化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5406-5415.DOI: 10.16085/j.issn.1000-6613.2021-2628
收稿日期:
2021-12-27
修回日期:
2022-02-11
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
申海平
作者简介:
武世伟(1995—),男,硕士研究生,研究方向为重油加工技术。E-mail:wushiwei.ripp@sinopec.com。
基金资助:
WU Shiwei(), WANG Ting, HOU Huandi, SHEN Haiping()
Received:
2021-12-27
Revised:
2022-02-11
Online:
2022-10-20
Published:
2022-10-21
Contact:
SHEN Haiping
摘要:
浆态床渣油加氢技术的核心和关键是采用了高分散性催化剂,其具有定向催化加氢活性和抑制结焦能力,保证了渣油中沥青质的高效轻质化,维持装置长周期稳定运行。而在分散型催化剂中添加助金属,不仅可以有效降低催化剂的成本,还可以显著提高催化剂的加氢活性。本文全面综述了浆态床渣油加氢裂化技术中分散型双金属催化剂的研究进展,包括钴-钼、镍-钼、铁-镍等双金属催化剂,重点介绍了双金属催化剂的活性和活性相结构,同时分析总结了不同双金属催化剂的优缺点。通过探索双金属催化中金属之间的协同作用,深入认识催化剂活性相结构,展望分散型双金属催化剂的未来发展,对渣油高效转化催化剂的开发具有重要意义。
中图分类号:
武世伟, 王廷, 侯焕娣, 申海平. 分散型浆态床渣油加氢双金属催化剂研究进展[J]. 化工进展, 2022, 41(10): 5406-5415.
WU Shiwei, WANG Ting, HOU Huandi, SHEN Haiping. Research progress of dispersed bimetallic catalysts for slurry-phase hydrocracking of residue[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5406-5415.
1 | PRAJAPATI Ravindra, KOHLI Kirtika, MAITY Samir K. Slurry phase hydrocracking of heavy oil and residue to produce lighter fuels: an experimental review[J]. Fuel, 2021, 288: 119686. |
2 | ZHANG Shuyi, LIU Dong, DENG Wenan, et al. A review of slurry-phase hydrocracking heavy oil technology[J]. Energy & Fuels, 2007, 21(6): 3057-3062. |
3 | KANG Ki Hyuk, KIM Gyoo Tae, PARK Sunyoung, et al. A review on the Mo-precursors for catalytic hydroconversion of heavy oil[J]. Journal of Industrial and Engineering Chemistry, 2019, 76: 1-16. |
4 | NGUYEN Manh Tung, NGUYEN Ngoc Thuy, CHO Joungmo, et al. A review on the oil-soluble dispersed catalyst for slurry-phase hydrocracking of heavy oil[J]. Journal of Industrial and Engineering Chemistry, 2016, 43: 1-12. |
5 | 刘元东, 郜亮, 温朗友, 等. 浆态床重油改质技术新进展[J]. 化工进展, 2010, 29(9): 1589-1596. |
LIU Yuandong, GAO Liang, WEN Langyou, et al. Development of slurry bed technologies for upgrading heavy oils[J]. Chemical Industry and Engineering Progress, 2010, 29(9): 1589-1596. | |
6 | 申海平, 董明, 侯焕娣, 等. 劣质渣油清洁高效加工技术开发[J]. 石油炼制与化工, 2021, 52(10): 136-143. |
SHEN Haiping, DONG Ming, HOU Huandi, et al. Development of clean and efficient processing technology for inferior residue[J]. Petroleum Processing and Petrochemicals, 2021, 52(10): 136-143. | |
7 | CHIANELLI Russell R, BERHAULT Gilles, TORRES Brenda. Unsupported transition metal sulfide catalysts: 100 years of science and application[J]. Catalysis Today, 2009, 147(3/4): 275-286. |
8 | 王廷, 侯焕娣, 龙军. 分散型渣油加氢催化剂硫化的研究进展[J]. 现代化工, 2021, 41(3): 68-73. |
WANG Ting, HOU Huandi, LONG Jun. A review on sulfurization of dispersed catalyst for residue hydrotreating[J]. Modern Chemical Industry, 2021, 41(3): 68-73. | |
9 | 王廷, 侯焕娣, 董明, 等. 浆态床油溶性加氢催化剂前体的研究进展[J]. 化工进展, 2020, 39(9): 3669-3676. |
WANG Ting, HOU Huandi, DONG Ming, et al. Research progress on oil-soluble catalysts precursor for slurry-phase hydrocracking of residue[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3669-3676. | |
10 | PANARITI N, Del BIANCO A, Del PIERO G, et al. Petroleum residue upgrading with dispersed catalysts: Part 1. Catalysts activity and selectivity[J]. Applied Catalysis A: General, 2000, 204(2): 203-213. |
11 | 李硕, 刘熠斌, 冯翔, 等. MoS2基催化剂加氢脱硫反应活性相和作用机理研究进展[J]. 化工进展, 2019, 38(2): 867-875. |
LI Shuo, LIU Yibin, FENG Xiang, et al. Research progress in active phase structure and reaction mechanism of MoS2-based catalysts for hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 867-875. | |
12 | KIM Sung Ho, KIM Ki Duk, LEE Yong Kul. Effects of dispersed MoS2 catalysts and reaction conditions on slurry phase hydrocracking of vacuum residue[J]. Journal of Catalysis, 2017, 347: 127-137. |
13 | HANSEN Lars P, JOHNSON Erik, BRORSON Michael, et al. Growth mechanism for single- and multi-layer MoS2 nanocrystals[J]. The Journal of Physical Chemistry C, 2014, 118(39): 22768-22773. |
14 | KIM Ki Duk, LEE Yong Kul. Active phase of dispersed MoS2 catalysts for slurry phase hydrocracking of vacuum residue[J]. Journal of Catalysis, 2019, 369: 111-121. |
15 | KIM Ki Duk, LEE Yong Kul. Promotional effect of Co on unsupported MoS2 catalysts for slurry phase hydrocracking of vacuum residue: X-ray absorption fine structure studies[J]. Journal of Catalysis, 2019, 380: 278-288. |
16 | JEON Sang Goo, NA Jeong Geol, Chang Hyun KO, et al. Preparation and application of an oil-soluble CoMo bimetallic catalyst for the hydrocracking of oil sands bitumen[J]. Energy & Fuels, 2011, 25(10): 4256-4260. |
17 | WANG Zongxian, ZHANG Hongyu, GUO Aijun, et al. Catalytic hydrocracking of petroleum vacuum residue by using a combination of molybdenum-based oil-soluble and iron-based water-soluble catalysts[J]. ACS Division of Fuel Chemistry, Preprints, 1998, 43: 486-489. |
18 | JEON Sang Goo, NA Jeong Geol, Chang Hyun KO, et al. A new approach for preparation of oil-soluble bimetallic dispersed catalyst from layered ammonium nickel molybdate[J]. Materials Science and Engineering: B, 2011, 176(7): 606-610. |
19 | 祁兴国, 董群, 马守波, 等. 硫化钼催化剂边缘结构的研究进展[J]. 化工进展, 2004, 23(12): 1291-1295. |
QI Xingguo, DONG Qun, MA Shoubo, et al. Edge structures of molybdenum-based sulfide catalyst[J]. Chemical Industry and Engineering Progress, 2004, 23(12): 1291-1295. | |
20 | TANIMU Abdulkadir, ALHOOSHANI Khalid. Advanced hydrodesulfurization catalysts: a review of design and synthesis[J]. Energy & Fuels, 2019, 33(4): 2810-2838. |
21 | TUXEN Anders K, FÜCHTBAUER Henrik G, TEMEL Burcin, et al. Atomic-scale insight into adsorption of sterically hindered dibenzothiophenes on MoS2 and Co-Mo-S hydrotreating catalysts[J]. Journal of Catalysis, 2012, 295: 146-154. |
22 | DING Sijia, JIANG Shujiao, ZHOU Yasong, et al. Catalytic characteristics of active corner sites in CoMoS nanostructure hydrodesulfurization—A mechanism study based on DFT calculations[J]. Journal of Catalysis, 2017, 345: 24-38. |
23 | LAURITSEN Jeppe V, KIBSGAARD Jakob, OLESEN Georg H, et al. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts[J]. Journal of Catalysis, 2007, 249(2): 220-233. |
24 | SONG Chunshan, PARFITT Derrick S, SCHOBERT Harold H. Bimetallic dispersed sulfide catalysts from organometallic clusters for coal liquefaction[J]. Catalysis Letters, 1993, 21(1/2): 27-34. |
25 | SONG Chunshan, PARFITT Derrick S, SCHOBERT Harold H. Bimetallic dispersed catalysts from molecular precursors containing Mo-Co-S for coal liquefaction[J]. Energy & Fuels, 1994, 8(2): 313-319. |
26 | PRAJAPATI Ravindra, KOHLI Kirtika, MAITY Samir K, et al. Ultrafine reverse micelle catalysts for slurry-phase residue hydrocracking[J]. Catalysis Today, 2020, 358: 228-236. |
27 | LI Guangci, LI Yanpeng, LIN Guannan, et al. Synthesis of unsupported Co-Mo hydrodesulfurization catalysts with ethanol-water mixed solvent: effects of the ethanol/water ratio on active phase composition, morphology and activity[J]. Applied Catalysis A: General, 2020, 602: 117663. |
28 | JEON Kyung Won, CHO Jae Wan, PARK Ho Ryong, et al. One-pot sol-gel synthesis of a CoMo catalyst for sustainable biofuel production by solvent- and hydrogen-free deoxygenation: effect of the citric acid ratio[J]. Sustainable Energy & Fuels, 2020, 4(6): 2841-2849. |
29 | 王小平, 马怀军, 王冬娥, 等. 水热法制备分散型Co促进的MoS2悬浮床加氢脱硫催化剂[J]. 石油学报(石油加工), 2021, 37(6): 1287-1297. |
WANG Xiaoping, MA Huaijun, WANG Donge, et al. Preparation of the slurry bed hydrodesulfurization catalyst MoS2 promoted by dispersed cobalt by means of hydrothermal synthesis[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(6): 1287-1297. | |
30 | LANDAU M V, BERGER D, HERSKOWITZ M. Hydrodesulfurization of methyl-substituted dibenzothiophenes: Fundamental study of routes to deep desulfurization[J]. Journal of Catalysis, 1996, 159(1): 236-245. |
31 | EIJSBOUTS Sonja, VAN DEN OETELAAR Leon C A, LOUWEN Jaap N, et al. Changes of MoS2 morphology and the degree of co segregation during the sulfidation and deactivation of commercial Co–Mo/Al2O3 hydroprocessing catalysts[J]. Industrial & Engineering Chemistry Research, 2007, 46(12): 3945-3954. |
32 | EIJSBOUTS Sonja, LI Xuanqi, BERGWERFF Jaap, et al. Nickel sulfide crystals in Ni-Mo and Ni-W catalysts: eye-catching inactive feature or an active phase in its own right? [J]. Catalysis Today, 2017, 292: 38-50. |
33 | LIU Dong, LI Meiyu, DENG Wenan, et al. Reactivity and composition of dispersed Ni catalyst for slurry-phase residue hydrocracking[J]. Energy & Fuels, 2010, 24(3): 1958-1962. |
34 | 沈瑞华, 赵会吉, 刘晨光, 等. 用油溶性双金属催化剂加氢裂化处理辽河减压渣油[J]. 石油炼制与化工, 1998, 29(11): 10-12. |
SHEN Ruihua, ZHAO Huiji, LIU Chenguang, et al. Hydrocracking of Liaohe vacuum residue on bimetallic oil soluble catalysts[J]. Petroleum Processing and Petrochemicals, 1998, 29(11): 10-12. | |
35 | WU Mengde, LI Guangci, LI Mingshi, et al. Effect of nickel cobalt co-catalyst on catalytic activity of molybdenumnaphthenatefor the hydroprocessing of coal tar pitch in suspension bed[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 27-36. |
36 | NGUYEN Thanh S, Melaz TAYAKOUT-FAYOLLE, LACROIX Maxime, et al. Promotion effects with dispersed catalysts for residue slurry hydroconversion[J]. Fuel, 2015, 160: 50-56. |
37 | OLIVAS A, ZEPEDA T A, VILLALPANDO I, et al. Performance of unsupported Ni(Co, Fe)/MoS2 catalysts in hydrotreating reactions[J]. Catalysis Communications, 2008, 9(6): 1317-1328. |
38 | VUTOLKINA A V, BAYGILDIN I G, GLOTOV A P, et al. Dispersed Ni-Mo sulfide catalysts from water-soluble precursors for HDS of BT and DBT via in situ produced H2 under water gas shift conditions[J]. Applied Catalysis B: Environmental, 2021, 282: 119616. |
39 | EIJSBOUTS S, VAN DEN OETELAAR L C A, VAN PUIJENBROEK R R. MoS2 morphology and promoter segregation in commercial type 2 Ni-Mo/Al2O3 and Co-Mo/Al2O3 hydroprocessing catalysts[J]. Journal of Catalysis, 2005, 229(2): 352-364. |
40 | GUICHARD Bertrand, Magalie ROY-AUBERGER, DEVERS Elodie, et al. Influence of the promoter's nature (nickel or cobalt) on the active phases ‘Ni(Co)MoS’ modifications during deactivation in HDS of diesel fuel[J]. Catalysis Today, 2010, 149(1/2): 2-10. |
41 | 何杨华, 徐金铭, 王发楠, 等. Ni-Fe基析氧阳极材料的研究进展[J]. 化工进展, 2016, 35(7): 2057-2062. |
HE Yanghua, XU Jinming, WANG Fanan, et al. Recent advances in Ni-Fe-based electrocatalysts for oxygen evolution reaction[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2057-2062. | |
42 | LI Tingzhen, WANG Hulin, YANG Yong, et al. Study on an iron-nickel bimetallic Fischer-Tropsch synthesis catalyst[J]. Fuel Processing Technology, 2014, 118: 117-124. |
43 | PRIYANTO Unggul, SAKANISHI Kinya, MOCHIDA Isao. Optimized solvent amount in the liquefaction of adaro coal with binary sulfide catalyst supported on carbon nanoparticles[J]. Energy & Fuels, 2000, 14(4): 801-805. |
44 | LI Chuan, MENG Huanshuang, YANG Tengfei, et al. Study on catalytic performance of oil-soluble iron-nickel bimetallic catalyst in coal/oil co-processing[J]. Fuel, 2018, 219: 30-36. |
45 | YANG Tengfei, LIU Congcong, LI Chuan, et al. Promotion effect with dispersed Fe-Ni-S catalyst to facilitate hydrogenolysis of lignite and heavy residue[J]. Fuel, 2020, 259: 116303. |
46 | XU Xiwei, LI Zhiyu, TU Ren, et al. Hydrogen from rice husk pyrolysis volatiles via non-noble Ni-Fe catalysts supported on five differently treated rice husk pyrolysis carbon supports[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8325-8339. |
47 | 刘聪聪, 杨腾飞, 邓文安, 等. 煤担载高分散铁镍催化剂在煤/重油加氢共炼中的活性研究[J]. 石油炼制与化工, 2019, 50(6): 57-63. |
LIU Congcong, YANG Tengfei, DENG Wenan, et al. Study of activity of high dispersed fe-ni catalyst supported on coal in co-processing of coal and heavy oil[J]. Petroleum Processing and Petrochemicals, 2019, 50(6): 57-63. | |
48 | LAM-MALDONADO M, MELO-BANDA J A, MACIAS-FERRER D, et al. NiFe nanocatalysts for the hydrocracking heavy crude oil[J]. Catalysis Today, 2020, 349: 17-25. |
49 | YANG Tengfei, LIU Congcong, DENG Wenan, et al. Influence of the iron proportion on the efficiency of an oil-soluble Ni-Fe catalyst applied in the co-liquefaction of lignite and heavy residue[J]. Industrial & Engineering Chemistry Research, 2019, 58(41): 19072-19081. |
50 | 崔文龙, 邓文安, 李传, 等. 渣油加氢裂化反应中油溶性催化剂的抑焦性能[J]. 工业催化, 2011, 19(10): 30-35. |
CUI Wenlong, DENG Wenan, LI Chuan, et al. Coke restraining ability of oil-soluble catalyst for residue hydrocracking[J]. Industrial Catalysis, 2011, 19(10): 30-35. | |
51 | VRADMAN L, LANDAU M V, HERSKOWITZ M, et al. High loading of short WS2 slabs inside SBA-15: promotion with nickel and performance in hydrodesulfurization and hydrogenation[J]. Journal of Catalysis, 2003, 213(2): 163-175. |
52 | PAWELEC B, MARISCAL R, FIERRO J L G, et al. Carbon-supported tungsten and nickel catalysts for hydrodesulfurization and hydrogenation reactions[J]. Applied Catalysis A: General, 2001, 206(2): 295-307. |
53 | Young Gul HUR, KIM Min Sung, LEE Dae Won, et al. Hydrocracking of vacuum residue into lighter fuel oils using nanosheet-structured WS2 catalyst[J]. Fuel, 2014, 137: 237-244. |
54 | JEONG Hyun Rok, LEE Yong Kul. Comparison of unsupported WS2 and MoS2 catalysts for slurry phase hydrocracking of vacuum residue[J]. Applied Catalysis A: General, 2019, 572: 90-96. |
55 | JEONG Hyun Rok, KIM Ki Duk, LEE Yong Kul. Highly active and stable MoWS2 catalysts in slurry phase hydrocracking of vacuum residue[J]. Journal of Catalysis, 2020, 390: 117-125. |
56 | SERDYUKOV S I, KNIAZEVA M I, SIZOVA I A, et al. A new precursor for synthesis of nickel-tungsten sulfide aromatic hydrogenation catalyst[J]. Molecular Catalysis, 2021, 502: 111357. |
57 | HWANG Yoon Hyun, LEE Yong Kul. Structure and activity of unsupported NiWS2 catalysts for slurry phase hydrocracking of vacuum residue: XAFS studies[J]. Journal of Catalysis, 2021, 403: 131-140. |
58 | ALPHAZAN Thibault, Audrey BONDUELLE-SKRZYPCZAK, LEGENS Christèle, et al. Improved promoter effect in NiWS catalysts through a molecular approach and an optimized Ni edge decoration[J]. Journal of Catalysis, 2016, 340: 60-65. |
59 | SUN Mingyong, NELSON Alan E, ADJAYE John. A DFT study of WS2, NiWS, and CoWS hydrotreating catalysts: energetics and surface structures[J]. Journal of Catalysis, 2004, 226(1): 41-53. |
60 | ALBERSBERGER Sylvia, HEIN Jennifer, SCHREIBER Moritz W, et al. Simultaneous hydrodenitrogenation and hydrodesulfurization on unsupported Ni-Mo-W sulfides[J]. Catalysis Today, 2017, 297: 344-355. |
61 | YI Yanjiao, ZHANG Bingsen, JIN Xin, et al. Unsupported NiMoW sulfide catalysts for hydrodesulfurization of dibenzothiophene by thermal decomposition of thiosalts[J]. Journal of Molecular Catalysis A: Chemical, 2011, 351: 120-127. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[15] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |