1 |
BHASIN M M, MCCAIN J H, VORA B V, et al. Dehydrogenation and oxydehydrogenation of paraffins to olefins[J]. Applied Catalysis A: General, 2001, 221(1/2): 397-419.
|
2 |
SATTLER J J H B, RUIZ J, SANTILLAN E, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chemical Reviews, 2014, 114(20):10613.
|
3 |
ZHANG Jin, TERRONES Mauricio, PARK Chong Rae, et al. Carbon science in 2016: status, challenges and perspectives[J]. Carbon, 2016, 98:708-732.
|
4 |
PAN S F, YIN J L, ZHU X L, et al. P-modified microporous carbon nanospheres for direct propane dehydrogenation reactions[J]. Carbon, 2019, 152: 855-864.
|
5 |
WEN G, DIAO J, WU S, et al. Acid properties of nanocarbons and their application in oxidative dehydrogenation[J]. ACS Catalysis, 2015, 5(6): 3600-3608.
|
6 |
LIU J, YUE Y, LIU H, et al. Origin of the robust catalytic performance of nanodiamond-graphene-supported Pt nanoparticles used in the propane dehydrogenation reaction[J]. ACS Catalysis, 2017, 7(5): 3349-3355.
|
7 |
MA F, CHEN S, ZHOU H, et al. Revealing the ameliorating effect of chromium oxide on a carbon nanotube catalyst in propane oxidative dehydrogenation[J]. RSC Advances, 2014, 4(77): 40776-40781.
|
8 |
ZHANG J, LIU X, BLUME R, et al. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane[J]. Science, 2008, 322(5898): 73-77.
|
9 |
ZHAO Z, GE G, LI W, et al. Modulating the microstructure and surface chemistry of carbocatalysts for oxidative and direct dehydrogenation: a review[J]. Chinese Journal of Catalysis, 2016, 37(5): 644-670.
|
10 |
LI L, ZHU W, LIU Y, et al. Phosphorous-modified ordered mesoporous carbon for catalytic dehydrogenation of propane to propylene[J]. RSC Advances, 2015, 5(69): 56304-56310.
|
11 |
LIU L, DENG Q F, MA T Y, et al. Ordered mesoporous carbons: citric acid-catalyzed synthesis, nitrogen doping and CO2 capture[J]. Journal of Materials Chemistry, 2011, 21(40):16001-16009.
|
12 |
LIU L, DENG Q F, HOU X X, et al. User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture[J]. Journal of Materials Chemistry, 2012, 22(31): 15540-15548.
|
13 |
DENG J, LI M, WANG Y. Biomass-derived carbon: synthesis and applications in energy storage and conversion[J]. Green Chemistry, 2016, 18(18): 4824-4854.
|
14 |
LIN T, CHEN I W, LIU F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513.
|
15 |
HU Z P, ZHAO H, CHEN C, et al. Castanea mollissima shell-derived porous carbons as metal-free catalysts for highly efficient dehydrogenation of propane to propylene[J]. Catalysis Today, 2018, 316: 214-222.
|
16 |
SHI Y, XIANG Z, DENG J, et al. Synthesis Pd/biomass-based carbon microsheet composite for efficient dehydrogenation from formic acid[J]. Materials Letters, 2019, 237: 61-64.
|
17 |
HU Z P, ZHANG L F, WANG Z, et al. Bean dregs‐derived hierarchical porous carbons as metal‐free catalysts for efficient dehydrogenation of propane to propylene[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(12): 3410-3417.
|
18 |
RADOVIC L, RODRIGUEZ-REINOSO F. Carbon materials in catalysis[J]. Chemistry and Physics of Carbon, 1996, 25: 243-358.
|
19 |
PALKAR A, MELIN F, CARDONA C M, et al. Reactivity differences between carbon nano onions (CNOs) prepared by different methods[J]. Chemistry-an Asian Journal, 2007, 2(5): 625-633.
|
20 |
LIANG C, XIE H, SCHWARTZ V, et al. Open-cage fullerene-like graphitic carbons as catalysts for oxidative dehydrogenation of isobutane[J]. Journal of the American Chemical Society, 2009, 131(22): 7735-7741.
|
21 |
TEO W E, RAMAKRISHNA S. A review on electrospinning design and nanofiber assemblies[J]. Nanotechnology, 2006, 17(14): R89.
|
22 |
CHOI Y S, OH K, KOH H L. Electrospun alumina-nanofiber-supported Pt-Sn catalyst for propane dehydrogenation[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(11): 6897-6903.
|
23 |
SUI Z J, ZHANG W J, ZHOU J H, et al. Catalytic performances of carbon nanofiber in oxidative dehydrogenation of propane[J]. Petrochemical Technology, 2005, 34(7): 612-616.
|
24 |
MARCO Y, ROLDÁN L, MUÑOZ E, et al. Carbon nanofibers modified with heteroatoms as metal-free catalysts for the oxidative dehydrogenation of propane[J]. ChemSusChem, 2014, 7(9): 2496-2504.
|
25 |
SUI Z, ZHAO T, ZHOU J, et al. Microstructure of carbon nanofibers and their catalytic performance for oxidative dehydrogenation of propane[J]. Chinese Journal of Catalysis, 2005, 26(6): 521-526.
|
26 |
SUI Z, ZHOU J, DAI Y, et al. Oxidative dehydrogenation of propane over catalysts based on carbon nanofibers[J]. Catalysis Today, 2005, 106(1-4): 90-94.
|
27 |
SUI Z, LI P, ZHAO T, et al. Catalyzing oxidative dehydrogenation of propane over carbon nanofiber supported phosphoric oxides catalysts[J]. Natural Gas Chemical Industry, 2005, 30(6): 1-5, 10.
|
28 |
CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50.
|
29 |
CAO Y, FATEMI V, FANG S, et al. Magic-angle graphene superlattices: a new platform for unconventional superconductivity[EB/OL]. arXiv: 1803.02342. .
|
30 |
CURTIS S. ‘Magic-angle’graphene shows unconventional side[J]. Physics World, 2018, 31(4): 4.
|
31 |
GERBER I, OUBENALI M, BACSA R, et al. Theoretical and experimental studies on the carbon‐nanotube surface oxidation by nitric acid: interplay between functionalization and vacancy enlargement[J]. Chemistry—a European Journal, 2011, 17(41): 11467-11477.
|
32 |
TANG S, CAO Z. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane[J]. Physical Chemistry Chemical Physics, 2012, 14(48): 16558-16565.
|
33 |
PUMERA M, SOFER Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus[J]. Advanced Materials, 2017, 29(21): 1605299.
|
34 |
JIANG W, WANG H, ZHANG X, et al. Two-dimensional polymeric carbon nitride: structural engineering for optimizing photocatalysis[J]. Science China Chemistry, 2018, 61(10): 1205-1213.
|
35 |
XUE Y, LI Y, ZHANG J, et al. 2D graphdiyne materials: challenges and opportunities in energy field[J]. Science China Chemistry, 2018, 61(7): 765-786.
|
36 |
DENG D, NOVOSELOV K S, FU Q, et al. Catalysis with two-dimensional materials and their heterostructures[J]. Nature Nanotechnology, 2016, 11(3): 218.
|
37 |
SHELLAIAH M, SUN K W. A review on potential applications of diamond nanomaterials[J]. Cell, 2016, 4: 70.
|
38 |
ROLDÁND L, BENITO A M, GARCÍA-BORDEJÉ E. Self-assembled graphene aerogel and nanodiamond hybrids as high performance catalysts in oxidative propane dehydrogenation[J]. Journal of Materials Chemistry A, 2015, 3(48): 24379-24388.
|
39 |
SUN X, DING Y, ZHANG B, et al. New insights into the oxidative dehydrogenation of propane on borate-modified nanodiamond[J]. Chemical Communications, 2015, 51(44): 9145-9148.
|
40 |
PODYACHEVA O Y, CHEREPANOVA S V, ROMANENKO A I, et al. Nitrogen doped carbon nanotubes and nanofibers: composition, structure, electrical conductivity and capacity properties[J]. Carbon, 2017, 122: 475-483.
|
41 |
SONG Y, LIU G, YUAN Z Y. N, P and B doped mesoporous carbons for direct dehydrogenation of propane[J]. RSC Advances, 2016, 6(97): 94636-94642.
|
42 |
GRANT J T, CARRERO C A, GOELTL F, et al. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts[J]. Science, 2016, 354(6319): 1570-1573.
|
43 |
SHI L, WANG D, SONG W, et al. Edge-hydroxylated boron nitride for oxidative dehydrogenation of propane to propylene[J]. ChemCatChem, 2017, 9(10): 1788-1793.
|
44 |
LOVE M A, THOMAS B, SPECHTE Sarah, et al. Probing the transformation of boron nitride catalysts under oxidative dehydrogenation conditions[J]. Journal of the American Chemical Society, 2019, 141(1): 182-190.
|
45 |
GRANT J T, DERMOTT W P MC, VENEGAS J M, et al. Boron and boron-containing catalysts for the oxidative dehydrogenation of propane[J]. ChemCatChem, 2017, 9: 3623-3626.
|
46 |
SI C, LIAN Z, OLANRELE S O, et al. Revealing the origin of the reactivity of metal-free boron nitride catalysts in oxidative dehydrogenation of propane[J]. Applied Surface Science, 2020, 519: 146241.
|
47 |
LU W D, WANG D, ZHAO Z, et al. Supported bron oxide catalysts for selective and low-temperature oxidative dehydrogenation of propane[J]. ACS Catalysis, 2019, 9(9): 8263-8270.
|
48 |
YAN B, LI W C, LU A H. Metal-free silicon boride catalyst for oxidative dehydrogenation of light alkanes to olefins with high selectivity and stability[J]. Journal of Catalysis, 2019, 369: 296-301.
|