化工进展 ›› 2022, Vol. 41 ›› Issue (11): 5722-5730.DOI: 10.16085/j.issn.1000-6613.2022-0110
收稿日期:
2022-01-17
修回日期:
2022-03-31
出版日期:
2022-11-25
发布日期:
2022-11-28
通讯作者:
安维中
作者简介:
林子昕(1982—),女,博士,副教授, 研究方向过程系统工程与强化技术。E-mail:linzixin@ouc.edu.cn。
LIN Zixin(), TIAN Wei, AN Weizhong(
)
Received:
2022-01-17
Revised:
2022-03-31
Online:
2022-11-25
Published:
2022-11-28
Contact:
AN Weizhong
摘要:
针对传统变压精馏工艺分离碳酸二甲酯(DMC)/甲醇(MeOH)共沸物存在的高能耗问题,提出了基于热泵辅助的改进变压精馏工艺,并探索了不同热泵方案的可行性和经济性。该研究在ASPEN PLUS模拟平台上进行。首先,设计出传统的热集成变压精馏工艺(H-PSD),并通过塔总组合曲线分析了传统工艺用能瓶颈和工艺改进方向;然后,提出了4种不同型式的热泵辅助的改进工艺,并通过模拟技术取得不同方案的设计参数;最后,采用组合曲线和经济性分析相结合的方法,比较了不同热泵方案的节能效果和经济性。研究表明,各种热泵方案中,基于中间再沸器的蒸汽再压缩式热泵的节能效果及经济性最好。与传统热集成变压精馏比较,过程能耗降低了24.31%,年均操作费用降低了29.43%,年度总成本可降低12.58%,体现了热泵辅助工艺的良好节能效果和经济性。
中图分类号:
林子昕, 田伟, 安维中. 热泵辅助变压精馏分离碳酸二甲酯/甲醇工艺及系统模拟优化[J]. 化工进展, 2022, 41(11): 5722-5730.
LIN Zixin, TIAN Wei, AN Weizhong. Separation of dimethyl carbonate/methanol via heat pump assisted pressure swing distillation process and system simulation optimization[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5722-5730.
公用工程 | 价格/CNY·GJ-1 |
---|---|
电 | 106.66 |
低压蒸汽(0.6MPa,160℃) | 49.10 |
中压蒸汽(1.0MPa,184℃) | 51.88 |
高压蒸汽(4.2MPa,254℃) | 62.36 |
冷却水(25~35℃) | 2.23 |
表1 公用工程类型和价格数据
公用工程 | 价格/CNY·GJ-1 |
---|---|
电 | 106.66 |
低压蒸汽(0.6MPa,160℃) | 49.10 |
中压蒸汽(1.0MPa,184℃) | 51.88 |
高压蒸汽(4.2MPa,254℃) | 62.36 |
冷却水(25~35℃) | 2.23 |
项目 | H-PSD | 方案Ⅰ | 方案Ⅱ | 方案Ⅲ | 方案Ⅳ |
---|---|---|---|---|---|
高压塔再沸器负荷/MW | 9.46 | 8.88 | 7.03 | 5.81 | 5.94 |
中间再沸器负荷/MW | 0 | 0 | 0 | 3.07 | 2.94 |
高压塔压缩机压缩比 | 0 | 3.46 | 3.52 | 1.66 | 3.42 |
高压塔压缩机功率/MW | 0 | 2.02 | 1.99 | 0.22 | 2 |
高压塔低压蒸汽消耗量/t·h-1 | 0 | 0 | 0 | 0 | 0 |
高压塔中压蒸汽消耗量/t·h-1 | 16.92 | 0 | 1.6 | 10.39 | 0 |
高压塔冷却水消耗量/t·h-1 | 0 | 50.03 | 130.09 | 30.04 | 48.65 |
低压塔再沸器功率/MW | 9.09 | 9.03 | 9.03 | 9.03 | 9.03 |
低压塔压缩机压缩比 | 0 | 1.56 | 1.56 | 1.56 | 1.56 |
低压塔压缩机功率/MW | 0 | 0.52 | 0.52 | 0.23 | 0.52 |
低压塔冷却水消耗量/t·h-1 | 339.87 | 105.85 | 105.85 | 523.43 | 105.85 |
总负荷/MW | 9.46 | 7.62 | 8.43 | 7.16 | 7.56 |
总负荷降低/% | 0 | 19.45 | 10.89 | 24.31 | 20.08 |
塔器成本/106 CNY·a-1 | 6.34 | 5.76 | 5.76 | 5.38 | 5.38 |
换热器成本/106 CNY·a-1 | 5.53 | 4.07 | 4.36 | 5.92 | 4.36 |
压缩机成本/106 CNY·a-1 | 0 | 5.38 | 5.34 | 1.32 | 5.34 |
年均投资成本/106 CNY·a-1 | 11.87 | 15.21 | 15.46 | 12.62 | 15.08 |
蒸汽费用/106 CNY·a-1 | 12.72 | 0 | 1.21 | 7.81 | 0 |
冷却水费用/106 CNY·a-1 | 0.60 | 0.10 | 0.16 | 0.37 | 0.10 |
电费/106 CNY·a-1 | 0 | 7.03 | 6.96 | 1.22 | 6.97 |
年均运行成本/106 CNY·a-1 | 13.32 | 7.13 | 8.33 | 9.40 | 7.07 |
年均总成本/106 CNY·a-1 | 25.19 | 22.34 | 23.79 | 22.02 | 22.15 |
年均总成本降低/% | 0.00 | 11.31 | 5.56 | 12.58 | 12.07 |
表2 不同方案中关键工艺参数及经济评价指标的比较
项目 | H-PSD | 方案Ⅰ | 方案Ⅱ | 方案Ⅲ | 方案Ⅳ |
---|---|---|---|---|---|
高压塔再沸器负荷/MW | 9.46 | 8.88 | 7.03 | 5.81 | 5.94 |
中间再沸器负荷/MW | 0 | 0 | 0 | 3.07 | 2.94 |
高压塔压缩机压缩比 | 0 | 3.46 | 3.52 | 1.66 | 3.42 |
高压塔压缩机功率/MW | 0 | 2.02 | 1.99 | 0.22 | 2 |
高压塔低压蒸汽消耗量/t·h-1 | 0 | 0 | 0 | 0 | 0 |
高压塔中压蒸汽消耗量/t·h-1 | 16.92 | 0 | 1.6 | 10.39 | 0 |
高压塔冷却水消耗量/t·h-1 | 0 | 50.03 | 130.09 | 30.04 | 48.65 |
低压塔再沸器功率/MW | 9.09 | 9.03 | 9.03 | 9.03 | 9.03 |
低压塔压缩机压缩比 | 0 | 1.56 | 1.56 | 1.56 | 1.56 |
低压塔压缩机功率/MW | 0 | 0.52 | 0.52 | 0.23 | 0.52 |
低压塔冷却水消耗量/t·h-1 | 339.87 | 105.85 | 105.85 | 523.43 | 105.85 |
总负荷/MW | 9.46 | 7.62 | 8.43 | 7.16 | 7.56 |
总负荷降低/% | 0 | 19.45 | 10.89 | 24.31 | 20.08 |
塔器成本/106 CNY·a-1 | 6.34 | 5.76 | 5.76 | 5.38 | 5.38 |
换热器成本/106 CNY·a-1 | 5.53 | 4.07 | 4.36 | 5.92 | 4.36 |
压缩机成本/106 CNY·a-1 | 0 | 5.38 | 5.34 | 1.32 | 5.34 |
年均投资成本/106 CNY·a-1 | 11.87 | 15.21 | 15.46 | 12.62 | 15.08 |
蒸汽费用/106 CNY·a-1 | 12.72 | 0 | 1.21 | 7.81 | 0 |
冷却水费用/106 CNY·a-1 | 0.60 | 0.10 | 0.16 | 0.37 | 0.10 |
电费/106 CNY·a-1 | 0 | 7.03 | 6.96 | 1.22 | 6.97 |
年均运行成本/106 CNY·a-1 | 13.32 | 7.13 | 8.33 | 9.40 | 7.07 |
年均总成本/106 CNY·a-1 | 25.19 | 22.34 | 23.79 | 22.02 | 22.15 |
年均总成本降低/% | 0.00 | 11.31 | 5.56 | 12.58 | 12.07 |
4 | 张建海, 秦俏, 任琪, 等. 反应精馏合成碳酸二甲酯过程优化及热集成研究[J]. 现代化工, 2020, 40(7): 226-229. |
ZHANG Jianhai, QIN Qiao, REN Qi, et al. Study on process optimization and thermal integration of dimethyl carbonate synthesis via reactive distillation[J]. Modern Chemical Industry, 2020, 40(7): 226-229. | |
5 | HUANG Zhixian, LI Junlan, WANG Lieyun, et al. Novel procedure for the synthesis of dimethyl carbonate by reactive distillation[J]. Industrial & Engineering Chemistry Research, 2014, 53(8): 3321-3328. |
6 | MATSUDA Hiroyuki, TAKAHARA Hideyuki, FUJINO Satoshi, et al. Selection of entrainers for the separation of the binary azeotropic system methanol + dimethyl carbonate by extractive distillation[J]. Fluid Phase Equilibria, 2011, 310(1/2): 166-181. |
7 | 刘立新, 李鲁闽, 刘桂丽, 等. 碳酸二甲酯-甲醇共沸体系分离的模拟与控制[J]. 化工进展, 2017, 36(3): 852-862. |
LIU Lixin, LI Lumin, LIU Guili, et al. Comparison of alternative configurations for separation of dimethyl carbonate-methanol mixture: steady state simulation and dynamic control[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 852-862. | |
8 | CIHAL Petr, VOPICKA Ondřej, DURDAKOVA Tereza-Markéta, et al. Pervaporation and vapour permeation of methanol-dimethyl carbonate mixtures through PIM-1 membranes[J]. Separation and Purification Technology, 2020, 217: 206-214. |
9 | LI Wenqi, Cristhian MOLINA-FERNÁNDEZ, ESTAGER Julien, et al. Supported ionic liquid membranes for the separation of methanol/dimethyl carbonate mixtures by pervaporation[J]. Journal of Membrane Science, 2019, 598: 117790. |
10 | 张青瑞, 彭家瑶, 张凯. 热集成变压分离碳酸二甲酯-甲醇的优化与控制[J]. 化学工程, 2017, 45(1): 60-65. |
ZHANG Qingrui, PENG Jiayao, ZHANG Kai. Design and control of dimethyl carbonate and methanol separation via heat-integrated pressure swing distillation[J]. Chemical Engineering, 2017, 45(1): 60-65. | |
11 | ZHANG Qingrui, PENG Jiayao, ZHANG Kai. Separation of an azeotropic mixture of dimethyl carbonate and methanol via partial heat integration pressure swing distillation[J]. Asia-Pacific Journal of Chemical Engineering, 2017, 12(1): 50-64. |
12 | ZHANG Qingjun, YANG Shunjin, SHI Pengyuan, et al. Economically and thermodynamically efficient heat pump-assisted side-stream pressure-swing distillation arrangement for separating a maximum-boiling azeotrope[J]. Applied Thermal Engineering, 2020, 173: 115228. |
13 | MA Zhaoyuan, YAO Dong, ZHAO Jiangang, et al. Efficient recovery of benzene and n-propanol from wastewater via vapor recompression assisted extractive distillation based on techno-economic and environmental analysis[J]. Process Safety and Environmental Protection, 2021, 148: 462-472. |
14 | ZHU Zhaoyou, QI Huaqing, SHEN Yuanyuan, et al. Energy-saving investigation of organic material recovery from wastewater via thermal coupling extractive distillation combined with heat pump based on thermoeconomic and environmental analysis[J]. Process Safety and Environmental Protection, 2021, 146: 441-450. |
15 | GU Jinglian, YOU Xinqiang, TAO Changyuan, et al. Analysis of heat integration, intermediate reboiler and vapor recompression for the extractive distillation of ternary mixture with two binary azeotropes[J]. Chemical Engineering and Processing, 2019, 142: 107546. |
16 | SAWITRI Dyah Retno, BUDIMAN Arief. Comparative study of heat pump assisted distillation column and its application for pressure swing distillation process[J]. IOP Conference Series: Materials Science and Engineering, 2020, 778(1): 012159. |
17 | FERCHICHI Mariem, HEGELY Laszlo, LANG Peter. Economic and environmental evaluation of heat pump-assisted pressure-swing distillation of maximum-boiling azeotropic mixture water-ethylenediamine[J]. Energy, 2022, 239:122608. |
18 | LI Xin, GENG Xueli, CUI Peizhe, et al. Thermodynamic efficiency enhancement of pressure-swing distillation process via heat integration and heat pump technology[J]. Applied Thermal Engineering, 2019, 154: 519-529. |
19 | 于鲁汕, 张瑞英, 张程前, 等. 变压精馏分离甲醇与碳酸二甲酯工艺流程的模拟[J]. 化工设计通讯, 2017, 43(5): 121. |
YU Lushan, ZHANG Ruiying, ZHANG Chengqian, et al. Simulation of separation of methanol and dimethyl carbonate by pressure distillation[J]. Chemical Engineering Design Communications, 2017, 43(5): 121. | |
20 | 姚林祥, 刘振锋, 宋怀俊, 等. 变压精馏分离碳酸二甲酯与甲醇工艺流程的模拟[J]. 河南化工, 2013, 30(7): 32-36. |
YAO Linxiang, LIU Zhenfeng, SONG Huaijun, et al. Simulation of pressure swing distillation technology process for dimethyl carbonate and methanol separation[J]. Henan Chemical Industry, 2013, 30(7): 32-36. | |
21 | WEI Hongmei, WANG Feng, ZHANG Junliang, et al. Design and control of dimethyl carbonate-methanol separation via pressure-swing distillation[J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11463-11478. |
22 | 李春山, 张香平, 张锁江, 等. 加压-常压精馏分离甲醇-碳酸二甲酯的相平衡和流程模拟[J]. 过程工程学报, 2003, 3(5): 453-458. |
LI Chunshan, ZHANG Xiangping, ZHANG Suojiang, et al. Vapor-liquid equilibria and process simulation for separation of dimethyl carbonate and methanol azeotropic system[J]. The Chinese Journal of Process Engineering, 2003, 3(5): 453-458. | |
23 | 张立庆, 丁江浩, 陈建刚. 碳酸二甲酯-甲醇-正庚烷三元体系的汽液平衡研究[J].天然气化工, 2003, 28(2): 56-59. |
1 | SCHAFFNER Benjamin, SCHAFFNER Friederike, VEREVKIN Sergey P, et al. Organic carbonates as solvents in synthesis and catalysis[J]. Chemical Reviews, 2010, 110(8): 4554-4581. |
2 | ARICO F, TUNDO Pietro. Dimethyl carbonate as a modern green reagent and solvent[J]. Russian Chemical Reviews, 2010, 79(6): 479. |
3 | 王红星, 李海勇, 刘雪艳. 酯交换合成碳酸二乙酯反应精馏工艺的模拟[J]. 计算机与应用化学, 2013, 30(5): 537-541. |
WANG Hongxing, LI Haiyong, LIU Xueyan. Simulation of reactive distillation for diethyl carbonate synthesis by transesterification[J]. Computers and Applied Chemistry, 2013, 30(5): 537-541. | |
23 | ZHANG Liqing, DING Jianghao, CHEN Jiangang. Predication of atmospheric VLE for the ternary system dimethyl carbonate-methanol-n-heptane[J]. Natural Gas Chemical Industry, 2003, 28(2): 56-59. |
24 | MATSUDA Hiroyuki, INABA Koji, NISHIHARA Keiji, et al. Separation effects of renewable solvent ethyl lactate on the vapor-liquid equilibria of the methanol + dimethyl carbonate azeotropic system[J]. Journal of Chemical & Engineering Data, 2017, 62(9): 2944-2952. |
25 | RODRı́GUEZ A, CANOSA J, DOMı́NGUEZ A, et al. Vapour-liquid equilibria of dimethyl carbonate with linear alcohols and estimation of interaction parameters for the UNIFAC and ASOG method[J]. Fluid Phase Equilibria, 2002, 201(1): 187-201. |
26 | FUKANO Makoto, MATSUDA Hiroyuki, KURIHARA Kiyofumi, et al. Ebulliometric determination of vapor liquid equilibria for methanol + ethanol + dimethyl carbonate[J]. Journal of Chemical & Engineering Data, 2006, 51(4): 1458-1463. |
27 | HOLTBRUEGGE Johannes, LEIMBRINK Mathias, LUTZE Philip, et al. Synthesis of dimethyl carbonate and propylene glycol by transesterification of propylene carbonate with methanol: catalyst screening, chemical equilibrium and reaction kinetics[J]. Chemical Engineering Science, 2013, 104: 347-360. |
28 | DHOLE V R, LINNHOFF B. Distillation column targets[J]. Computers & Chemical Engineering, 1993, 17(5/6): 549-560. |
29 | ANNAKOU Omar, MIZSEY Peter. Rigorous investigation of heat pump assisted distillation[J]. Heat Recovery Systems and CHP, 1995, 15(3): 241-247. |
30 | Valentin PLEŞU, RUIZ Alexandra E Bonet, BONET Jordi, et al. Simple equation for suitability of heat pump use in distillation[M]// Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2014, 33: 1327-1332. |
31 | YU Jieping, WANG Sanjang, HUANG Kejin, et al. Improving the performance of extractive dividing-wall columns with intermediate heating[J]. Industrial & Engineering Chemistry Research, 2015, 54(10): 2709-2723. |
32 | CHEN Yichun, HUNG Shihkai, LEE Haoyeh, et al. Energy-saving designs for separation of a close-boiling 1,2-propanediol and ethylene glycol mixture[J]. Industrial & Engineering Chemistry Research, 2015, 54(15): 3828-3843. |
33 | FAN Yufeng, YE Qing, CEN Hao, et al. Novel process design combined with reactive distillation and pressure-swing distillation for propylene glycol monomethyl ether acetate synthesis[J]. Industrial & Engineering Chemistry Research, 2019, 58(41): 19211-19225. |
[1] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[4] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[7] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[8] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[9] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[10] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[11] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[12] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[13] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[14] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[15] | 张帆, 陶少辉, 陈玉石, 项曙光. 基于改进恒热传输模型的精馏模拟初始化[J]. 化工进展, 2023, 42(9): 4550-4558. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 551
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 382
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |