化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5259-5271.DOI: 10.16085/j.issn.1000-6613.2021-2632
张学民1,2,3(), 张山岭1,2,3, 李鹏宇1,2,3, 黄婷婷1,2,3, 尹绍奇1,2,3, 李金平1,2,3, 王英梅1,2,4
收稿日期:
2021-12-27
修回日期:
2022-02-15
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
张学民
作者简介:
张学民(1987—),男,博士,副教授,硕士生导师,主要从事气体水合物生成与分解动力学方面的研究。E-mail:zxm2010lut@163.com。
基金资助:
ZHANG Xuemin1,2,3(), ZHANG Shanling1,2,3, LI Pengyu1,2,3, HUANG Tingting1,2,3, YIN Shaoqi1,2,3, LI Jinping1,2,3, WANG Yingmei1,2,4
Received:
2021-12-27
Revised:
2022-02-15
Online:
2022-10-20
Published:
2022-10-21
Contact:
ZHANG Xuemin
摘要:
天然气水合物因其储量巨大、清洁无污染而成为未来最具潜力的清洁能源之一,CO2置换法可实现天然气水合物的安全开采和温室气体的地层封存。然而,多孔介质中CO2-CH4水合物的置换过程存在反应周期长、速率慢、效率低等特点,已成为制约天然气水合物高效开采的瓶颈问题。本文全面综述了多孔介质体系中CO2-CH4水合物的置换特性,分析了CO2-CH4水合物的置换机理及其动力学过程。在此基础上,详述了不同因素对多孔介质中CO2-CH4水合物置换效率的影响规律及强化机理,包括热刺激、置换压力、小分子气体、化学添加剂等的作用机理及其规律。最后指出了多孔介质体系中CO2-CH4水合物置换过程强化技术存在的不足和未来的发展方向。对多孔介质体系中CO2-CH4水合物置换过程的强化机理及其动力学机制的认识仍需进一步研究。
中图分类号:
张学民, 张山岭, 李鹏宇, 黄婷婷, 尹绍奇, 李金平, 王英梅. 多孔介质中CO2-CH4水合物置换的影响因素及强化机理研究进展[J]. 化工进展, 2022, 41(10): 5259-5271.
ZHANG Xuemin, ZHANG Shanling, LI Pengyu, HUANG Tingting, YIN Shaoqi, LI Jinping, WANG Yingmei. Research progress on influencing factors and strengthening mechanism of CO2-CH4 hydrate replacement in porous media system[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5259-5271.
气体名称 | 优点 | 缺点 |
---|---|---|
N2 | 价格低廉 使用安全 | 过量会抑制CO2水合物生成 分离麻烦、成本高 |
H2 | 置换效果更好 少量H2可以促进CO2水合物生成 | 成本昂贵 过量会抑制CO2水合物生成存在安全隐患 |
表1 H2和N2作为小分子气体添加剂的对比分析
气体名称 | 优点 | 缺点 |
---|---|---|
N2 | 价格低廉 使用安全 | 过量会抑制CO2水合物生成 分离麻烦、成本高 |
H2 | 置换效果更好 少量H2可以促进CO2水合物生成 | 成本昂贵 过量会抑制CO2水合物生成存在安全隐患 |
CH4回收率 /% | 置换时初始压力 /MPa | 热刺激方式 | 研究者 |
---|---|---|---|
68.8 | 3.3 | 加热功率为100W | Tupsakhare等[ |
49.42 | 8.03 | 每两小时加热15min(共加热三次) | Ouyang等[ |
64.6 | 2.13 | 温度从273.65K提升到279.15K并维持2h | Zhang等[ |
75~93 | 2 | 温度升到289.15K并保持200min | Yang等[ |
82.2 | 3 | 温度设置成275.65K并保持18h | Stanwix等[ |
60 | 3 | 温度在271.15~278.15K循环 | Tupsakhare等[ |
44 | 7.8 | 升高温度直至观察到分解时刻 | Gambelli等[ |
表2 CO2-CH4水合物置换法耦合热刺激效率对比
CH4回收率 /% | 置换时初始压力 /MPa | 热刺激方式 | 研究者 |
---|---|---|---|
68.8 | 3.3 | 加热功率为100W | Tupsakhare等[ |
49.42 | 8.03 | 每两小时加热15min(共加热三次) | Ouyang等[ |
64.6 | 2.13 | 温度从273.65K提升到279.15K并维持2h | Zhang等[ |
75~93 | 2 | 温度升到289.15K并保持200min | Yang等[ |
82.2 | 3 | 温度设置成275.65K并保持18h | Stanwix等[ |
60 | 3 | 温度在271.15~278.15K循环 | Tupsakhare等[ |
44 | 7.8 | 升高温度直至观察到分解时刻 | Gambelli等[ |
CH4回收率 /% | 置换时初始温度 /K | 压力或减压方式 | 研究者 |
---|---|---|---|
32.66 | 273.65 | 每次减压时压力从2.92MPa降到1.74MPa并维持30min(共减压三次) | Sun等[ |
63.3 | 274.15 | 通过减压使水合物分解比为20%时再进行置换 | Lee等[ |
71 | 274.15 | CO2气体分压为1.8MPa | Ding等[ |
66 | 276.2 | 压力降至2MPa直至置换反应结束 | Sun等[ |
85.3~89.1 | 279.15 | 通过多级减压将压力从6MPa降至3MPa | Gao等[ |
49 | 277.2 | 实验压力为3.5MPa | Liu等[ |
31 | 276.15 | CO2气体分压为4.5MPa | Xu等[ |
表3 CO2-CH4水合物置换法耦合减压效率对比
CH4回收率 /% | 置换时初始温度 /K | 压力或减压方式 | 研究者 |
---|---|---|---|
32.66 | 273.65 | 每次减压时压力从2.92MPa降到1.74MPa并维持30min(共减压三次) | Sun等[ |
63.3 | 274.15 | 通过减压使水合物分解比为20%时再进行置换 | Lee等[ |
71 | 274.15 | CO2气体分压为1.8MPa | Ding等[ |
66 | 276.2 | 压力降至2MPa直至置换反应结束 | Sun等[ |
85.3~89.1 | 279.15 | 通过多级减压将压力从6MPa降至3MPa | Gao等[ |
49 | 277.2 | 实验压力为3.5MPa | Liu等[ |
31 | 276.15 | CO2气体分压为4.5MPa | Xu等[ |
方法 | 温度/K | 压力/MPa | 反应时间/h | CH4回收率/% | 研究者 |
---|---|---|---|---|---|
气态CO2 | 273 | 3.36 | 100 | 20 | Ota等[ |
气态CO2 | 272.2 | 3.6/4.0/4.5 | 150 | 8.63/10.89/13.2 | Zhang等[ |
气态CO2 | 275 | 2.91/2.93 | 225/200 | 23/6 | Li等[ |
气态CO2 | 274 | 4.5 | 34 | 35 | Ryou等[ |
液态CO2 | 273.2 | 4 | 700 | 26.4 | Wang等[ |
液态CO2 | 282.2 | 6 | 288 | 45 | Li等[ |
液态CO2 | 275 | 9 | 80 | 40.2 | Lee等[ |
CO2乳化液 | 281.2 | 5 | 96 | 27.1 | Zhou等[ |
CO2+N2(25∶75) | 274.2 | 10 | 280 | 25 | Pan等[ |
CO2+N2(20∶80) | 274 | 17 | 72 | 39 | Choi等[ |
CO2+N2(60∶40) | 274 | 4.5 | 192 | 73.42 | Xu等[ |
CO2+N2(21∶79) | 285.2 | 12/15 | 200 | 86/75 | Li等[ |
CO2+H2(60∶40) | 274.15 | 4.5 | 192 | 70.21 | Ding等[ |
CO2+H2(18∶82) | 275.65 | 5 | 300 | 70 | Wang等[ |
CO2+H2(40∶60) | 274 | 4.5 | 192 | 78.02 | Xu等[ |
CO2+H2(56∶44) | 276.12~276.23 | 3.70~3.80 | 4 | 61~75 | Sun等[ |
CO2+H2(43∶57) | 276 | 3.67 | 320 | 61 | Sun等[ |
CO2+H2(0∶100) | 276 | 3.67 | 320 | 63 | Sun等[ |
CO2+CH3OH | 274.41 | 3.3 | 56.62 | 92 | Khlebnikov等[ |
CO2+Rhamnolipid(鼠李糖脂) | 276.15 | 3.1 | 92 | 18.02 | Heydari等[ |
CO2+TMACl(四甲基氯化铵) | 274.15 | 6 | 24 | 83 | Moujdin等[ |
表4 CO2-CH4水合物置换法耦合其他方法效率对比
方法 | 温度/K | 压力/MPa | 反应时间/h | CH4回收率/% | 研究者 |
---|---|---|---|---|---|
气态CO2 | 273 | 3.36 | 100 | 20 | Ota等[ |
气态CO2 | 272.2 | 3.6/4.0/4.5 | 150 | 8.63/10.89/13.2 | Zhang等[ |
气态CO2 | 275 | 2.91/2.93 | 225/200 | 23/6 | Li等[ |
气态CO2 | 274 | 4.5 | 34 | 35 | Ryou等[ |
液态CO2 | 273.2 | 4 | 700 | 26.4 | Wang等[ |
液态CO2 | 282.2 | 6 | 288 | 45 | Li等[ |
液态CO2 | 275 | 9 | 80 | 40.2 | Lee等[ |
CO2乳化液 | 281.2 | 5 | 96 | 27.1 | Zhou等[ |
CO2+N2(25∶75) | 274.2 | 10 | 280 | 25 | Pan等[ |
CO2+N2(20∶80) | 274 | 17 | 72 | 39 | Choi等[ |
CO2+N2(60∶40) | 274 | 4.5 | 192 | 73.42 | Xu等[ |
CO2+N2(21∶79) | 285.2 | 12/15 | 200 | 86/75 | Li等[ |
CO2+H2(60∶40) | 274.15 | 4.5 | 192 | 70.21 | Ding等[ |
CO2+H2(18∶82) | 275.65 | 5 | 300 | 70 | Wang等[ |
CO2+H2(40∶60) | 274 | 4.5 | 192 | 78.02 | Xu等[ |
CO2+H2(56∶44) | 276.12~276.23 | 3.70~3.80 | 4 | 61~75 | Sun等[ |
CO2+H2(43∶57) | 276 | 3.67 | 320 | 61 | Sun等[ |
CO2+H2(0∶100) | 276 | 3.67 | 320 | 63 | Sun等[ |
CO2+CH3OH | 274.41 | 3.3 | 56.62 | 92 | Khlebnikov等[ |
CO2+Rhamnolipid(鼠李糖脂) | 276.15 | 3.1 | 92 | 18.02 | Heydari等[ |
CO2+TMACl(四甲基氯化铵) | 274.15 | 6 | 24 | 83 | Moujdin等[ |
1 | SLOAN E DendyJr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-363. |
2 | OHMURA Ryo, KASHIWAZAKI Shigetoyo, SHIOTA Saburo, et al. Structure-I and structure-H hydrate formation using water spraying[J]. Energy & Fuels, 2002, 16(5): 1141-1147. |
3 | BOSWELL Ray, COLLETT Timothy S. Current perspectives on gas hydrate resources[J]. Energy & Environmental Science, 2011, 4(4): 1206-1215. |
4 | CHONG Zheng rong, YANG She Hern Bryan, BABU Ponnivalavan, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. |
5 | ZHANG Lunxiang, SUN Lingjie, SUN Mingrui, et al. Analyzing spatially and temporally visualized formation behavior of methane hydrate in unconsolidated porous media[J]. Magnetic Resonance Imaging, 2019, 61: 224-230. |
6 | STANWIX Paul L, RATHNAYAKE Narmada M, DE OBANOS Fernando P P, et al. Characterising thermally controlled CH4-CO2 hydrate exchange in unconsolidated sediments[J]. Energy & Environmental Science, 2018, 11(7): 1828-1840. |
7 | SLOAN E Dendy Carolyn A, Carolyn A KOH. Clathrate Hydrates of Natural Gases[M]. CRC Press, 2007. |
8 | LI Bo, CHEN Lingling, WAN Qingcui, et al. Experimental study of frozen gas hydrate decomposition towards gas recovery from permafrost hydrate deposits below freezing point[J]. Fuel, 2020, 280: 118557. |
9 | LI Bo, WEI Wenna, WAN Qingcui, et al. Numerical investigation into the development performance of gas hydrate by depressurization based on heat transfer and entropy generation analyses[J]. Entropy, 2020, 22(11): 1212. |
10 | COLLETT Timothy S. Energy resource potential of natural gas hydrates[J]. AAPG Bulletin, 2002, 86(11): 1971-1992. |
11 | HIROHAMA Seiya, SHIMOYAMA Yoshikazu, WAKABAYASHI Ataru, et al. Conversion of CH4-hydrate to CO2-hydrate in liquid CO2 [J]. Journal of Chemical Engineering of Japan, 1996, 29(6): 1014-1020. |
12 | ZHOU Xitang, FAN Shuanshi, LIANG Deqing, et al. Replacement of methane from quartz sand-bearing hydrate with carbon dioxide-in-water emulsion[J]. Energy & Fuels, 2008, 22(3): 1759-1764. |
13 | LEE Huen, SEO Yongwon, SEO Yu Taek, et al. Recovering methane from solid methane hydrate with carbon dioxide[J]. Angewandte Chemie, 2003, 115(41): 5202-5205. |
14 | WAN Qingcui, SI Hu, LI Bo, et al. Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization[J]. Applied Energy, 2020, 278: 115612. |
15 | SUN Youhong, ZHANG Guobiao, LI Shengli, et al. CO2/N2 injection into CH4+C3H8 hydrates for gas recovery and CO2 sequestration[J]. Chemical Engineering Journal, 2019, 375: 121973. |
16 | LEE Yohan, CHOI Wonjung, SHIN Kyuchul, et al. CH4-CO2 replacement occurring in sII natural gas hydrates for CH4 recovery and CO2 sequestration[J]. Energy Conversion and Management, 2017, 150: 356-364. |
17 | LEE Yohan, CHOI Wonjung, SEO Youngju, et al. Structural transition induced by cage-dependent guest exchange in CH4+C3H8 hydrates with CO2 injection for energy recovery and CO2 sequestration[J]. Applied Energy, 2018, 228: 229-239. |
18 | ZHAO Jiafei, LIU Yulong, GUO Xianwei, et al. Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization[J]. Applied Energy, 2020, 260: 114275. |
19 | WAN Qingcui, CHEN Lingling, LI Bo, et al. Insights into the control mechanism of heat transfer on methane hydrate dissociation via depressurization and wellbore heating[J]. Industrial & Engineering Chemistry Research, 2020, 59(22): 10651-10663. |
20 | OUYANG Qian, FAN Shuanshi, WANG Yanhong, et al. Enhanced methane production efficiency with in situ intermittent heating assisted CO2 replacement of hydrates[J]. Energy & Fuels, 2020, 34(10): 12476-12485. |
21 | PANDEY Jyoti Shanker, KARANTONIDIS Charilaos, KARCZ Adam Paul, et al. Enhanced CH4-CO2 hydrate swapping in the presence of low dosage methanol[J]. Energies, 2020, 13(20): 5238. |
22 | Dong Yeun KOH, KANG Hyery, LEE Jong Won, et al. Energy-efficient natural gas hydrate production using gas exchange[J]. Applied Energy, 2016, 162: 114-130. |
23 | ERSLAND Geir, Jarle HUSEBØ, GRAUE Arne, et al. Transport and storage of CO2 in natural gas hydrate reservoirs[J]. Energy Procedia, 2009, 1(1): 3477-3484. |
24 | KONNO Yoshihiro, MASUDA Yoshihiro, HARIGUCHI Yosuke, et al. Key factors for depressurization-induced gas production from oceanic methane hydrates[J]. Energy & Fuels, 2010, 24(3): 1736-1744. |
25 | YEZDIMER Eric M, CUMMINGS Peter T, CHIALVO Ariel A. Determination of the Gibbs free energy of gas replacement in sI clathrate hydrates by molecular simulation[J]. The Journal of Physical Chemistry A, 2002, 106(34): 7982-7987. |
26 | Masaki OTA, Yuki ABE, WATANABE Masaru, et al. Methane recovery from methane hydrate using pressurized CO2 [J]. Fluid Phase Equilibria, 2005, 228/229: 553-559. |
27 | NAGAYEV V B, GRITSENKO A I, MURIN V I. CO2 hydrates and CO2 sequestration[C]//Proceedings of the All Union Conference on Calorimetry and Chemical Thermodynamics, 1979. |
28 | Masaki OTA, SAITO Takeomi, AIDA Tsutomu, et al. Macro and microscopic CH4-CO2 replacement in CH4 hydrate under pressurized CO2 [J]. AIChE Journal, 2007, 53(10): 2715-2721. |
29 | SMITH Duane H, SESHADRI K, WILDER J. Assessing the thermodynamic feasibility of the conversion of methane hydrate into carbon dioxide hydrate in porous media[R]. National Energy Technology Laboratory, Morgantown, WV (United States), 2001. |
30 | CIRCONE Susan, STERN Laura A, KIRBY Stephen H, et al. CO2 hydrate: Synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH4 hydrate[J]. The Journal of Physical Chemistry B, 2003, 107(23): 5529-5539. |
31 | NAKANO Shinya, MORITOKI Masato, OHGAKI Kazunari. High-pressure phase equilibrium and Raman microprobe spectroscopic studies on the CO2 hydrate system[J]. Journal of Chemical & Engineering Data, 1998, 43(5): 807-810. |
32 | NAKANO Shinya, MORITOKI Masato, OHGAKI Kazunari. High-pressure phase equilibrium and Raman microprobe spectroscopic studies on the methane hydrate system[J]. Journal of Chemical & Engineering Data, 1999, 44(2): 254-257. |
33 | UCHIDA Tsutomu, IKEDA Ikuko Y, TAKEYA Satoshi, et al. Kinetics and stability of CH4-CO2 mixed gas hydrates during formation and long-term storage[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2005, 6(4): 646-654. |
34 | YOON Ji-Ho, KAWAMURA Taro, YAMAMOTO Yoshitaka, et al. Transformation of methane hydrate to carbon dioxide hydrate: in situ Raman spectroscopic observations[J]. The Journal of Physical Chemistry, A Molecules, Spectroscopy, Kinetics, Environment, & General Theory, 2004, 108(23): 5057-5059. |
35 | GAMBELLI Alberto Maria. Natural gas recovery from hydrate compounds using CO2 replacement strategies: experimental study on thermal stimulation[J]. Energy Procedia, 2018, 148: 647-654. |
36 | UCHIDA T, TAKEYA S, EBINUMA T, et al. Replacing methane with CO2 in clathrate hydrate: observations using Raman spectroscopy[C]// Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies,Collingwood: CSIRO Publishing, 2001: 523-527. |
37 | PANDEY Jyoti Shanker, QIAN Ouyang, SOLMS Nicolasvon. New insights into the dissociation of mixed CH4/CO2 hydrates for CH4 production and CO2 storage[J]. Chemical Engineering Journal, 2022, 427: 131915. |
38 | GENG Chunyu, WEN Hao, ZHOU Han. Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO(2) [J]. The Journal of Physical Chemistry A, 2009, 113(18): 5463-5469. |
39 | OHGAKI Kazunari, TAKANO Kiyoteru, SANGAWA Hiroyuki, et al. Methane exploitation by carbon dioxide from gas hydrates. Phase equilibria for CO2-CH4 mixed hydrate system[J]. Journal of Chemical Engineering of Japan, 1996, 29(3): 478-483. |
40 | BAI Dongsheng, ZHANG Xianren, CHEN Guangjin, et al. Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations[J]. Energy & Environmental Science, 2012, 5(5): 7033-7041. |
41 | ERSLAND G, HUSEBØ J, GRAUE A, et al. Measuring gas hydrate formation and exchange with CO2 in Bentheim sandstone using MRI tomography[J]. Chemical Engineering Journal, 2010, 158(1): 25-31. |
42 | Masaki OTA, MOROHASHI Kenji, Yuki ABE, et al. Replacement of CH4 in the hydrate by use of liquid CO2 [J]. Energy Conversion and Management, 2005, 46(11/12): 1680-1691. |
43 | XU Chungang, CAI Jing, YU Yisong, et al. Research on micro-mechanism and efficiency of CH4 exploitation via CH4-CO2 replacement from natural gas hydrates[J]. Fuel, 2018, 216: 255-265. |
44 | XU Chungang, LI Xiaosen. Research progress on methane production from natural gas hydrates[J]. RSC Advances, 2015, 5(67): 54672-54699. |
45 | NIU Mengya, WU Guozhong, YIN Zhenyuan, et al. Effectiveness of CO2-N2 injection for synergistic CH4 recovery and CO2 sequestration at marine gas hydrates condition[J]. Chemical Engineering Journal, 2021, 420: 129615. |
46 | GAMBELLI Alberto Maria, CASTELLANI Beatrice, NICOLINI Andrea, et al. Experimental study on natural gas hydrate exploitation: optimization of methane recovery, carbon dioxide storage and deposit structure preservation[J]. Journal of Petroleum Science and Engineering, 2019, 177: 594-601. |
47 | JUNG Jongwon, RYOU Jae Eun, AL-RAOUSH Riyadh I, et al. Effects of CH4-CO2 replacement in hydrate-bearing sediments on S-wave velocity and electrical resistivity[J]. Journal of Natural Gas Science and Engineering, 2020, 82: 103506. |
48 | GAMBELLI Alberto Maria. An experimental description of the double positive effect of CO2 injection in methane hydrate deposits in terms of climate change mitigation[J]. Chemical Engineering Science, 2021, 233: 116430. |
49 | ZHANG Lunxiang, YANG Lei, WANG Jiaqi, et al. Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate[J]. Chemical Engineering Journal, 2017, 308: 40-49. |
50 | OKWANANKE Anthony, YANG Jinhai, TOHIDI Bahman, et al. Enhanced depressurisation for methane recovery from gas hydrate reservoirs by injection of compressed air and nitrogen[J]. The Journal of Chemical Thermodynamics, 2018, 117: 138-146. |
51 | WANG Yingfei, DONG Bo, ZHANG Lunxiang, et al. Numerical simulation of CH4 recovery from gas hydrate using gaseous CO2 injected into porous media[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104199. |
52 | TUPSAKHARE Swanand S, CASTALDI Marco J. Efficiency enhancements in methane recovery from natural gas hydrates using injection of CO2/N2 gas mixture simulating in situ combustion[J]. Applied Energy, 2019, 236: 825-836. |
53 | GAMBELLI Alberto Maria, ROSSI Federico. Natural gas hydrates: Comparison between two different applications of thermal stimulation for performing CO2 replacement[J]. Energy, 2019, 172: 423-434. |
54 | WALLMANN Klaus, RIEDEL M, HONG W L, et al. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming[J]. Nature Communications, 2018, 9(1): 83. |
55 | XU Chungang, CAI Jing, YU Yisong, et al. Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement[J]. Applied Energy, 2018, 217: 527-536. |
56 | LEE Yohan, DEUSNER Christian, KOSSEL Elke, et al. Influence of CH4 hydrate exploitation using depressurization and replacement methods on mechanical strength of hydrate-bearing sediment[J]. Applied Energy, 2020, 277: 115569. |
57 | ZHANG Xuemin, WANG Yingmei, LI Jinping, et al. Recovering CH4 from natural gas hydrate with CO2 in porous media below the freezing point[J]. Petroleum Science and Technology, 2019, 37(7): 770-779. |
58 | DING Yalong, WANG Huaqin, XU Chungang, et al. The effect of CO2 partial pressure on CH4 recovery in CH4-CO2 swap with simulated IGCC syngas[J]. Energies, 2020, 13(5): 1017. |
59 | FENG Jingchun, LI Bo, LI Xiaosen, et al. Effects of depressurizing rate on methane hydrate dissociation within large-scale experimental simulator[J]. Applied Energy, 2021, 304: 117750. |
60 | SUN Lingjie, WANG Tian, DONG Bo, et al. Pressure oscillation controlled CH4/CO2 replacement in methane hydrates: CH4 recovery, CO2 storage, and their characteristics[J]. Chemical Engineering Journal, 2021, 425: 129709. |
61 | JARRAHIAN Azad, NAKHAEE Ali. Hydrate-liquid-vapor equilibrium condition of N2+CO2+H2O system: measurement and modeling[J]. Fuel, 2019, 237: 769-774. |
62 | WANG Yanhong, LANG Xuemei, FAN Shuanshi, et al. Review on enhanced technology of natural gas hydrate recovery by carbon dioxide replacement[J]. Energy & Fuels, 2021, 35(5): 3659-3674. |
63 | CANNONE Salvatore F, LANZINI Andrea, SANTARELLI Massimo. A review on CO2 capture technologies with focus on CO2-enhanced methane recovery from hydrates[J]. Energies, 2021, 14(2): 387. |
64 | SAEIDI Navid, Derek DUNN-RANKIN, KVAMME Bjørn, et al. Experimental studies on combined production of CH4 and safe long-term storage of CO2 in the form of solid hydrate in sediment[J]. Physical Chemistry Chemical Physics, 2021, 23(40): 23313-23324. |
65 | LI Xiaosen, XU Chungang, ZHANG Yu, et al. Investigation into gas production from natural gas hydrate: A review[J]. Applied Energy, 2016, 172: 286-322. |
66 | ZHENG Junjie, LOGANATHAN Niranjan Kumar, ZHAO Jianzhong, et al. Clathrate hydrate formation of CO2/CH4 mixture at room temperature: application to direct transport of CO2-containing natural gas[J]. Applied Energy, 2019, 249: 190-203. |
67 | CHATURVEDI Krishna Raghav, SINHA A S K, NAIR Vishnu Chandrasekharan, et al. Enhanced carbon dioxide sequestration by direct injection of flue gas doped with hydrogen into hydrate reservoir: Possibility of natural gas production[J]. Energy, 2021, 227: 120521. |
68 | 燕然, 陈朝阳, 夏志明, 等. 13X分子筛耦合四丁基溴化铵促进剂作用下CO2/H2水合物形成动力学[J]. 化工进展, 2019, 38(9): 4036-4043. |
YAN Ran, CHEN Zhaoyang, XIA Zhiming, et al. Kinetic study on CO2/H2 hydrate formation with 13X molecular sieve coupled TBAB[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4036-4043. | |
69 | CHOI Wonjung, GO Woojin, LEE Yohan, et al. Mechanism and kinetics of guest exchange in sII hydrate-flue gas replacement as revealed by experimental and computational approaches for hydrocarbon recovery and CO2 sequestration[J]. Chemical Engineering Journal, 2021, 417: 128119. |
70 | KANG H, KOH D Y, KIM D, et al. Recovery of methane intercalated in natural gas hydrate sediments using a carbon dioxide and flue gas mixture[C]//The Twenty-second International Offshore and Polar Engineering Conference. OnePetro, 2012. |
71 | Dongwook LIM, Hyeyoon RO, SEO Yongwon, et al. Thermodynamic stability and guest distribution of CH4/N2/CO2 mixed hydrates for methane hydrate production using N2/CO2 injection[J]. The Journal of Chemical Thermodynamics, 2017, 106: 16-21. |
72 | Junghoon MOK, CHOI Wonjung, SEO Yongwon. The dual-functional roles of N2 gas for the exploitation of natural gas hydrates: an inhibitor for dissociation and an external guest for replacement[J]. Energy, 2021, 232: 121054. |
73 | MATSUI Hiroki, JIA Jihui, TSUJI Takeshi, et al. Microsecond simulation study on the replacement of methane in methane hydrate by carbon dioxide, nitrogen, and carbon dioxide-nitrogen mixtures[J]. Fuel, 2020, 263: 116640. |
74 | CHOI Wonjung, LEE Yohan, Junghoon MOK, et al. Influence of competitive inclusion of CO2 and N2 on sII hydrate-flue gas replacement for energy recovery and CO2 sequestration[J]. Environmental Science & Technology, 2020, 54(12): 7562-7569. |
75 | PRASAD Pinnelli S R, KIRAN Burla Sai. Stability and exchange of guest molecules in gas hydrates under the influence of CH4, CO2, N2 and CO2+N2 gases at low-pressures[J]. Journal of Natural Gas Science and Engineering, 2020, 78: 103311. |
76 | ZHONG Jinrong, SUN Yifei, XIE Yan, et al. Effect of N2/H2 injection on CH4 hydrate decomposition[J]. Chemical Engineering Journal, 2020, 396: 125266. |
77 | SUN Yifei, WANG Yunfei, ZHONG Jinrong, et al. Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode[J]. Applied Energy, 2019, 240: 215-225. |
78 | JOHN HAPPEL, HNATOW Miguel A, HOWARD MEYER. The study of separation of nitrogen from methane by hydrate formation using a novel apparatus[J]. Annals of the New York Academy of Sciences, 1994, 715: 412-424. |
79 | SUN Qiang, ZHAO Yanyan, LIU Aixian, et al. Continuous separation of CH4/N2 mixture via hydrates formation in the presence of TBAB[J]. Chemical Engineering and Processing: Process Intensification, 2015, 95: 284-288. |
80 | 樊栓狮, 尤莎莉, 郎雪梅, 等. 笼型水合物膜分离和捕获二氧化碳研究进展[J]. 化工进展, 2020, 39(4): 1211-1218. |
FAN Shuanshi, YOU Shali, LANG Xuemei, et al. Separation and capture carbon dioxide by clathrate-hydrate membranes: A review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1211-1218. | |
81 | 刘佳奇, 尚华, 唐轩, 等. 分子筛基CH4-N2分离材料的研究进展[J]. 化工进展, 2019, 38(1): 449-456. |
LIU Jiaqi, SHANG Hua, TANG Xuan, et al. Zeolite based materials for CH4-N2 separation[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 449-456. | |
82 | KHLEBNIKOV V N, ANTONOV S V, MISHIN A S, et al. A new method for the replacement of CH4 with CO2 in natural gas hydrate production[J]. Natural Gas Industry B, 2016, 3(5): 445-451. |
83 | MOUJDIN Iqbal Ahmed, KHAN Muhammad Saad, Bhajan LAL, et al. Dual-functional gas hydrate inhibition of tetramethylammonium chloride for carbon dioxide-methane mixed gas systems[J]. Fuel, 2021, 305: 121598. |
84 | HEYDARI Atousa, PEYVANDI Kiana. Study of biosurfactant effects on methane recovery from gas hydrate by CO2 replacement and depressurization[J]. Fuel, 2020, 272: 117681. |
85 | LI Dongze, CHEN Lei, LIU Gang, et al. Comparison between the replacements of CH4 in natural gas hydrate with CO2 and NH3 [J]. Energy Reports, 2021, 7: 3639-3646. |
86 | ZHANG Yi, LIU Zhaoyan, LIU Weiguo, et al. Measurement and modeling of the densities for CO2 + dodecane system from 313.55 K to 353.55 K and pressures up to 18 MPa[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3668-3676. |
87 | JUNG J W, Nicolas ESPINOZA D, Carlos SANTAMARINA J. Properties and phenomena relevant to CH4-CO2 replacement in hydrate-bearing sediments[J]. Journal of Geophysical Research, 2010, 115(B10): B10102. |
88 | ZHANG W, WANG Z, LI W Q, et al. Research progress in the enhanced replacing methane out of gas hydrate by carbon dioxide emulsion[J]. Chemical Engineering of Natural Gas, 2009, 34 (1): 59-63. |
89 | RYOU Jae Eun, AL-RAOUSH Riyadh I, ALSHIBLI Khalid, et al. Effects of soaking process on CH4-CO2 replacement efficiency for hydrate-bearing sediments[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107772. |
90 | ZHANG Xuemin, LI Jinping, WANG Jiaxian, et al. Experimental study on formation characteristics of carbon dioxide hydrate in frozen porous media[J]. International Journal of Green Energy, 2021, 18(7): 687-696. |
91 | 王英梅, 董世强, 展静, 等. 石英砂粒径大小对甲烷水合物形成及分布的影响[J]. 化工进展, 2020, 39(8): 3049-3056. |
WANG Yingmei, DONG Shiqiang, ZHAN Jing, et al. Effect of quartz sand particle size on the formation and distribution of methane hydrate[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3049-3056. | |
92 | CAO Xuewen, YANG Kairan, WANG Hongchao, et al. Modelling of hydrate dissociation in multiphase flow considering particle behaviors, mass and heat transfer[J]. Fuel, 2021, 306: 121655. |
93 | 宋永臣, 杨明军, 刘瑜, 等. 离子对甲烷水合物相平衡的影响[J]. 化工学报, 2009, 60(6): 1362-1366. |
SONG Yongchen, YANG Mingjun, LIU Yu, et al. Influence of ions on phase equilibrium of methane hydrate[J]. Journal of the Chemical Industry and Engineering Society (China), 2009, 60(6): 1362-1366. | |
94 | CHEN Bingbing, LIU Zheyuan, SUN Huiru, et al. The synthetic effect of traditional-thermodynamic-factors (temperature, salinity, pressure) and fluid flow on natural gas hydrate recovery behaviors[J]. Energy, 2021, 233: 121147. |
95 | WEI Jiangong, WU Tingting, ZHU Linqi, et al. Mixed gas sources induced co-existence of sI and sII gas hydrates in the Qiongdongnan Basin, South China Sea[J]. Marine and Petroleum Geology, 2021, 128: 105024. |
96 | PITTAM D A, PILCHER G. Measurements of heats of combustion by flame calorimetry. Part 8.—Methane, ethane, propane, n-butane and 2-methylpropane[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1972, 68: 2224. |
97 | YANG Mingjun, MA Zhanquan, GAO Yi, et al. Dissociation characteristics of methane hydrate using depressurization combined with thermal stimulation[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2089-2098. |
98 | TUPSAKHARE Swanand S, FITZGERALD Garrett C, CASTALDI Marco J. Thermally assisted dissociation of methane hydrates and the impact of CO2 injection[J]. Industrial & Engineering Chemistry Research, 2016, 55(39): 10465-10476. |
99 | SUN Yifei, ZHONG Jinrong, CHEN Guangjin, et al. A new approach to efficient and safe gas production from unsealed marine hydrate deposits[J]. Applied Energy, 2021, 282: 116259. |
100 | GAO Qiang, YIN Zhenyuan, ZHAO Jianzhong, et al. Tuning the fluid production behaviour of hydrate-bearing sediments by multi-stage depressurization[J]. Chemical Engineering Journal, 2021, 406: 127174. |
101 | LIU Bei, PAN Heng, WANG Xiaohui, et al. Evaluation of different CH4-CO2 replacement processes in hydrate-bearing sediments by measuring P-wave velocity[J]. Energies, 2013, 6(12): 6242-6254. |
102 | ZHANG Xuemin, LI Yang, YAO Ze, et al. Experimental study on the effect of pressure on the replacement process of CO2-CH4 hydrate below the freezing point[J]. Energy & Fuels, 2018, 32(1): 646-650. |
103 | LI Bing, XU Tianfu, ZHANG Guobiao, et al. An experimental study on gas production from fracture-filled hydrate by CO2 and CO2/N2 replacement[J]. Energy Conversion and Management, 2018, 165: 738-747. |
104 | WANG Xiaohui, LI Fengguang, XU Yuxi, et al. Elastic properties of hydrate-bearing sandy sediment during CH4-CO2 replacement[J]. Energy Conversion and Management, 2015, 99: 274-281. |
105 | LEE Bo Ram, Carolyn A KOH, Amadeu K SUM. Quantitative measurement and mechanisms for CH4 production from hydrates with the injection of liquid CO2 [J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(28): 14922-14927. |
106 | PAN Dongbin, ZHONG Xiuping, ZHU Ying, et al. CH4 recovery and CO2 sequestration from hydrate-bearing clayey sediments via CO2/N2 injection[J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103503. |
107 | LI Shengli, ZHANG Guobiao, DAI Zhenxue, et al. Concurrent decomposition and replacement of marine gas hydrate with the injection of CO2-N2 [J]. Chemical Engineering Journal, 2021, 420: 129936. |
108 | WANG Xiaohui, SUN Yifei, WANG Yunfei, et al. Gas production from hydrates by CH4-CO2/H2 replacement[J]. Applied Energy, 2017, 188: 305-314. |
109 | SUN Yifei, ZHONG Jinrong, LI Rui, et al. Natural gas hydrate exploitation by CO2/H2 continuous injection-production mode[J]. Applied Energy, 2018, 226: 10-21. |
[1] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
[2] | 徐茂淯, 陶帅, 齐聪, 梁林. 圆盘式环路热管的启动特性及温度波动[J]. 化工进展, 2023, 42(9): 4531-4537. |
[3] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[4] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[5] | 王光宇, 孟境辉, 张锴. 煤泥间歇微波干燥模拟及介电性质[J]. 化工进展, 2023, 42(4): 1779-1786. |
[6] | 郭志鹏, 卜宪标, 李华山, 龚宇烈, 王令宝. 基于热-流-化耦合作用的单井增强地热系统性能分析[J]. 化工进展, 2023, 42(2): 711-721. |
[7] | 周志毅, 王进卿, 王广鑫, 池作和, 翁煜侃. 多孔介质内气泡熟化特性孔隙尺度研究[J]. 化工进展, 2022, 41(3): 1265-1271. |
[8] | 马小娟, 王彧斐, 冯霄. 天然气水合物开采平台能量系统优化[J]. 化工进展, 2022, 41(3): 1667-1676. |
[9] | 温丰硕, 刘少帅, 伍文婷, 宋键镗, 朱海峰, 蒋珍华, 吴亦农. 10~30K温区纯不锈钢丝网与混填磁性填料制冷性能对比[J]. 化工进展, 2022, 41(1): 113-119. |
[10] | 舒钊, 钟珂, 肖鑫, 贾洪伟, 吕凤勇, 常沙. 多孔纳米基复合相变材料在建筑节能中的应用进展[J]. 化工进展, 2021, 40(S2): 265-278. |
[11] | 张学民, 张梦军, 杨惠结, 李银辉, 李金平, 王英梅. 冰点以下多孔介质中气体水合物的生成动力学研究进展[J]. 化工进展, 2021, 40(S2): 101-108. |
[12] | 吴浩, 索梦善, 陶星晓, 车志钊, 孙凯, 陈锐, 王天友. 开孔金属泡沫内气液两相流动的可视化[J]. 化工进展, 2021, 40(8): 4152-4164. |
[13] | 蒋坤卿, 黄思浩, 李华山, 卜宪标. 单井增强型地热系统性能分析[J]. 化工进展, 2021, 40(5): 2536-2545. |
[14] | 王成君, 苏琼, 段志英, 王爱军, 王志超. 基于多孔支撑体的形状稳定复合相变储能材料的研究进展[J]. 化工进展, 2021, 40(3): 1483-1494. |
[15] | 赵宁, 贾慧君, 郭立强, 刘雨航, 方立德. 环状流液滴夹带率测量方法及分析[J]. 化工进展, 2021, 40(12): 6469-6478. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |