化工进展 ›› 2021, Vol. 40 ›› Issue (3): 1483-1494.DOI: 10.16085/j.issn.1000-6613.2020-0855
收稿日期:
2020-05-19
出版日期:
2021-03-05
发布日期:
2021-03-17
通讯作者:
王成君
作者简介:
王成君(1985—),女,硕士,讲师,研究方向为相变储能材料。E-mail:基金资助:
WANG Chengjun(), SU Qiong, DUAN Zhiying, WANG Aijun, WANG Zhichao
Received:
2020-05-19
Online:
2021-03-05
Published:
2021-03-17
Contact:
WANG Chengjun
摘要:
固-液相变材料(PCMs)是热能储存(TES)技术发展的关键因素,然而一些固有的问题如泄漏和热导率低等严重制约了相变材料的性能。因此,选择合适的方法构建形状稳定的复合相变材料(FSCPCMs),并有效地提高其热导率是实现相变材料实用化的重要前提。多孔载体封装相变材料为构建具有高储能密度和优异热传输性能的定形复合相变材料提供了一条有效的途径。本文对不同FSCPCMs的制备、结构热学性能、应用等方面进行了综述,详细总结和讨论了孔径和几何形状、表面改性、作用力、组成等因素对FSCPCMs相变行为的影响。重点介绍了具有高热导率、高负载率和高潜热的新型多孔复合相变材料的设计和应用。最后,基于理论、数值和实验方法,展望了FSCPCMs在约束结构中的相变和多尺度传热方面未来的研究方向及其在能源转换方面的商业化应用。
中图分类号:
王成君, 苏琼, 段志英, 王爱军, 王志超. 基于多孔支撑体的形状稳定复合相变储能材料的研究进展[J]. 化工进展, 2021, 40(3): 1483-1494.
WANG Chengjun, SU Qiong, DUAN Zhiying, WANG Aijun, WANG Zhichao. Research progress of shape-stable composite phase change energy storage materials based on porous supports[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1483-1494.
1 | KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage, 2020, 27: 101047. |
2 | 纪珺, 陈跃, 章学来, 等. 甘露醇水溶液低温储能相变材料的制备及热物性[J]. 化工进展, 2018, 37(3): 1111-1117. |
JI Jun, CHEN Yue, ZHANG Xuelai, et al. Preparation and thermophysical properties of mannitol aqueous solution PCMs for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1111-1117. | |
3 | 陈涛, 孙寒雪, 朱照祺, 等. (准)共晶系相变储能材料的研究进展[J]. 化工进展, 2019, 38(7): 3265-3273. |
CHEN T, SUN H X, ZHU Z Q, et al. Progress in studies of (quasi-)eutectic phase change energy storage materials[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3265-3273. | |
4 | FENG D, FENG Y, QIU L, et al. Review on nanoporous composite phase change materials: fabrication, characterization, enhancement and molecular simulation[J]. Renewable & Sustainable Energy Reviews, 2019, 109(7): 578-605. |
5 | HUANG X, CHEN X, LI A, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356(15): 641-661. |
6 | UMAIR M M, ZHANG Y, IQBAL K, et al. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage—A review[J]. Applied Energy, 2018, 235: 846-873. |
7 | LI M, SHI J. Review on micropore grade inorganic porous medium based form stable composite phase change materials: preparation, performance improvement and effects on the properties of cement mortar[J]. Construction & Building Materials, 2019, 194: 287-310. |
8 | GAO H Y, WANG J J, CHEN X, et al. Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: a review[J]. Nano Energy, 2018, 53: 769-797. |
9 | TONG X, LI N, ZENG M, et al. Organic phase change materials confined in carbon-based materials for thermal properties enhancement: recent advancement and challenges[J]. Renewable & Sustainable Energy Reviews, 2019, 108: 398-422. |
10 | 王静静, 徐小亮, 梁凯彦, 等. 多孔基定形复合相变材料传热性能提升研究进展[J]. 材料工程, 2020, 42(1): 26-38. |
WANG J J, XU X L, LIANG K Y, et al. Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: a review[J]. Chinese Journal of Engineering[J]. 2020, 42(1): 26-38. | |
11 | 饶中浩, 汪双凤, 张艳来, 等. 相变材料热物理性质的分子动力学模拟[J]. 物理学, 2013, 62(5): 323-328. |
RAO Z H, WANG S F, ZHANG Y L, et al. Molecular dynamics simulation of thermal physical properties of phase transition materials[J]. Acta Physica Sinica, 2013, 62(5): 323-328. | |
12 | 陈颖, 姜庆辉, 辛集武, 等. 相变储能材料及其应用研究进展[J].材料工程, 2019, 47(7): 1-10. |
CHEN Y, JIANG Q H, XIN J W, et al. Research status and application of phase change materials[J]. Joural of Materials Engineering, 2019, 47(7): 1-10. | |
13 | LI R, ZHU J, ZHOU W, et al. Thermal properties of sodium nitrate-expanded vermiculite form-stable composite phase change materials[J]. Materials & Design, 2016, 104: 190-196. |
14 | SHEN C, LI X, YANG G, et al. Shape-stabilized hydrated salt/paraffin composite phase change materials for advanced thermal energy storage and management[J]. Chemical Engineering Journal, 2020, 385: 123958. |
15 | SHIH Y, WANG C, TSAI M, et al. Shape-stabilized phase change material/nylon composite based on recycled diatomite[J]. Materials Chemistry and Physics, 2020, 242: 122498. |
16 | YANG J, LI X, HAN S, et al. Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability[J]. Journal of Materials Chemistry A, 2016, 4(46): 18067-18074. |
17 | SHENG N, NOMURA T, ZHU C, et al. Cotton-derived carbon sponge as support for form-stabilized composite phase change materials with enhanced thermal conductivity[J]. Solar Energy Materials & Solar Cells, 2019, 192: 8-15. |
18 | WANG C J, LIANG W D, YANG Y Y, et al. Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage[J]. Renewable Energy, 2020, 153: 182-192. |
19 | WANG J, ANDRIAMITANTSOA R S, ATINAFU D G, et al. A one-step in-situ assembly strategy to construct PEG@MOG-100-Fe shape-stabilized composite phase change material with enhanced storage capacity for thermal energy storage[J]. Chemical Physics Letters, 2018,695: 99-106. |
20 | ZHANG S, TAO Q, WANG Z, et al. Controlled heat release of new thermal storage materials: the case of polyethylene glycol intercalated into graphene oxide paper[J]. Journal of Materials Chemistry A, 2012, 22(38): 20166-20169. |
21 | YE S, ZHANG Q, HU D, et al. Core-shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage[J]. Journal of Materials Chemistry A, 2015, 3(7): 4018-4025. |
22 | SINHA-RAY S, SAHU R P, YARIN A L. Nano-encapsulated smart tunable phase change materials[J]. Soft Matter, 2011, 7: 8823. |
23 | NOMURA T, ZHU C, SHENG N, et al. Shape-stabilized phase change composite by impregnation of octadecane into mesoporous SiO2[J]. Solar Energy Materials and Solar Cells, 2015, 143: 424-429. |
24 | GAO J, LV M, LU J, et al. Enhanced thermal properties of novel latent heat thermal storage material through confinement of stearic acid in meso-structured onion-like silica[J]. Journal of Metals, 2017. 69: 2785-2790. |
25 | WANG J, YANG M, LU Y, et al. Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials[J]. Nano Energy, 2015, 19: 78-87. |
26 | YU Y, XU J, WANG G, et al. Preparation of paraffin/SiO2 aerogel stable-stabilized phase change composites for high-humidity environment[J]. Journal of Materials Science, 2020, 55: 7-8. |
27 | LUAN Y, YANG M, MA Q, et al. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties[J]. Journal of Materials Chemistry A, 2016, 4(20): 7641-7649. |
28 | WANG J J, HUANG X B, GAO H Y, et al. Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity[J]. Chemical Engineering Journal, 2018, 350: 164-172. |
29 | ATINAFU D G, CHANG S J, KIM K, et al. A novel enhancement of shape/thermal stability and energy-storage capacity of phase change materials through the formation of composites with 3D porous (3,6)-connected metal-organic framework[J]. Chemical Engineering Journal, 2020, 389: 124430. |
30 | UEMURA T, YANAI N, WATANABE S, et al. Unveiling thermal transitions of polymers in subnanometre pores[J]. Nature Communications, 2010, 1(7): 83. |
31 | ANDRIAMITANTSOA R S, DONG W, GAO H, et al. PEG encapsulated by porous triamide-linked polymers as support for solid-liquid phase change materials for energy storage[J]. Chemical Physics Letters, 2017, 671: 165-173. |
32 | LIU C, XU Z, SONG Y, et al. A novel shape-stabilization strategy for phase change thermal energy storage[J]. Journal of Materials Chemistry A, 2019, 7(14): 8194-8203. |
33 | FU X, LIU Y, JIANG X, et al. Form-stable phase change nanocomposites for thermal energy storage based on hypercrosslinked polymer nanospheres[J]. Thermochimica Acta, 2018, 665: 111-118. |
34 | WANG S, QIN J, ZHAO Y, et al. Ultrahigh surface areaN-doped hierarchically porous carbon for enhanced CO2 capture and electrochemical energy storage[J]. ChemSusChem, 2019, 12(15): 3541-3549. |
35 | WANG C, ZHAO Y, ZHOU L, et al. Mesoporous carbon matrix confinement synthesis of ultrasmall WO3 nanocrystals for lithium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(43): 21550-21557. |
36 | WANG J, XIA Y, LIU Y, et al. Mass production of large-pore phosphorus-doped mesoporous carbon for fast-rechargeable lithium-ion batteries[J]. Energy Storage Materials, 2019, 22: 147-153. |
37 | WANG C, WAN X, DUAN L, et al. Molecular design strategy for ordered mesoporous stoichiometric metal oxide[J]. Angewandte Chemie: International Edition, 2019, 131(44): 16010-16015. |
38 | SHENG N, RAO Z, ZHU C, et al. Enhanced thermal performance of phase change material stabilized with textile-structured carbon scaffolds[J]. Solar Energy Materials and Solar Cells, 2020, 205: 110241. |
39 | LI Y Q, HUANG X B, LI Y, et al. Shape-stabilized phase-change materials supported by eggplant-derived porous carbon for efficient solar-to-thermal energy conversion and storage[J]. Sustainable Energy & Fuels, 2020, 4: 1764-1772. |
40 | BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10: 569-581. |
41 | POUDEL Y R, LI W. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: a review[J]. Mater Today Physics, 2018, 7: 7-34. |
42 | NIE C, TONG X, WU S, et al. Paraffin confined in carbon nanotubes as nano-encapsulated phase change materials: experimental and molecular dynamics studies[J]. RSC Advances, 2015, 5: 92812-92817. |
43 | QIAN T, LI J, FENG W, et al. Single-walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material[J]. Energy Conversion and Management, 2017,143: 96-108. |
44 | ZHANG Q, LIU J. Sebacic acid/CNT sponge phase change material with excellent thermal conductivity and photo-thermal performance[J]. Solar Energy Materials and Solar Cells, 2017, 179: 217-222. |
45 | DU X, QIU J, DENG S, et al. Alkylated nanofibrillated cellulose/carbon nanotubes aerogels supported form-stable phase change composites with improved n-alkanes loading capacity and thermal conductivity[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 5695-5703. |
46 | LIU L K, SU D, TANG Y J, et al. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review[J]. Renewable & Sustainable Energy Reviews, 2016, 62: 305-317. |
47 | MU B, LI M. Synthesis of novel form-stable composite phase change materials with modified graphene aerogel for solar energy conversion and storage[J]. Solar Energy Materials & Solar Cells, 2019, 191: 466-475. |
48 | CHEN T, LIU C, MU P, et al. Fatty amines/graphene sponge form-stable phase change material composites with exceptionally high loading rates and energy density for thermal energy storage[J]. Chemical Engineering Journal, 2020, 382: 122831. |
49 | WU H, LI S, SHAO Y, et al. Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability[J]. Chemical Engineering Journal, 2020, 379: 122373. |
50 | CHEN X, GAO H, YANG M, et al. Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting[J]. Nano Energy, 2018, 49: 86-94. |
51 | ZHANG X, LIN Q, LUO H, et al. Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage[J]. Applied Energy, 2020, 260: 114278. |
52 | JIA X W, LI Q Y, AO C H, et al. High thermal conductive shape-stabilized phase change materials of polyethylene glycol/boron nitride@chitosan composites for thermal energy storage[J]. Composites Part A, 2020, 129: 105710. |
53 | LIN Y, JIA Y, ALVA G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable & Sustainable Energy Reviews, 2018, 82: 2730-2742. |
54 | SARI A. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials[J]. Energy Conversion and Management, 2016, 117: 132-141. |
55 | WEHMEYER G, YABUKI T, MONACHON C, et al. Thermal diodes, regulators, and switches: physical mechanisms and potential applications[J]. Applied Physics Reviews, 2017, 4(4): 041304. |
56 | WEI Y, LI J, SUN F, et al. Leakage-proof phase change composites supported by biomass carbon aerogels from succulents[J]. Green Chemistry, 2018, 20(8): 1858-1865. |
57 | WANG W T, UMAIR M M, QIU J J, et al. Electromagnetic and solar energy conversion and storage based on Fe3O4-function alised graphene/phase change material nanocomposites[J]. Energy Conversion and Management, 2019, 196: 1299-1305. |
58 | ABDALKRIM S Y, YU H, WANG C, et al. Thermo and light-responsive phase change nanofibers with high energy storage efficiency for energy storage and thermally regulated on-off drug release devices[J]. Chemical Engineering Journal, 2019, 375: 121979. |
59 | ZHANG Q, HE Z, FANG X, et al. Experimental and numerical investigations on a flexible paraffin/fiber composite phase change material for thermal therapy mask[J]. Energy Storage Materials, 2017, 6: 36-45. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
[4] | 徐茂淯, 陶帅, 齐聪, 梁林. 圆盘式环路热管的启动特性及温度波动[J]. 化工进展, 2023, 42(9): 4531-4537. |
[5] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[6] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[7] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[8] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[9] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[10] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[11] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[12] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[13] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[14] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[15] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |