-ARD S. Friction and heat transfer characteristics of laminar swirl flow through the round tubes inserted with alternate clockwise and counter-clockwise twisted-tapes[J]. International Communications in Heat and Mass Transfer, 2011, 38(3): 348-352. |
63 | MADDAH H, ALIZADEH M, GHASEMI N, et al. Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes[J]. International Journal of Heat and Mass Transfer, 2014, 78: 1042-1054. |
64 | DITTUS F W, BOELTER L. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12: 3-22. |
65 | BLASIUS H. The boundary layers in fluids with little friction[R]. UNT Digital Library, 1950. |
66 | GODSON Lazarus, RAJA B, LAL D. M, et al. Enhancement of heat transfer using nanofluids—An overview[J]. Renewable and Sustainable Energy Reviews, 2009, 14(2): 629-641. |
67 | HE W, TOGHRAIE D, LOTFIPOUR A, et al. Effect of twisted-tape inserts and nanofluid on flow field and heat transfer characteristics in a tube[J]. International Communications in Heat and Mass Transfer, 2020, 110: 104440. |
68 | SHEIKHOLESLAMI M, JAFARYAR M, GANJID. D,et al. Exergy loss analysis for nanofluid forced convection heat transfer in a pipe with modified turbulators[J]. Journal of Molecular Liquids, 2018, 262: 104-110. |
69 | SHEIKHOLESLAMI M, JAFARYAR M, SHAFEE A, et al. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation[J]. International Journal of Heat and Mass Transfer, 2019, 136: 1233-1240. |
70 | SHEIKHOLESLAMI M, JAFARYAR M, HEDAYAT M, et al. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis[J]. International Journal of Heat and Mass Transfer, 2019, 137: 1290-1300. |
71 | SHEIKHOLESLAMI M, JAFARYAR M, ALI J A, et al. Simulation of turbulent flow of nanofluid due to existence of new effective turbulator involving entropy generation[J]. Journal of Molecular Liquids, 2019, 291: 111283. |
72 | LI Z, SHEIKHOLESLAMI M, JAFARYAR, et al. Chamkha. Investigation of nanofluid entropy generation in a heat exchanger with helical twisted tapes[J]. Journal of Molecular Liquids, 2018, 266: 797-805. |
73 | SHEIKHOLESLAMI M, JAFARYAR M, SHAFEE A, et al. Investigation of second law and hydrothermal behavior of nanofluid through a tube using passive methods[J]. Journal of Molecular Liquids, 2018, 269: 407-416. |
74 | KIM D, KWON Y, CHO Y, et al. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions[J]. Current Applied Physics, 2008, 9(2): 119-123. |
75 | FENG Zhenfei, AI Xin, WU Peilin, et al. Experimental investigation of laminar flow and heat transfer characteristics in square minichannels with twisted tapes[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119947. |
[1] | 张岱凌, 丁玉梅, 左夏华, 黎昊为, 杨卫民, 阎华, 安瑛. 废弃墨粉纳米流体的光热特性[J]. 化工进展, 2023, 42(9): 4791-4798. |
[2] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[3] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[4] | 陆诗建, 刘玲, 刘滋武, 郭伯文, 俞徐林, 梁艳, 赵东亚, 朱全民. AEP-DPA-CuO相变纳米流体吸收CO2稳定性[J]. 化工进展, 2022, 41(8): 4555-4561. |
[5] | 李佩珊, 张梦辰, 李铭杰, 郑文镳, 刘敏超, 谢高艺, 徐晓龙, 刘长宇, 郏建波. 基于二维材料膜构筑纳米流体通道的研究进展[J]. 化工进展, 2022, 41(7): 3745-3757. |
[6] | 李钰璨, 胡定华, 刘锦辉. 氧化铝纳米流体液滴瞬态蒸发速率的演化特性分析[J]. 化工进展, 2022, 41(7): 3493-3501. |
[7] | 刘世杰, 莫逊, 涂爱民, 朱冬生, 谭连元. 新型纵流油冷却器壳程强化传热[J]. 化工进展, 2022, 41(7): 3475-3482. |
[8] | 李艺凡, 王志鹏. 带有周期性扰流结构的微通道内流动与传热特性[J]. 化工进展, 2022, 41(6): 2893-2901. |
[9] | 李勇铜, 刘健, 杨来顺. 新型金属泡沫-微柱群复合热沉内流动传热性能分析[J]. 化工进展, 2022, 41(5): 2268-2276. |
[10] | 林伟翔, 苏港川, 陈强, 文键, AKRAPHON Janon, 王斯民. 沉浸式换热器超声强化传热影响因素[J]. 化工进展, 2022, 41(1): 40-51. |
[11] | 王英梅, 牛爱丽, 张兆慧, 展静, 张学民. 二氧化碳水合物快速生成方法研究进展[J]. 化工进展, 2021, 40(S2): 117-125. |
[12] | 禹言芳, 陈雅鑫, 孟辉波, 王宗勇, 吴剑华. Lightnin静态混合器内纳米流体湍流传热特性分析[J]. 化工进展, 2021, 40(S2): 30-39. |
[13] | 马明琰, 翟玉玲, 轩梓灏, 周树光, 李志祥. 三元混合纳米流体稳定性及热性能[J]. 化工进展, 2021, 40(8): 4179-4186. |
[14] | 曾龙,雷海燕,戴传山. 单相自然循环回路的强化对流传热特性[J]. 化工进展, 2020, 39(4): 1259-1266. |
[15] | 孙占朋, 梁龙龙, 刘春雨, 于新奇, 杨光. 涡流空气分级机熵产与分级性能分析[J]. 化工进展, 2020, 39(10): 3909-3915. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |