化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5416-5424.DOI: 10.16085/j.issn.1000-6613.2021-2637
王宏政(), 马超凡, 颜伟, 何巍, 卢春山(), 李小年
收稿日期:
2021-12-27
修回日期:
2022-02-22
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
卢春山
作者简介:
王宏政(1997—),男,硕士研究生,研究方向为工业催化。E-mail:2111901052@zjut.edu.cn。
基金资助:
WANG Hongzheng(), MA Chaofan, YAN Wei, HE Wei, LU Chunshan(), LI Xiaonian
Received:
2021-12-27
Revised:
2022-02-22
Online:
2022-10-20
Published:
2022-10-21
Contact:
LU Chunshan
摘要:
实现非贵金属催化剂在加氢反应中的广泛应用对工业催化领域具有重要意义,新型碳包裹非贵金属催化剂因其优异的结构稳定性和催化加氢性能而备受关注。本文综述了近年来碳包裹非贵金属催化剂及其制备方法的研究进展,归纳总结了不同制备方法对碳包裹结构的影响以及其优缺点,并介绍了碳包裹非贵金属催化剂在硝基类芳烃、羰基类芳烃、苯酚、喹啉加氢以及费托合成等加氢反应中的催化性能以及稳定性表现。文中提出:目前该催化剂亟需解决的问题是实现金属粒子尺寸以及碳壳结构的可控调变,今后的一个研究方向是进一步探索能够简便调节催化剂结构并且经济可行的制备方法。
中图分类号:
王宏政, 马超凡, 颜伟, 何巍, 卢春山, 李小年. 碳包裹非贵金属催化剂的制备及其在催化加氢中的应用[J]. 化工进展, 2022, 41(10): 5416-5424.
WANG Hongzheng, MA Chaofan, YAN Wei, HE Wei, LU Chunshan, LI Xiaonian. Preparation of carbon encapsulated non-noble metal catalysts and their application in catalytic hydrogenation[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5416-5424.
1 | WU Guangjun, WANG Xueming, GUAN Naijia, et al. Palladium on graphene as efficient catalyst for solvent-free aerobic oxidation of aromatic alcohols: role of graphene support[J]. Applied Catalysis B: Environmental, 2013, 136/137: 177-185. |
2 | WANG Chao, MURUGADOSS Vignesh, KONG Jie, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding[J]. Carbon, 2018, 140: 696-733. |
3 | SU Dangsheng, PERATHONER Siglinda, CENTI Gabriele. Nanocarbons for the development of advanced catalysts[J]. Chemical Reviews, 2013, 113(8): 5782-5816. |
4 | FORMENTI D, TOPF C, JUNGE K, et al. Fe2O3/NGr@C- and Co-Co3O4/NGr@C-catalysed hydrogenation of nitroarenes under mild conditions[J]. Catalysis Science & Technology, 2016, 6(12): 4473-4477. |
5 | LI Jinlei, LIU Guoliang, LONG Xiangdong, et al. Different active sites in a bifunctional Co@N-doped graphene shells based catalyst for the oxidative dehydrogenation and hydrogenation reactions[J]. Journal of Catalysis, 2017, 355: 53-62. |
6 | WANG Zhiwei, WEI Jianren, LIU Gonggang, et al. G-C3N4-coated activated carbon-supported Pd catalysts for 4-CBA hydrogenation: effect of nitrogen species[J]. Catalysis Science & Technology, 2015, 5(8): 3926-3930. |
7 | CHEN Xiaoqi, DENG Dehui, PAN Xiulian, et al. Iron catalyst encapsulated in carbon nanotubes for CO hydrogenation to light olefins[J]. Chinese Journal of Catalysis, 2015, 36(9): 1631-1637. |
8 | CAO Yueling, MAO Shanjun, LI Mingming, et al. Metal/porous carbon composites for heterogeneous catalysis: old catalysts with improved performance promoted by N-doping[J]. ACS Catalysis, 2017, 7(12): 8090-8112. |
9 | CHAMBERS A, NEMES T, RODRIGUEZ N M, et al. Catalytic behavior of graphite nanofiber supported nickel particles. 1. Comparison with other support media[J]. The Journal of Physical Chemistry B, 1998, 102(12): 2251-2258. |
10 | CAI Jindi, HUANG Yiyin, GUO Yonglang. PdTe x /C nanocatalysts with high catalytic activity for ethanol electro-oxidation in alkaline medium[J]. Applied Catalysis B: Environmental, 2014, 150/151: 230-237. |
11 | NING Lina, LIU Xianhu, DENG Min, et al. Palladium-based nanocatalysts anchored on CNT with high activity and durability for ethanol electro-oxidation[J]. Electrochimica Acta, 2019, 297: 206-214. |
12 | WEI Zhongzhe, WANG Jing, MAO Shanjun, et al. In situ-generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes[J]. ACS Catalysis, 2015, 5(8): 4783-4789. |
13 | MAO Hui, PENG Shengjie, YU Hong, et al. Facile synthesis of highly stable heterogeneous catalysts by entrapping metal nanoparticles within mesoporous carbon[J]. Journal of Materials Chemistry A, 2014, 2(16): 5847-5851. |
14 | EROKHIN A V, LOKTEVA E S, YERMAKOV A Y, et al. Phenylacetylene hydrogenation on Fe@C and Ni@C core-shell nanoparticles: about intrinsic activity of graphene-like carbon layer in H2 activation[J]. Carbon, 2014, 74: 291-301. |
15 | TANG Lei, MENG Xianguang, DENG Dehui, et al. Confinement catalysis with 2D materials for energy conversion[J]. Advanced Materials, 2019, 31(50): e1901996. |
16 | YU Liang, DENG Dehui, BAO Xinhe. Chain mail for catalysts[J]. Angewandte Chemie International Edition, 2020, 59(36): 15294-15297. |
17 | JIANG Shanshan, LI Feng, HUANG Jin, et al. Catalytic transfer hydrogenation of furfural over magnetic carbon-encapsulated CoO@C catalyst[J]. ChemistrySelect, 2020, 5(31): 9883-9892. |
18 | XIAO Ping, XU Xuelian, WANG Shan, et al. One-pot synthesis of LaFeO3@C composites for catalytic transfer hydrogenation reactions: effects of carbon precursors[J]. Applied Catalysis A: General, 2020, 603: 117742. |
19 | YUAN Man, LONG Yu, YANG Jin, et al. Biomass sucrose-derived cobalt@nitrogen-doped carbon for catalytic transfer hydrogenation of nitroarenes with formic acid[J]. ChemSusChem, 2018, 11(23): 4156-4165. |
20 | LI Wexiu, GENG Weijie, LIU Lin, et al. In situ-generated Co embedded in N-doped carbon hybrids as robust catalysts for the upgrading of levulinic acid in aqueous phase[J]. Sustainable Energy & Fuels, 2020, 4(4): 2043-2054. |
21 | WEI Zhongzhe, LI Yi, WANG Jing, et al. Chemoselective hydrogenation of phenol to cyclohexanol using heterogenized cobalt oxide catalysts[J]. Chinese Chemical Letters, 2018, 29(6): 815-818. |
22 | XU Dan, ZHAO Hong, DONG Zhengping, et al. Cobalt nanoparticles apically encapsulated by nitrogen-doped carbon nanotubes for oxidative dehydrogenation and transfer hydrogenation of N-heterocycles[J]. ChemCatChem, 2019, 11(22): 5475-5486. |
23 | LIN Chuncheng, WAN Weihao, WEI Xueting, et al. H2 activation with Co nanoparticles encapsulated in N-doped carbon nanotubes for green synthesis of benzimidazoles[J]. ChemSusChem, 2021, 14(2): 709-720. |
24 | ZHU Qian, SUN Xun, ZHAO Hong, et al. Selective transfer hydrogenation and N-formylation of nitroarenes by a facilely prepared N, S co-doped carbon-encapsulated cobalt nanoparticle catalyst[J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5615-5623. |
25 | CUI Tingting, DONG Jinhu, PAN Xiulian, et al. Enhanced hydrogen evolution reaction over molybdenum carbide nanoparticles confined inside single-walled carbon nanotubes[J]. Journal of Energy Chemistry, 2019, 28: 123-127. |
26 | 包信和. 纳米限域体系的催化特性[J]. 中国科学(B辑: 化学), 2009, 39(10): 1125-1133. |
BAO Xinhe. Catalytic characters of the nano-confined systems[J]. Science in China (Series B: Chemistry), 2009, 39(10): 1125-1133. | |
27 | 王嘉, 李福伟. 氮掺杂碳包覆金属催化剂的制备及其在多相催化反应中的应用[J]. 中国科学: 化学, 2018, 48(12): 1587-1602. |
WANG Jia, LI Fuwei. Synthesis of a N-doped carbon coating metal catalyst and its application in the heterogeneously catalytic reaction[J]. Scientia Sinica Chimica, 2018, 48(12): 1587-1602. | |
28 | 黄刚, 陈玉贞, 江海龙. 金属有机骨架材料在催化中的应用[J]. 化学学报, 2016, 74(2): 113-129. |
HUANG Gang, CHEN Yuzhen, JIANG Hailong. Metal-organic frameworks for catalysis[J]. Acta Chimica Sinica, 2016, 74(2): 113-129. | |
29 | CHEN Yuzhen, ZHANG Rui, JIAO Long, et al. Metal-organic framework-derived porous materials for catalysis[J]. Coordination Chemistry Reviews, 2018, 362: 1-23. |
30 | SHEN Kui, CHEN Xiaodong, CHEN Junying, et al. Development of MOF-derived carbon-based nanomaterials for efficient catalysis[J]. ACS Catalysis, 2016, 6(9): 5887-5903. |
31 | CHEN Shuo, LING Lili, JIANG Shunfeng, et al. Selective hydrogenation of nitroarenes under mild conditions by the optimization of active sites in a well defined Co@NC catalyst[J]. Green Chemistry, 2020, 22(17): 5730-5741. |
32 | WANG Ruiyi, LIU Huan, WANG Xiaoyu, et al. Plasmon-enhanced furfural hydrogenation catalyzed by stable carbon-coated copper nanoparticles driven from metal-organic frameworks[J]. Catalysis Science & Technology, 2020, 10(19): 6483-6494. |
33 | CHO J M, KIM B G, HAN G Y, et al. Effects of metal-organic framework-derived iron carbide phases for CO hydrogenation activity to hydrocarbons[J]. Fuel, 2020, 281: 118779. |
34 | YUN Ruirui, HONG Lirui, MA Wanjiao, et al. Co nanoparticles encapsulated in nitrogen doped carbon tubes for efficient hydrogenation of quinoline under mild conditions[J]. ChemCatChem, 2020, 12(1): 129-134. |
35 | TANG Bo, SONG Werchao, YANG Encui, et al. MOF-derived Ni-based nanocomposites as robust catalysts for chemoselective hydrogenation of functionalized nitro compounds[J]. RSC Advances, 2017, 7(3): 1531-1539. |
36 | LONG Jilan, ZHOU Ying, LI Yingwei. Transfer hydrogenation of unsaturated bonds in the absence of base additives catalyzed by a cobalt-based heterogeneous catalyst[J]. Chemical Communications, 2015, 51(12): 2331-2334. |
37 | LI Jiayi, WANG Bowei, QIN Yutian, et al. MOF-derived Ni@NC catalyst: synthesis, characterization, and application in one-pot hydrogenation and reductive amination[J]. Catalysis Science & Technology, 2019, 9(14): 3726-3734. |
38 | LONG Jilan, SHEN Kui, CHEN Liang, et al. Multimetal-MOF-derived transition metal alloy NPs embedded in an N-doped carbon matrix: highly active catalysts for hydrogenation reactions[J]. Journal of Materials Chemistry A, 2016, 4(26): 10254-10262. |
39 | LIU Lichen, CONCEPCION P, CORMA A. Non-noble metal catalysts for hydrogenation: a facile method for preparing Co nanoparticles covered with thin layered carbon[J]. Journal of Catalysis, 2016, 340: 1-9. |
40 | DENG Jiao, REN Pengju, DENG Dehui, et al. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(7): 2100-2104. |
41 | SHEN Yajing, ZHENG Qingshu, LIU Jianhong, et al. Metallo-aerogels derived from chitosan with encapsulated metal nanoparticles as robust, efficient and selective nanocatalysts towards reduction of nitroarenes[J]. Nano Research, 2021, 14(1): 59-65. |
42 | LIU Jianguo. ZHU Yuting, WANG Chenguang,et al. Facile synthesis of controllable graphene-co-shelled reusable Ni/NiO nanoparticles and their application in the synthesis of amines under mild conditions[J]. Green Chemistry, 2020, 22(21): 7387-7397. |
43 | KONG Xiangjin, GENG Weijie, LI Wenxiu, et al. Co encapsulated N-doped carbon nanotubes as robust catalyst for valorization of levulinic acid in aqueous media[J]. Journal of Energy Chemistry, 2021, 52: 12-19. |
44 | LI Ning, MA Caiping, ZHANG Chenghua, et al. Low-cost preparation of carbon-supported cobalt catalysts from MOFs and their performance in CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 428-437. |
45 | YANG Xi, CHEN Yan, XU Xinchao, et al. Synergistic effects of carbon-encapsulated cobalt/tricobalt tetroxide nanocapsules on hydrogenation of 4-nitrophenol[J]. Functional Materials Letters, 2019, 12(4): 1950059. |
46 | GAO Guang, SUN Peng, LI Yunqin, et al. Highly stable porous-carbon-coated Ni catalysts for the reductive amination of levulinic acid via an unconventional pathway[J]. ACS Catalysis, 2017, 7(8): 4927-4935. |
47 | 李康, 周媛, 张群峰, 等. 掺杂碳材料的制备及其负载贵金属在催化加氢反应中的应用研究进展[J]. 高校化学工程学报, 2019, 33(3): 516-523. |
LI Kang, ZHOU Yuan, ZHANG Qunfeng, et al. Preparation of doped carbon materials and their application in catalytic hydrogenation loaded with noble metals[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(3): 516-523. | |
48 | CAO Yueling, LIU Kangkai, WU Chen, et al. In situ-formed cobalt embedded into N-doped carbon as highly efficient and selective catalysts for the hydrogenation of halogenated nitrobenzenes under mild conditions[J]. Applied Catalysis A: General, 2020, 592: 117434. |
49 | 秦王昕, 周婉哲, 严亲清, 等. 糠醛液相催化加氢制糠醇金属催化剂的研究进展[J]. 当代化工, 2021, 50(9): 2221-2224. |
QIN Wangxin, ZHOU Wanzhe, YAN Qinqing, et al. Research progress of metal catalysts for furfural liquid phase catalytic hydrogenation to furfural alcohol[J]. Contemporary Chemical Industry, 2021, 50(9): 2221-2224. | |
50 | DUTTA S, YU I K M, TSANG D C W, et al. Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: a critical review[J]. Chemical Engineering Journal, 2019, 372: 992-1006. |
51 | MA Hongfei, YU Tie, PAN Xiulian, et al. Confinement effect of carbon nanotubes on the product distribution of selective hydrogenation of cinnamaldehyde[J]. Chinese Journal of Catalysis, 2017, 38(8): 1315-1321. |
52 | LONG Jinxing, SHU Shiyang, WU Qingyun, et al. Selective cyclohexanol production from the renewable lignin derived phenolic chemicals catalyzed by Ni/MgO[J]. Energy Conversion and Management, 2015, 105: 570-577. |
53 | LI Aiqin, SHEN Kui, CHEN Junying, et al. Highly selective hydrogenation of phenol to cyclohexanol over MOF-derived non-noble Co-Ni@NC catalysts[J]. Chemical Engineering Science, 2017, 166: 66-76. |
54 | GONG Yutong, ZHANG Pengfei, XU Xuan, et al. A novel catalyst Pd@ompg-C3N4 for highly chemoselective hydrogenation of quinoline under mild conditions[J]. Journal of Catalysis, 2013, 297: 272-280. |
55 | WEI Zhongzhe, CHEN Yiqing, WANG Jing, et al. Cobalt encapsulated in N-doped graphene layers: an efficient and stable catalyst for hydrogenation of quinoline compounds[J]. ACS Catalysis, 2016, 6(9): 5816-5822. |
56 | 韩小雪, 陈妍希, 赵俏, 等. 碳限域铁基费托合成催化剂研究进展[J]. 化工进展, 2021, 40(4): 1917-1927. |
HAN Xiaoxue, CHEN Yanxi, ZHAO Qiao, et al. Advances in carbon-confined iron-based catalysts for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1917-1927. | |
57 | SANTOS V P, WEZENDONK T A, JAEN J J D, et al. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts[J]. Nature Communications, 2015, 6: 6451. |
58 | CHEN Xiaoqi, DENG Dehui, PAN Xiulian, et al. Iron catalyst encapsulated in carbon nanotubes for CO hydrogenation to light olefins[J]. Chinese Journal of Catalysis, 2015, 36(9): 1631-1637. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |