化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5390-5405.DOI: 10.16085/j.issn.1000-6613.2021-2568
陈志强1(), 车春霞2, 吴登峰1, 温翯2, 韩伟2, 张峰2, 许昊翔1, 程道建1()
收稿日期:
2021-12-17
修回日期:
2022-03-08
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
程道建
作者简介:
陈志强(1996—),男,硕士研究生,研究方向为乙炔选择性加氢催化剂的制备与性能。E-mail:chen730912@163.com。
基金资助:
CHEN Zhiqiang1(), CHE Chunxia2, WU Dengfeng1, WEN He2, HAN Wei2, ZHANG Feng2, XU Haoxiang1, CHENG Daojian1()
Received:
2021-12-17
Revised:
2022-03-08
Online:
2022-10-20
Published:
2022-10-21
Contact:
CHENG Daojian
摘要:
乙烯是石化工业中最重要的工业原料之一,然而乙烯产品中少量乙炔杂质的存在会直接影响乙烯的下一步应用。乙炔选择性催化加氢被认为是脱除乙炔杂质最有效的方法之一。本文综述了乙炔选择性加氢催化剂近年来的研究进展,介绍了乙炔选择加氢的反应机理,归纳总结了活性组分、助剂、载体以及结构对乙炔加氢催化剂性能的影响。鉴于Pd基催化剂仍然是工业应用的主流催化剂,文中综述了Pd基催化剂的研究现状和目前存在的一些挑战,同时提出了催化性能优化的建议。最后,就如何进一步提高乙炔选择性加氢催化剂性能的发展趋势进行了归纳,主要从单原子合金催化剂、催化剂微观调控以及电化学炔烃加氢方面进行论述,为未来提高乙炔加氢催化剂的性能提供了指导方向。
中图分类号:
陈志强, 车春霞, 吴登峰, 温翯, 韩伟, 张峰, 许昊翔, 程道建. 乙炔选择性加氢催化剂研究进展[J]. 化工进展, 2022, 41(10): 5390-5405.
CHEN Zhiqiang, CHE Chunxia, WU Dengfeng, WEN He, HAN Wei, ZHANG Feng, XU Haoxiang, CHENG Daojian. Advances in catalysts for selective hydrogenation of acetylene[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5390-5405.
载体 | 活性组分 | 助剂 | 制备方法 | 反应温度/℃ | 反应时间/h | 乙炔转化率/% | 乙烯选择性/% |
---|---|---|---|---|---|---|---|
θ-Al2O3,δ-Al2O3[ | Pd | Ag,Ni | 浸渍法 | 60 | — | 20~80 | -60~80 |
α-Al2O3[ | Pd | Ag | 浸渍法 | 60 | 80 | 80 | 90 |
γ-Al2O3[ | Pd | — | 浸渍法 | 30 | — | 100 | 60 |
β-Al2O3[ | Pd | — | — | 60~100 | — | 90 | 95 |
SiO2[ | Pd | Au,Ag | 化学沉积 | 65 | — | 20~60 | 55~80 |
TiO2[ | Pd | Ag | 浸渍法 | 40 | — | 5~60 | 10~57 |
C[ | Pd | Zn | 浸渍法 | 120 | — | 100 | 82 |
多金属氧酸盐的金属-有机骨架(MOF)[ | Pd | — | 原位还原 | 120 | 12 | 100 | 92.6 |
氮掺杂石墨烯(N-Gr)[ | Pd | — | 冷冻干燥辅助法 | 125 | 24 | 99 | 93.5 |
氮掺杂碳纳米球[ | Pd | — | 模板路易斯酸掺杂法 | 110 | 20 | 83 | 82 |
氮掺杂碳纳米管(N-CNTs)[ | Pd | — | 化学气相沉积法 | 80 | 35 | 80以上 | 40左右 |
ZnO-Al2O3[ | Pd | Ag | 共沉淀法 | 90 | 3 | 90~100 | 77.6 |
MgO [ | Pd | — | 球磨 | 140 | 50 | 100 | 70以上 |
金刚石/石墨烯[ | Pd | — | 退火处理、溶液合成 | 180 | 30 | 100 | 90 |
金刚石/石墨烯[ | Cu | — | 退火处理、溶液合成 | 200 | 60 | 95 | 98 |
表1 不同载体种类对乙炔选择性加氢性能的影响
载体 | 活性组分 | 助剂 | 制备方法 | 反应温度/℃ | 反应时间/h | 乙炔转化率/% | 乙烯选择性/% |
---|---|---|---|---|---|---|---|
θ-Al2O3,δ-Al2O3[ | Pd | Ag,Ni | 浸渍法 | 60 | — | 20~80 | -60~80 |
α-Al2O3[ | Pd | Ag | 浸渍法 | 60 | 80 | 80 | 90 |
γ-Al2O3[ | Pd | — | 浸渍法 | 30 | — | 100 | 60 |
β-Al2O3[ | Pd | — | — | 60~100 | — | 90 | 95 |
SiO2[ | Pd | Au,Ag | 化学沉积 | 65 | — | 20~60 | 55~80 |
TiO2[ | Pd | Ag | 浸渍法 | 40 | — | 5~60 | 10~57 |
C[ | Pd | Zn | 浸渍法 | 120 | — | 100 | 82 |
多金属氧酸盐的金属-有机骨架(MOF)[ | Pd | — | 原位还原 | 120 | 12 | 100 | 92.6 |
氮掺杂石墨烯(N-Gr)[ | Pd | — | 冷冻干燥辅助法 | 125 | 24 | 99 | 93.5 |
氮掺杂碳纳米球[ | Pd | — | 模板路易斯酸掺杂法 | 110 | 20 | 83 | 82 |
氮掺杂碳纳米管(N-CNTs)[ | Pd | — | 化学气相沉积法 | 80 | 35 | 80以上 | 40左右 |
ZnO-Al2O3[ | Pd | Ag | 共沉淀法 | 90 | 3 | 90~100 | 77.6 |
MgO [ | Pd | — | 球磨 | 140 | 50 | 100 | 70以上 |
金刚石/石墨烯[ | Pd | — | 退火处理、溶液合成 | 180 | 30 | 100 | 90 |
金刚石/石墨烯[ | Cu | — | 退火处理、溶液合成 | 200 | 60 | 95 | 98 |
金属表面 | d(C | ΔE(C2H4)/eV |
---|---|---|
Pd(111) | 1.45 | -0.91 |
Pd1Au(111) | 1.39 | -0.53 |
Pd1Ag(111) | 1.39 | -0.46 |
Pd1Cu(111) | 1.39 | -0.51 |
表2 Pd1Au(111)、Pd1Ag(111)、Pd1Cu(111)和Pd(111)表面乙烯吸附能[100-102]
金属表面 | d(C | ΔE(C2H4)/eV |
---|---|---|
Pd(111) | 1.45 | -0.91 |
Pd1Au(111) | 1.39 | -0.53 |
Pd1Ag(111) | 1.39 | -0.46 |
Pd1Cu(111) | 1.39 | -0.51 |
31 | WANG L, LI F X, CHEN Y J, et al. Selective hydrogenation of acetylene on SiO2-supported Ni-Ga alloy and intermetallic compound[J]. Journal of Energy Chemistry, 2019, 29: 40-49. |
32 | RILEY C, DE LA RIVA A, ZHOU S L, et al. Synthesis of nickel-doped ceria catalysts for selective acetylene hydrogenation[J]. ChemCatChem, 2019, 11(5): 1526-1533. |
33 | WANG Z, WANG G, LOUIS C, et al. Bimetallic Ni-Zn/TiO2 catalysts for selective hydrogenation of alkyne and alkadiene impurities from alkenes stream[J]. Research on Chemical Intermediates, 2021, 47(1): 91-116. |
34 | HU N M, YANG C H, HE L, et al. Ni-Cu/Al2O3 catalysts for the selective hydrogenation of acetylene: a study on catalytic performance and reaction mechanism[J]. New Journal of Chemistry, 2019, 43(46): 18120-18125. |
35 | BRIDIER B, PEREZ-RAMIREZ J. Cooperative effects in ternary Cu-Ni-Fe catalysts lead to enhanced alkene selectivity in alkyne hydrogenation[J]. Journal of the American Chemical Society, 2010, 132(12): 4321-4327. |
36 | RAO D M, SUN T, YANG Y S, et al. Theoretical study on the reaction mechanism and selectivity of acetylene semi-hydrogenation on Ni-Sn intermetallic catalysts[J]. Physical Chemistry Chemical Physics, 2019, 21(3): 1384-1392. |
37 | LIU H, CHAI M Q, PEI G X, et al. Effect of IB-metal on Ni/SiO2 catalyst for selective hydrogenation of acetylene[J]. Chinese Journal of Catalysis, 2020, 41(7): 1099-1108. |
38 | ZHANG Y Y, DIAO W J, WILLIAMS C T, et al. Selective hydrogenation of acetylene in excess ethylene using Ag- and Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition[J]. Applied Catalysis A: General, 2014, 469: 419-426. |
39 | WEHRLI J T, THOMAS D J, WAINWRIGHT M S, et al. Selective hydrogenation of C4-acetlylenes over an ion-exchanged copper on silica catalyst[J]. Studies in Surface Science and Catalysis, 1993, 75: 2289–2292. |
40 | STAMMBACH M R, THOMAS D J, TRIMM D L, et al. Hydrogenation of ethyne over an ion-exchanged copper on silica catalyst[J]. Applied Catalysis, 1990, 58(1): 209-217. |
41 | 仲小慧. 乙炔在Cu/SiO2催化剂上选择性加氢性能研究[D]. 大连: 大连理工大学, 2011. |
ZHONG Xiaohui. The study of acetylene selective hydrogenation activity on Cu/SiO2 catalyst[D]. Dalian: Dalian University of Technology, 2011. | |
42 | SHI X X, LIN Y, HUANG L, et al. Copper catalysts in semihydrogenation of acetylene: from single atoms to nanoparticles[J]. ACS Catalysis, 2020, 10(5): 3495-3504. |
43 | MCCUE A J, MCRITCHIE C J, SHEPHERD A M, et al. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation[J]. Journal of Catalysis, 2014, 319: 127-135. |
44 | JIA J F, HARAKI K, KONDO J N, et al. Selective hydrogenation of acetylene over Au/Al2O3 catalyst[J]. The Journal of Physical Chemistry B, 2000, 104(47): 11153-11156. |
45 | AZIZI Y, PETIT C, PITCHON V. Formation of polymer-grade ethylene by selective hydrogenation of acetylene over Au/CeO2 catalyst[J]. Journal of Catalysis, 2008, 256(2): 338-344. |
46 | BRUNO J E, DWARICA N S, WHITTAKER T N, et al. Supported Ni-Au colloid precursors for active, selective, and stable alkyne partial hydrogenation catalysts[J]. ACS Catalysis, 2020, 10(4): 2565-2580. |
47 | KUO C T, LU Y B, KOVARIK L, et al. Structure sensitivity of acetylene semi-hydrogenation on Pt single atoms and subnanometer clusters[J]. ACS Catalysis, 2019, 9(12): 11030-11041. |
48 | AFONASENKO T N, TEMEREV V L, GLYZDOVA D V, et al. The nature of modifying effect of gallium on Pd-Ga/Al2O3 catalyst for liquid-phase selective acetylene hydrogenation[J]. Materials Letters, 2021, 305: 130843. |
49 | WANG S H, XIN Z L, HUANG X, et al. Nanosized Pd-Au bimetallic phases on carbon nanotubes for selective phenylacetylene hydrogenation[J]. Physical Chemistry Chemical Physics, 2017, 19(8): 6164-6168. |
50 | LIU F, XIA Y J, XU W L, et al. Integration of bimetallic electronic synergy with oxide site isolation improves the selective hydrogenation of acetylene[J]. Angewandte Chemie International Edition, 2021, 60(35): 19324-19330. |
51 | CHAN C W A, MAHADI A H, LI M M J, et al. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation[J]. Nature Communications, 2014, 5(1): 1-10. |
52 | REN M R, LI C M, CHEN J L, et al. Preparation of a ternary Pd-Rh-P amorphous alloy and its catalytic performance in selective hydrogenation of alkynes[J]. Catalysis Science & Technology, 2014, 4(7): 1920-1924. |
53 | PEI G X, LIU X Y, WANG A Q, et al. Selective hydrogenation of acetylene in an ethylene-rich stream over silica supported Ag-Ni bimetallic catalysts[J]. Applied Catalysis A: General, 2017, 545: 90-96. |
54 | GU J, JIAN M, HUANG L, et al. Synergizing metal-support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations[J]. Nature Nanotechnology, 2021, 16(10): 1141-1149. |
55 | CHEN Y J, CHEN J X. Selective hydrogenation of acetylene on SiO2 supported Ni-In bimetallic catalysts: promotional effect of In[J]. Applied Surface Science, 2016, 387: 16-27. |
56 | KYRIAKOU G, BOUCHER M B, JEWELL A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073): 1209-1212. |
57 | ZHANG R G, XUE M F, WANG B J, et al. Acetylene selective hydrogenation over different size of Pd-modified Cu cluster catalysts: effects of Pd ensemble and cluster size on the selectivity and activity[J]. Applied Surface Science, 2019, 481: 421-432. |
58 | WEI Z J, THUSHARA D, LI X H, et al. Ligand-controlled fabrication of core-shell PdNi bimetallic nanoparticles as a highly efficient hydrogenation catalyst[J]. Catalysis Communications, 2017, 98: 61-65. |
59 | ESMAEILI E, RASHIDI A. An efficient Pd-Sn catalyst supported on MWNTs for hydrogenation of high concentrated acetylene feedstocks: the potential role of isolated adsorption site[J]. Journal of Nanostructures, 2014, 4(2): 133-144. |
60 | MENEZES W G, ALTMANN L, ZIELASEK V, et al. Bimetallic Co-Pd catalysts: study of preparation methods and their influence on the selective hydrogenation of acetylene[J]. Journal of Catalysis, 2013, 300: 125-135. |
61 | LIU Y N, MCCUE A J, MIAO C L, et al. Palladium phosphide nanoparticles as highly selective catalysts for the selective hydrogenation of acetylene[J]. Journal of Catalysis, 2018, 364: 406-414. |
62 | 车春霞. 碳二前加氢催化剂的开发及应用研究[D]. 兰州: 兰州大学, 2016. |
CHE Chunxia. Studies on the research and application of acetylene front-end hydrogenation catalyst[D]. Lanzhou: Lanzhou University, 2016. | |
63 | TAKHT RAVANCHI M, SAHEBDELFAR S, KOMEILI S. Acetylene selective hydrogenation: a technical review on catalytic aspects[J]. Reviews in Chemical Engineering, 2018, 34(2): 215-237. |
64 | AHN I Y, LEE J H, KIM S K, et al. Three-stage deactivation of Pd/SiO2 and Pd-Ag/SiO2 catalysts during the selective hydrogenation of acetylene[J]. Applied Catalysis A: General, 2009, 360(1): 38-42. |
65 | KIM S K, LEE J H, AHN I Y, et al. Performance of Cu-promoted Pd catalysts prepared by adding Cu using a surface redox method in acetylene hydrogenation[J]. Applied Catalysis A: General, 2011, 401(1/2): 12-19. |
66 | 顾虹, 许波连, 周静, 等. 负载型Pd/TiO2和Pd-Ag/TiO2催化剂的乙炔选择性加氢催化性能[J]. 物理化学学报, 2006(6): 712-715. |
GU Hong, XU Bolian, ZHOU Jing, et al. Catalytic properties of supported Pd/TiO2 and Pd-Ag/TiO2 catalysts for selective hydrogenation of acetylene[J]. Journal of Physical Chemistry, 2006(6): 712-715. | |
67 | PANPRANOT J, NAKKARARUANG L, NGAMSOM B, et al. Synthesis, characterization, and catalytic properties of Pd and Pd-Ag catalysts supported on nanocrystalline TiO2 prepared by the solvothermal method[J]. Catalysis Letters, 2005, 103(1/2): 53-58. |
68 | PANPRANOT J, KONTAPAKDEE K, PRASERTHDAM P. Selective hydrogenation of acetylene in excess ethylene on micron-sized and nanocrystalline TiO2 supported Pd catalysts[J]. Applied Catalysis A: General, 2006, 314(1): 128-133. |
69 | MCCUE A J, ANDERSON J A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts[J]. Frontiers of Chemical Science and Engineering, 2015, 9(2): 142-153. |
70 | RIYAPAN S, BOONYONGMANEERAT Y, MEKASUWANDUMRONG O, et al. Improved catalytic performance of Pd/TiO2 in the selective hydrogenation of acetylene by using H2-treated sol-gel TiO2 [J]. Journal of Molecular Catalysis A: Chemical, 2014, 383/384: 182-187. |
71 | RIYAPAN S, BOONYONGMANEERAT Y, MEKASUWANDUMRONG O, et al. Effect of surface Ti3+ on the sol-gel derived TiO2 in the selective acetylene hydrogenation on Pd/TiO2 catalysts[J]. Catalysis Today, 2015, 245: 134-138. |
72 | 韦以, 刘新香. Al2O3-TiO2复合载体用于乙炔选择加氢反应[J]. 石油化工, 2006, 35(5): 411-415. |
WEI Yi, LIU Xinxiang. Al2O3-TiO2 support for Pd catalyst used in acetylene selective hydrogenation[J]. Petrochemical Technology, 2006, 35(5): 411-415. | |
73 | BALL M R, RIVERA-DONES K R, GILCHER E B, et al. AgPd and CuPd catalysts for selective hydrogenation of acetylene[J]. ACS Catalysis, 2020, 10(15): 8567-8581. |
74 | LEE J H, KIM S K, AHN I Y, et al. Performance of Ni-added Pd-Ag/Al2O3 catalysts in the selective hydrogenation of acetylene[J]. Korean Journal of Chemical Engineering, 2012, 29(2): 169-172. |
75 | RAVANCHI M T, SAHEBDELFAR S, FARD M R, et al. Pd-Ag/ α-Al2O3 catalyst deactivation in acetylene selective hydrogenation process[J]. Chemical Engineering & Technology, 2016, 39(2): 301-310. |
76 | CHEN W S, WEI K M. Single-stage treatment in selective hydrogenation of acetylene over CDS type of Pd-Ag/Al2O3 catalyst[J]. The Canadian Journal of Chemical Engineering, 2008, 82(6): 1217-1224. |
77 | GIANNIKOS A, PETROLEKAS P, PLIANGOS C, et al. Electrochemical promotion of Pd for the hydrogenation of C2H2 [J]. Ionics, 1998, 4(3/4): 161-169. |
78 | KONTAPAKDEE K, PANPRANOT J, PRASERTHDAM P. Effect of Ag addition on the properties of Pd-Ag/TiO2 catalysts containing different TiO2 crystalline phases[J]. Catalysis Communications, 2007, 8(12): 2166-2170. |
79 | MASHKOVSKY I S, BAEVA G N, STAKHEEV A Y, et al. Novel Pd-Zn/C catalyst for selective alkyne hydrogenation: evidence for the formation of Pd-Zn bimetallic alloy particles[J]. Mendeleev Communications, 2014, 24(6): 355-357. |
80 | LIU Y W, WANG B X, FU Q, et al. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites[J]. Angewandte Chemie International Edition, 2021, 60(41): 22522-22528. |
81 | ZHOU S Q, SHANG L, ZHAO Y X, et al. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene[J]. Advanced Materials, 2019, 31(18): 1900509. |
82 | FENG Q C, ZHAO S, XU Q, et al. Mesoporous nitrogen-doped carbon-nanosphere-supported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene[J]. Advanced Materials, 2019, 31(36): 1901024. |
83 | CAO Y Q, FU W Z, REN Z H, et al. Tailoring electronic properties and kinetics behaviors of Pd/N-CNTs catalysts for selective hydrogenation of acetylene[J]. AIChE Journal, 2020, 66(4): e16857. |
84 | GAO X Q, ZHOU Y N, JING F L, et al. Layered double hydroxides derived ZnO-Al2O3 supported Pd-Ag catalysts for selective hydrogenation of acetylene[J]. Chinese Journal of Chemistry, 2017, 35(6): 1009-1015. |
85 | GUO Y L, QI H F, SU Y, et al. High performance of single-atom catalyst Pd1/MgO for semi-hydrogenation of acetylene to ethylene in excess ethylene[J]. ChemNanoMat, 2021, 7(5): 526-529. |
86 | HUANG F, DENG Y, CHEN Y, et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene[J]. Nature Communications, 2019, 10(1): 1-7. |
1 | KHAN N A, SHAIKHUTDINOV S, FREUND H J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts[J]. Catalysis Letters, 2006, 108(3/4): 159-164. |
2 | 戴伟, 朱警, 万文举. C2馏分选择加氢工艺和催化剂研究进展[J]. 石油化工, 2000, 29(7): 535-540. |
DAI Wei, ZHU Jing, WAN Wenju. Advances in process and catalysts for selective hydrogenation of acetylene[J]. Petrochemical Technology, 2000, 29(7): 535-540. | |
3 | 安杰. 乙炔选择性加氢制乙烯工艺研究进展[J]. 维纶通讯, 2014(2): 14-19, 35. |
AN Jie. Advances in selective hydrogenation of acetylene to ethylene[J]. Vinylon Communication, 2014(2): 14-19, 35. | |
4 | 赵博. Cu基催化剂尺寸和第二金属掺杂对乙炔加氢生成乙烯的选择性和活性调控[D]. 太原: 太原理工大学, 2018. |
ZHAO Bo. The regulation of catalysts size and second metal doping of Cu based catalysts on the selectivity and activity of acetylene hydrogenation to ethylene[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
5 | LI B, CUI X L, O'NOLAN D, et al. An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity[J]. Advanced Materials, 2017, 29(47): 1704210. |
6 | CUI X L, CHEN K J, XING H B, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene[J]. Science, 2016, 353(6295): 141-144. |
7 | 周姣. 负载镍铜催化剂催化乙炔选择加氢反应的研究[D]. 大连: 大连理工大学, 2012. |
ZHOU Jiao. The study of acetylene selective hydrogenation on supported Ni-Cu catalyst[D]. Dalian: Dalian University of Technology, 2012. | |
8 | 姚繁繁. 用于乙炔选择加氢的Pd基催化剂的制备和性能研究[D]. 合肥: 中国科学技术大学, 2017. |
YAO Fanfan. The synthesis and catalytic performance of palladium-based catalysts in selective hydrogenation of acetylene[D]. Hefei: University of Science and Technology of China, 2017. | |
9 | BORODZINSKI A, BOND G C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction[J]. Catalysis Reviews, 2006, 48(2): 91-144. |
87 | ALBERTAZZI S, BUSCA G, FINOCCHIO E, et al. New Pd/Pt on Mg/Al basic mixed oxides for the hydrogenation and hydrogenolysis of naphthalene[J]. Journal of Catalysis, 2004, 223(2): 372-381. |
88 | CHE C X, WANG B K, SHAN C F, et al. An effective strategy to prepare Pd-Ag/MgCO3@α-Al2O3 catalyst for selective hydrogenation of acetylene[J]. Catalysis Letters, 2017, 147(2): 483-490. |
89 | WANG S, ZHAO Z J, CHANG X, et al. Activation and spillover of hydrogen on sub-1nm palladium nanoclusters confined within sodalite zeolite for the semi-hydrogenation of alkynes[J]. Angewandte Chemie International Edition, 2019, 58(23): 7668-7672. |
90 | SUN X, SU H J, LIN Q Q, et al. Au/Cu-Fe-La-Al2O3: a highly active, selective and stable catalysts for preferential oxidation of carbon monooxide[J]. Applied Catalysis A: General, 2016, 527: 19-29. |
91 | SUN X, LI F F, SHI J J, et al. Gold nanoparticles supported on MgO x -Al2O3 composite oxide: an efficient catalyst for selective hydrogenation of acetylene[J]. Applied Surface Science, 2019, 487: 625-633. |
92 | SÁRKÁNY A, GESZTI O, SÁFRÁN G. Preparation of Pdshell-Aucore/SiO2 catalyst and catalytic activity for acetylene hydrogenation[J]. Applied Catalysis A: General, 2008, 350(2): 157-163. |
93 | HAN Y X, PENG D, XU Z Y, et al. TiO2 supported Pd@Ag as highly selective catalysts for hydrogenation of acetylene in excess ethylene[J]. Chemical Communications, 2013, 49(75): 8350-8352. |
94 | MA R, HE Y F, FENG J T, et al. A facile synthesis of Ag@PdAg core-shell architecture for efficient purification of ethene feedstock[J]. Journal of Catalysis, 2019, 369: 440-449. |
95 | LIU Y N, HE Y F, ZHOU D R, et al. Catalytic performance of Pd-promoted Cu hydrotalcite-derived catalysts in partial hydrogenation of acetylene: effect of Pd-Cu alloy formation[J]. Catalysis Science & Technology, 2016, 6(9): 3027-3037. |
96 | CAO X X, LYU T T, XIE W T, et al. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Frontiers of Chemical Science and Engineering, 2020, 14(4): 522-533. |
97 | ZHOU H R, YANG X F, LI L, et al. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene[J]. ACS Catalysis, 2016, 6(2): 1054-1061. |
98 | LI X T, CHEN L, SHANG C, et al. In situ surface structures of PdAg catalyst and their influence on acetylene semihydrogenation revealed by machine learning and experiment[J]. Journal of the American Chemical Society, 2021, 143(16): 6281-6292. |
10 | BORODZINSKI A, BOND G C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, Part 2. Steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters[J]. Catalysis Reviews, 2008, 50(3): 379-469. |
11 | LOPEZ N, VARGAS-FUENTES C. Promoters in the hydrogenation of alkynes in mixtures: insights from density functional theory[J]. Chemical Communications, 2012, 48(10): 1379-1391. |
12 | YANG B, BURCH R, HARDACRE C, et al. Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: a density functional theory study[J]. Journal of Catalysis, 2013, 305: 264-276. |
13 | MEI D H, SHETH P A, NEUROCK M, et al. First-principles-based kinetic Monte Carlo simulation of the selective hydrogenation of acetylene over Pd(111)[J]. Journal of Catalysis, 2006, 242(1): 1-15. |
14 | MCLEOD A S, BLACKWELL R. Monte Carlo simulation of the selective hydrogenation of acetylene[J]. Chemical Engineering Science, 2004, 59(22/23): 4715-4721. |
15 | SHETH P A, NEUROCK M, SMITH C M. A first-principles analysis of acetylene hydrogenation over Pd(111)[J]. The Journal of Physical Chemistry B, 2003, 107(9): 2009-2017. |
16 | 谭都平, 王宏军, 车春霞, 等. C2选择加氢催化剂结焦成因及对策[J]. 工业催化, 2009, 17(3): 38-41. |
TAN Duping, WANG Hongjun, CHE Chunxia, et al. Causes for coke formation on C2 hydrogenation catalysts and its countermeasures[J]. Industrial Catalysis, 2009, 17(3): 38-41. | |
17 | GIGOLA C E, ADURIZ H R, BODNARIUK P. Particle size effect in the hydrogenation of acetylene under industrial conditions[J]. Applied Catalysis, 1986, 27(1): 133-144. |
18 | IHM S K, LEE D K. Process for manufacturing a titania supported palladium catalyst: US4839329[P]. 1989-06-13. |
19 | 高荫本, 章斌, 关春梅, 等. 超细Pd/Al2O3催化剂及其对乙炔选择加氢催化性能研究[J]. 天然气化工, 1996, 21(5): 14-18. |
GAO Yinben, ZHANG Bin, GUAN Chunmei, et al. Studies on ultrafine Pd/Al2O3 catalyst and its catalytic properties in the selective hydrogenation of acetylene[J]. Natural Gas Chemical Industry, 1996, 21(5): 14-18. | |
20 | 夏先波, 黄维刚, 沈小小, 等. 纳米Pd/TiO2加氢催化剂的制备及其催化性能研究[J]. 天然气化工, 2006, 31(2): 24-28. |
99 | GIANNAKAKIS G, FLYTZANI-STEPHANOPOULOS M, SYKES E C H. Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts[J]. Accounts of Chemical Research, 2019, 52(1): 237-247. |
100 | PEI G X, LIU X Y, WANG A, et al. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene[J]. New Journal of Chemistry, 2014, 38(5): 2043. |
101 | PEI G X, LIU X Y, WANG A Q, et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene[J]. ACS Catalysis, 2015, 5(6): 3717-3725. |
102 | PEI G X, LIU X Y, YANG X F, et al. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions[J]. ACS Catalysis, 2017, 7(2): 1491-1500. |
103 | JIN R, CAO Y W, MIRKIN C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms[J]. Science, 2001, 294(5548): 1901-1903. |
104 | LIU X W, WANG D S, LI Y D. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures[J]. Nano Today, 2012, 7(5): 448-466. |
105 | HU J W, ZHOU Z M, ZHANG R, et al. Selective hydrogenation of phenylacetylene over a nano-Pd/α-Al2O3 catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2014, 381: 61-69. |
106 | HU M Z, ZHAO S, LIU S J, et al. MOF-confined sub-2nm atomically ordered intermetallic PdZn nanoparticles as high performance catalysts for selective hydrogenation of acetylene[J]. Advanced Materials, 2018, 30(33): 1801878. |
107 | WANG Y, CHOI S I, ZHAO X, et al. Polyol synthesis of ultrathin Pd nanowires via attachment-based growth and their enhanced activity towards formic acid oxidation[J]. Advanced Functional Materials, 2014, 24(1): 131-139. |
108 | FENG J T, LIU Y N, YIN M, et al. Preparation and structure-property relationships of supported trimetallic PdAuAg catalysts for the selective hydrogenation of acetylene[J]. Journal of Catalysis, 2016, 344: 854-864. |
109 | NIU Y M, ZHANG B S, LUO J J, et al. Correlation between microstructure evolution of a well-defined cubic palladium catalyst and selectivity during acetylene hydrogenation[J]. ChemCatChem, 2017, 9(18): 3435-3439. |
110 | MOUTET J C. Electrocatalytic hydrogenation on hydrogen-active electrodes. A review[J]. Organic Preparations and Procedures International, 1992, 24(3): 309-325. |
20 | XIA Xianbo, HUANG Weigang, SHEN Xiaoxiao, et al. Preparation of nano Pd/TiO2 and it’s catalytic performance for selective hydrogenation of acetylene[J]. Natural Gas Chemical Industry, 2006(2): 24-28. |
21 | SHI C K, HOISINGTON R, JANG B W L. Promotion effects of air and H2 nonthermal plasmas on TiO2 supported Pd and Pd-Ag catalysts for selective hydrogenation of acetylene[J]. Industrial & Engineering Chemistry Research, 2007, 46(13): 4390-4395. |
22 | 卫国宾, 杨思源, 张敬畅, 等. 微乳液法制备Pd负载型催化剂及其催化性能[J]. 石油化工, 2012, 41(11): 1239-1244. |
WEI Guobin, YANG Siyuan, ZHANG Jingchang, et al. Supported Pd nanoparticle catalyst prepared by microemulsion method for selective hydrogenation of acetylene[J]. Petrochemical Technology, 2012, 41(11): 1239-1244. | |
23 | GARCIA-MOTA M, BRIDIER B, PEREZ-RAMIREZ J, et al. Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium[J]. Journal of Catalysis, 2010, 273(2): 92-102. |
24 | SA J, ARTEAGA G D, DALEY R A, et al. Factors influencing hydride formation in a Pd/TiO2 catalyst[J]. The Journal of Physical Chemistry B, 2006, 110(34): 17090-17095. |
25 | ARMBRUSTER M, BEHRENS M, CINQUINI F, et al. How to control the selectivity of palladium-based catalysts in hydrogenation reactions: the role of subsurface chemistry[J]. ChemCatChem, 2012, 4(8): 1048-1063. |
26 | LUDWIG W, SAVARA A, MADIX R J, et al. Subsurface hydrogen diffusion into Pd nanoparticles: role of low-coordinated surface sites and facilitation by carbon[J]. The Journal of Physical Chemistry C, 2012, 116(5): 3539-3544. |
27 | KIM S K, KIM C, LEE J H, et al. Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene[J]. Journal of Catalysis, 2013, 306: 146-154. |
28 | HUANG F C, DENG Y C, CHEN Y L, et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene[J]. Journal of the American Chemical Society, 2018, 140(41): 13142-13146. |
29 | ZHOU H R, YANG X F, WANG A Q, et al. Pd/ZnO catalysts with different origins for high chemoselectivity in acetylene semi-hydrogenation[J]. Chinese Journal of Catalysis, 2016, 37(5): 692-699. |
30 | STUDT F, ABILD-PEDERSEN F, BLIGAARD T, et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene[J]. Science, 2008, 320(5881): 1320-1322. |
111 | HUANG B B, DURANTE C, ISSE A A, et al. Highly selective electrochemical hydrogenation of acetylene to ethylene at Ag and Cu cathodes[J]. Electrochemistry Communications, 2013, 34: 90-93. |
112 | SHI R, WANG Z, ZHAO Y, et al. Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity[J]. Nature Catalysis, 2021, 4(7): 565-574. |
113 | BU J, LIU Z, MA W, et al. Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene[J]. Nature Catalysis, 2021, 4(7): 557-564. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[3] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[4] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[5] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[6] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[7] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[10] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[11] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[12] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[13] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[14] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[15] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |