化工进展 ›› 2021, Vol. 40 ›› Issue (4): 1868-1882.DOI: 10.16085/j.issn.1000-6613.2020-1975
收稿日期:
2020-09-28
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
刘忠文
作者简介:
葛汉青(1977—),男,博士,副研究员,研究方向为工业催化。E-mail:基金资助:
GE Hanqing(), YIN Wenchao, YANG Guoqing, LIU Zhaotie, LIU Zhongwen()
Received:
2020-09-28
Online:
2021-04-05
Published:
2021-04-14
Contact:
LIU Zhongwen
摘要:
与现有乙苯直接脱氢工艺技术相比,CO2氧化乙苯脱氢工艺具有缓解直接脱氢热力学平衡限制、苯乙烯选择性高、能耗低和二氧化碳资源化利用等显著优势,有望成为一条从乙苯生产苯乙烯的绿色工艺路线。为此,在总结乙苯直接脱氢反应体系和现有工业技术特点、面临的问题和发展方向的基础上,本文较为全面地分析了CO2氧化乙苯脱氢的特点和反应机理,探讨了现有催化剂体系普遍快速失活的关键原因,表明高性能催化剂研究依然是推进CO2氧化乙苯脱氢工业化应用的关键。鉴于钒基氧化物催化剂表现出较高的活性,成为近年来CO2氧化乙苯脱氢相关研究关注的重点。为此,从钒物种含量及其聚集态结构、催化剂的氧化还原和酸碱性、催化剂表面积炭及其作用等角度,综合分析了活性中心结构、反应机理等方面的相关研究进展,认为孤立态V5+及其含量可能是决定钒基氧化物催化剂活性的关键,其稳定性主要取决于催化剂的氧化还原特性,而积炭对催化剂活性和稳定性的影响则与其组成和石墨化程度密切相关。基于上述认识,认为强化CO2的高效活化、抑制V5+的深度还原等是今后钒基氧化物催化剂研究的重点发展方向,而利用移动固定床或提升管反应器等进行工艺优化,对推进CO2氧化乙苯脱氢工业化应用具有重要的研究价值。
中图分类号:
葛汉青, 殷文超, 杨国庆, 刘昭铁, 刘忠文. CO2氧化乙苯脱氢制苯乙烯钒基氧化物催化剂研究进展[J]. 化工进展, 2021, 40(4): 1868-1882.
GE Hanqing, YIN Wenchao, YANG Guoqing, LIU Zhaotie, LIU Zhongwen. Review on vanadium oxide catalysts for oxidative dehydrogenation of ethylbenzene with CO2[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1868-1882.
1 | DE SANTANA SANTOS M, MARCHETTI S G, ALBORNOZ A, et al. Effect of lanthanum addition on the properties of potassium-free catalysts for ethylbenzene dehydrogenation[J]. Catalysis Today, 2008, 133/134/135: 160-167. |
2 | 齐向伟. 低水烃比对乙苯脱氢的影响[J]. 化工管理, 2018(8): 99, 101. |
QI Xiangwei. Effect of low water / hydrocarbon ratio on ethylbenzene dehydrogenation[J]. Chemical Enterprise Managemen, 2018(8): 99, 101. | |
3 | HERZOG B D, RASE H F. In situ catalyst reactivation: used ethylbenzene dehydrogenation catalyst with agglomerated potassium promoter[J]. Industrial & Engineering Chemistry Product Research and Development, 1984, 23(2): 187-196. |
4 | ENGVALL K, HOLMLID L, MENON P G. Comparative loss of alkali promoter by desorption from two catalysts for the dehydrogenation of ethyl benzene to styrene[J]. Applied Catalysis, 1991, 77(2): 235-241. |
5 | ROSSETTI I, BENCINI E, TRENTINI L, et al. Study of the deactivation of a commercial catalyst for ethylbenzene dehydrogenation to styrene[J]. Applied Catalysis A: General, 2005, 292: 118-123. |
6 | MROSS W D. Alkali doping in heterogeneous catalysis[J]. Catalysis Reviews, 1983, 25(4): 591-637. |
7 | COULTER K, GOODMAN D W, MOORE R G. Kinetics of the dehydrogenation of ethylbenzene to styrene over unpromoted and K-promoted model iron oxide catalysts[J]. Catalysis Letters, 1995, 31(1): 1-8. |
8 | DAMANABI A T, BAHADORI F. Exergy analysis of ethylbenzene dehydrogenation to styrene monomer[J]. Energy & Environment, 2018, 29(7): 1098-1115. |
9 | BACHILLER A, ARDISSONE D, CASTRO L A E, et al. Oxydehydrogenation of ethylbenzene to styrene: membrane reactor analysis and design[J]. International Journal of Chemical Reactor Engineering, 2014, 12(1): 1-6. |
10 | REDDY B M, RAO K N, REDDY G K, et al. Structural characterization and oxidehydrogenation activity of CeO2/Al2O3 and V2O5/CeO2/Al2O3 catalysts[J]. The Journal of Physical Chemistry C, 2007, 111(50): 18751-18758. |
11 | BECKERS J, ROTHENBERG G. Sustainable selective oxidations using ceria-based materials[J]. Green Chemistry, 2010, 12(6): 939-948. |
12 | SIVARANJANI K, VERMA A, GOPINATH C S. Molecular oxygen-assisted oxidative dehydrogenation of ethylbenzene to styrene with nanocrystalline Ti1-xVxO2[J]. Green Chemistry, 2012, 14(2): 461-471. |
13 | NEGI S S, VENUGOPALAN A T, RAJA T, et al. A green chemistry approach to styrene from ethylbenzene and air on MnxTi1-xO2 catalyst[J]. RSC Advances, 2014, 4(100): 57087-57097. |
14 | JANUS P, JANUS R, KUŠTROWSKI P, et al. Chemically activated poly(furfuryl alcohol)-derived CMK-3 carbon catalysts for the oxidative dehydrogenation of ethylbenzene[J]. Catalysis Today, 2014, 235: 201-209. |
15 | PASUPULETY N, DAOUS M A, AL-ZAHRANI A A, et al. Alumina-boron catalysts for oxidative dehydrogenation of ethylbenzene to styrene: influence of alumina-boron composition and method of preparation on catalysts properties[J]. Chinese Journal of Catalysis, 2019, 40(11): 1758-1765. |
16 | SHIJU N R, ANILKUMAR M, MIRAJKAR S P, et al. Oxidative dehydrogenation of ethylbenzene over vanadia-alumina catalysts in the presence of nitrous oxide: structure-activity relationship[J]. Journal of Catalysis, 2005, 230(2): 484-492. |
17 | KUSTROWSKI P, SEGURA Y, CHMIELARZ L, et al. VOxsupported SBA-15 catalysts for the oxidative dehydrogenation of ethylbenzene to styrene in the presence of N2O[J]. Catalysis Today, 2006, 114(2/3): 307-313. |
18 | SHIJU N R, ANILKUMAR M, GOKHALE S P, et al. Oxidative dehydrogenation of ethylbenzene using nitrous oxide over vanadia-magnesia catalysts[J]. Catalysis Science & Technology, 2011, 1(7): 1262-1270. |
19 | GASPAR N J, COHEN A D, VADEKAR M, et al. SO2/O2 dehydrogenation of ethylbenzene[J]. The Canadian Journal of Chemical Engineering, 1975, 53(1): 79-82. |
20 | PARK S E, HAN S C. Catalytic dehydrogenation of alkylaromatics with carbon dioxide as a soft oxidant[J]. Journal of Industrial and Engineering Chemistry, 2004, 10(7): 1257-1269. |
21 | CHEN S W, QIN Z F, SUN A L, et al. Theoretical and experimental study on reaction coupling: dehydrogenation of ethylbenzene in the presence of carbon dioxide[J]. Journal of Natural Gas Chemistry, 2006, 15(1): 11-20. |
22 | CHANG J S, HONG D Y, VISLOVSKIY V P, et al. An overview on the dehydrogenation of alkylbenzenes with carbon dioxide over supported vanadium-antimony oxide catalysts[J]. Catalysis Surveys from Asia, 2007, 11(1/2): 59-69. |
23 | WANG L C,WANG Y Y, ZHANG R, et al. Edge-activating CO2-mediated ethylbenzene dehydrogenation by a hierarchical porous BN catalyst[J]. ACS Catalysis, 2020, 10(12): 6697-6706. |
24 | BARTHOLOMEW C H. Catalyst deactivation[J]. Chemical Engineering, 1984, 91(23): 96-112. |
25 | DU X, YAO B, GONZALEZ-CORTES S, et al. Catalytic dehydrogenation of propane by carbon dioxide: a medium-temperature thermochemical process for carbon dioxide utilisation[J]. Faraday Discussions, 2015, 183: 161-176. |
26 | ANSARI M B, PARK S E. Carbon dioxide utilization as a soft oxidant and promoter in catalysis[J]. Energy & Environmental Science, 2012, 5(11): 9419-9437. |
27 | WANG S B, ZHU Z H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation: a review[J]. Energy & Fuels, 2004, 18(4): 1126-1139. |
28 | MIMURA N, SAITO M. Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide[J]. Catalysis Today, 2000, 55(1/2): 173-178. |
29 | SAITO K, OKUDA K, IKENAGA N O, et al. Role of lattice oxygen of metal oxides in the dehydrogenation of ethylbenzene under a carbon dioxide atmosphere[J]. The Journal of Physical Chemistry A, 2010, 114(11): 3845-3854. |
30 | SUN A L, QIN Z F, WANG J G. Reaction coupling of ethylbenzene dehydrogenation with water-gas shift[J]. Applied Catalysis A: General, 2002, 234(1/2): 179-189. |
31 | TOWLER G, LYNN S. Novel applications of reaction coupling: use of carbon dioxide to shift the equilibrium of dehydrogenation reactions[J]. Chemical Engineering Science, 1994, 49(16): 2585-2591. |
32 | LIU B S, CHANG R Z, JIANG L, et al. Preparation and high performance of La2O3-V2O5/MCM-41 catalysts for ethylbenzene dehydrogenation in the presence of CO2[J]. Journal of Physical Chemistry C, 2008, 112(39): 15490-15501. |
33 | MAMEDOV E A, CORTES CORBERAN V. Oxidative dehydrogenation of lower alkanes on vanadium oxide-based catalysts. The present state of the art and outlooks[J]. Applied Catalysis A: General, 1995, 127(1/2): 1-40. |
34 | SUN A L, QIN Z F, CHEN S W, et al. Role of carbon dioxide in the ethylbenzene dehydrogenation coupled with reverse water-gas shift[J]. Journal of Molecular Catalysis A: Chemical, 2004, 210(1/2): 189-195. |
35 | NEDERLOF C, TALAY G, KAPTEIJN F, et al. The role of RWGS in the dehydrogenation of ethylbenzene to styrene in CO2[J]. Applied Catalysis A: General, 2012, 423/424: 59-68. |
36 | MIMURA N, SAITO M. Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide[J]. Catalysis Letters, 1999, 58(1): 59-62. |
37 | FERREIRA N A, FILHO J M, OLIVEIRA A C. Porous ternary Fe-based catalysts for the oxidative dehydrogenation of ethylbenzene in the presence (absence) of carbon dioxide[J]. RSC Advances, 2015, 5(27): 20900-20913. |
38 | WANG C H, SHI J, CUI X M, et al. The role of CO2 in dehydrogenation of ethylbenzene over pure α-Fe2O3 catalysts with different facets[J]. Journal of Catalysis, 2017, 345: 104-112. |
39 | WANG T H, QI L, LU H Y, et al. Flower-like Al2O3-supported iron oxides as an efficient catalyst for oxidative dehydrogenation of ethlybenzene with CO2[J]. Journal of CO2 Utilization, 2017, 17: 162-169. |
40 | GURRAM V R B, ENUMULA S S, KOPPADI K S, et al. Role of the Fe oxidation states on the catalytic oxy-dehydrogenation of ethylbenzene using CO2 as a soft oxidant over FeOx/carbon-alumina[J]. Catalysis Communications, 2019, 118: 1-4. |
41 | KIM S J, HAN G F, JUNG S M, et al. Oxidative dehydrogenation of ethylbenzene into styrene by Fe-graphitic catalysts[J]. ACS Nano, 2019, 13(5): 5893-5899. |
42 | YE X N, YUE Y H, MIAO C X, et al. Effect of modifiers on the activity of a Cr2O3/Al2O3 catalyst in the dehydrogenation of ethylbenzene with CO2[J]. Green Chemistry, 2005, 7(7): 524-528. |
43 | OHISHI Y, KAWABATA T, SHISHIDO T, et al. Dehydrogenation of ethylbenzene with CO2 over Cr-MCM-41 catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2005, 230(1/2): 49-58. |
44 | HONG D Y, VISLOVSKIY V P, HWANG Y K, et al. Dehydrogenation of ethylbenzene with carbon dioxide over MgO-modified Al2O3-supported V-Sb oxide catalysts[J]. Catalysis Today, 2008, 131(1/2/3/4): 140-145. |
45 | HONG D Y, JHUNG S H, LEE J M, et al. Dehydrogenation of ethylbenzene over promoted vanadium oxide catalyst with carbon dioxide: from laboratory to bench-scale test[J]. Studies in Surface Science and Catalysis, 2004, 153: 333-338. |
46 | VISLOVSKIY V P, CHANG J S, PARK M S, et al. Ethylbenzene into styrene with carbon dioxide over modified vanadia-alumina catalysts[J]. Catalysis Communications, 2002, 3(6): 227-231. |
47 | GURRAM V R B, ENUMULA S S, MUTYALA S, et al. The advantage of ceria loading over V2O5/Al2O3 catalyst for vapor phase oxidative dehydrogenation of ethylbenzene to styrene using CO2 as a soft oxidant[J]. Applied Petrochemical Research, 2016, 6(4): 427-437. |
48 | JANG H S, LEE C Y, JEON J W, et al. Interaction between V2O5 nanowires and high pressure CO2 gas up to 45bar: electrical and structural study[J]. Journal of Advanced Research, 2020, 24: 205-209. |
49 | CHEN S W, XU Z Q, TAN D C, et al. Oxidative dehydrogenation of ethylbenzene to styrene with CO2 over Al-MCM-41-supported vanadia catalysts[J]. Applied Organometallic Chemistry, 2020, 34(2): e5396. |
50 | 朱忖, 檀东辰, 汪全华, 等. 纳米氧化铝负载钒催化剂在CO2气氛下的乙苯脱氢性能研究[J]. 天然气化工(C1化学与化工), 2019, 44(1): 30-35. |
ZHU Cun, TAN Dongchen, WANG Quanhua, et al. Performance study of nano-Al2O3 supported vanadium oxide catalysts for oxidative dehydrogenation of ethlybenzene by CO2[J]. Natural Gas Chemical Industry, 2019, 44(1): 30-35. | |
51 | ZHU C, CHEN S W, PAN D H, et al. Ordered mesoporous alumina-supported vanadium oxides as an efficient catalyst for ethylbenzene dehydrogenation to styrene with CO2[J]. Catalysis Communications, 2018, 115: 12-16. |
52 | 王维维, 韩武刚, 陈树伟, 等. VOx/SBA-16催化CO2氧化乙苯脱氢性能[J]. 应用化工, 2017, 46(12): 2306-2309. |
WANG Weiwei, HAN Wugang, CHEN Shuwei, et al. Catalytic performances of VOx/SBA-16 catalysts for oxidative dehydrogenation of ethylbenzene with CO2[J]. Applied Chemical Industry, 2017, 46(12): 2306-2309. | |
53 | KAINTHLA I, RAMESH BABU G V, BHANUSHALI J T, et al. Vapor-phase dehydrogenation of ethylbenzene to styrene over a V2O5/TiO2-Al2O3 catalyst with CO2[J]. New Journal of Chemistry, 2017, 41(10): 4173-4181. |
54 | BETIHA M A, RABIE A M, ELFADLY A M, et al. Microwave assisted synthesis of a VOx-modified disordered mesoporous silica for ethylbenzene dehydrogenation in presence of CO2[J]. Microporous and Mesoporous Materials, 2016, 222: 44-54. |
55 | ELFADLY A M, BADAWI A M, YEHIA F Z, et al. Selective nano alumina supported vanadium oxide catalysts for oxidative dehydrogenation of ethylbenzene to styrene using CO2 as soft oxidant[J]. Egyptian Journal of Petroleum, 2013, 22(3): 373-380. |
56 | FAN H X, FENG J, LI X H, et al. Ethylbenzene dehydrogenation to styrene with CO2 over V2O5(001): a periodic density functional theory study[J]. Chemical Engineering Science, 2015, 135: 403-411. |
57 | ZHANG S J, LI X H, JING J Y, et al. Dehydrogenation of ethylbenzene with CO2 over V2O5/Al2O3-ZrO2 catalyst[J]. Catalysis Communications, 2013, 34: 5-10. |
58 | LI Z H, SU K M, CHENG B W, et al. Effects of VOx/AlMCM-41 surface structure on ethylbenzene oxydehydrogenation in the presence of CO2[J]. Catalysis Letters, 2010, 135(1): 135-140. |
59 | LI C G, MIAO C X, NIE Y Y, et al. Ethylbenzene dehydrogenation in the presence of CO2 over MCF-supported vanadium oxide catalysts[J]. Chinese Journal of Catalysis, 2010, 31(8): 993-998. |
60 | WANG L C, WANG C H, ZHANG Z W, et al. Thermal induced BCN nanosheets evolution and its usage as metal-free catalyst in ethylbenzene dehydrogenation[J]. Applied Surface Science, 2017, 422: 574-581. |
61 | WU Y L, ZHAO W J, LI X H, et al. Effects of Al doping on CeZr solid solution for oxidative dehydrogenation of ethylbenzene with CO2[J]. Journal of Fuel Chemistry and Technology, 2017, 45(2): 189-193. |
62 | 孙超, 易玉峰, 冀德坤, 等. CeO2-ZrO2-La2O3/Al2O3催化剂CO2氧化乙苯脱氢研究[J]. 应用化工, 2018, 47(10): 2062-2067, 2086. |
SUN Chao, YI Yufeng, JI Dekun, et al. Study of oxidative dehydrogenation of ethylbenzene to styrene over CeO2-ZrO2-La2O3/Al2O3[J]. Applied Chemical Industry, 2018, 47(10): 2062-2067, 2086. | |
63 | FAN H X, FENG J, LI W Y, et al. Role of CO2 in the oxy-dehydrogenation of ethylbenzene to styrene on the CeO2(111) surface[J]. Applied Surface Science, 2018, 427: 973-980. |
64 | WANG J, DIAO J Y, ZHANG J Y, et al. Few-layer sp2 carbon supported on Al2O3 as hybrid structure for ethylbenzene oxidative dehydrogenation[J]. Catalysis Today, 2018, 301: 32-37. |
65 | MADDULURI V R, RAMARAO K S. Role of cobalt oxide-based catalysts for styrene production: a review on significance of various promoters, calcination temperature, chemical behavior of support materials and synthesis procedure[J]. Catalysis Surveys from Asia, 2019, 23(4): 290-310. |
66 | MADDULURI V R, NAGAIAH P, PRATHAP C, et al. La2O3 promotional effect to Co3O4/γ-Al2O3 catalyst in the oxidative dehydrogenation of ethylbenzene with CO2 as soft oxidant[J]. Journal of Saudi Chemical Society, 2019, 23(6): 678-690. |
67 | FAN H X, FENG J, LI W Y. Promotional effect of oxygen storage capacity on oxy-dehydrogenation of ethylbenzene with CO2 over κ-Ce2Zr2O8(111)[J]. Applied Surface Science, 2019, 486: 411-419. |
68 | RAO R C, DONG H Z, DONG X Z, et al. Defect-mediated hydroxylation of multi-walled carbon nanotubes as metal-free catalysts to enhance catalytic performance for oxidative dehydrogenation of ethylbenzene using CO2[J]. Journal of CO2 Utilization, 2019, 31: 8-15. |
69 | PRATHAP C, KUMAR V V R, RAO M V, et al. Promotional role of ceria in CeO2/MgAl2O4 spinel catalysts in CO2 assisted selective oxidative dehydrogenation of ethylbenzene to styrene[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 97-105. |
70 | MADDULURI V R, RAJU B D, RAO K S R. Unique influence of rare earth (Pr, Nd, and Er) oxide surface acidic texture over CeO2/γ-Al2O3 catalysts for selective production of styrene using CO2 flow[J]. Research on Chemical Intermediates, 2019, 45(5): 2749-2770. |
71 | MADDULURI V R, NAGAIAH P, PRATHAP C, et al. Synergistic interface between Co3O4 and MgAl2O4 in CO2 assisted continuous vapour phase oxidative dehydrogenation of ethylbenzene to styrene monomer[J]. Arabian Journal of Chemistry, 2020, 13(1): 2883-2896. |
72 | RANGEL M D C, DE MELO MONTEIRO A P, MARCHETTI S G, et al. Ethylbenzene dehydrogenation in the presence of carbon dioxide over magnesia-supported iron oxides[J]. Journal of Molecular Catalysis A: Chemical, 2014, 387: 147-155. |
73 | NOGUEIRA I M, SABADIA G Q, MOREIRA A A, et al. Investigation of the deactivation of iron nanocomposites by coking in the dehydrogenation of ethylbenzene[J]. Journal of Molecular Catalysis A: Chemical, 2011, 351: 81-92. |
74 | YANG G Q, WANG H, GONG T, et al. Understanding the active-site nature of vanadia-based catalysts for oxidative dehydrogenation of ethylbenzene with CO2via atomic layer deposited VOx on γ-Al2O3[J]. Journal of Catalysis, 2019, 380: 195-203. |
75 | WANG H, ZHU W, YANG G Q, et al. Insights into the oxidative dehydrogenation of ethylbenzene with CO2 catalyzed by the ordered mesoporous V2O5-Ce0.5Zr0.5O2-Al2O3[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21372-21381. |
76 | PAN D H, CHEN W, HUANG X D, et al. Solvothermal-assisted evaporation-induced self-assembly of ordered mesoporous alumina with improved performance[J]. Journal of Colloid and Interface Science, 2018, 529: 432-443. |
77 | CHEN S W, QIN Z F, WANG G F, et al. Promoting effect of carbon dioxide on the dehydrogenation of ethylbenzene over silica-supported vanadium catalysts[J]. Fuel, 2013, 109: 43-48. |
78 | KHODAKOV A, OLTHOF B, BELL A T, et al. Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions[J]. Journal of Catalysis, 1999, 181(2): 205-216. |
79 | ARGYLE M D, CHEN K D, BELL A T, et al. Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia[J]. Journal of Catalysis, 2002, 208: 139-149. |
80 | PARK M S, VISLOVSKIY V P, CHANG J S, et al. Catalytic dehydrogenation of ethylbenzene with carbon dioxide: promotional effect of antimony in supported vanadium-antimony oxide catalyst[J]. Catalysis Today, 2003, 87(1/2/3/4): 205-212. |
81 | CHANG J S, VISLOVSKIY V P, PARK M S, et al. Utilization of carbon dioxide as soft oxidant in the dehydrogenation of ethylbenzene over supported vanadium-antimony oxide catalysts[J]. Green Chemistry, 2003, 5(5): 587-590. |
82 | HONG D-Y, VISLOVSKIY V P, PARK S E, et al. Dehydrogenation of ethylbenzene with carbon dioxide as soft oxidant over supported vanadium-antimony oxide catalyst[J]. Bulletin of the Korean Chemical Society, 2005, 26(11): 1743-1748. |
83 | HONG D-Y, VISLOVSKIY V P, PARK Y H, et al. Dehydrogenation of ethylbenzene with carbon dioxide over supported vanadium-antimony oxide catalysts: effect of zirconia modification in alumina support[J]. Bulletin of the Korean Chemical Society, 2006, 27(5): 789-792. |
84 | HONG D Y, CHANG J S, LEE J H, et al. Effect of carbon dioxide as oxidant in dehydrogenation of ethylbenzene over alumina-supported vanadium-antimony oxide catalyst[J]. Catalysis Today, 2006, 112(1/2/3/4): 86-88. |
85 | BURRI A, JIANG N Z, JI M, et al. Oxidative dehydrogenation of ethylbenzene to styrene with CO2 over V2O5-Sb2O5-CeO2/TiO2-ZrO2 catalysts[J]. Topics in Catalysis, 2013, 56(18/19/20): 1724-1730. |
86 | JIANG N Z, BURRI A, PARK S E. Ethylbenzene to styrene over ZrO2-based mixed metal oxide catalysts with CO2 as soft oxidant[J]. Chinese Journal of Catalysis, 2016, 37(1): 3-15. |
87 | DELMON B. Modification of surface structure by spillover species: consequences in the reaction of solids and catalysis[J]. Surface Review Letters, 1995, 2(1): 25-41. |
88 | WENG L T, RUIZ P, DELMON B. Classification of the roles of oxides as catalysts for selective oxidation of olefins[J]. Studies in Surface Science and Catalysis, 1992, 72: 399-413. |
89 | LI C, XIN Q, RUIZ P, et al. Inhibition of formation and removal of adsorbed species, in the isobutene-methacrolein SnO2-Sb2O4 system[J]. Journal of Molecular Catalysis, 1992, 72(3): 307-313. |
90 | LIU Z W, WANG C, FAN W B, et al. V2O5/Ce0.6Zr0.4O2-Al2O3 as an efficient catalyst for the oxidative dehydrogenation of ethylbenzene with carbon dioxide[J]. ChemSusChem, 2011, 4(3): 341-345. |
91 | WANG C, FAN W B, LIU Z T, et al. The dehydrogenation of ethylbenzene with CO2 over V2O5/CexZr1-xO2 prepared with different methods[J]. Journal of Molecular Catalysis A: Chemical, 2010, 329(1/2): 64-70. |
92 | WANG H, YANG G Q, SONG Y H, et al. Defect-rich Ce1-xZrxO2 solid solutions for oxidative dehydrogenation of ethylbenzene with CO2[J]. Catalysis Today, 2019, 324: 39-48. |
93 | WANG H, CAO F X, SONG Y H, et al. Two-step hydrothermally synthesized Ce1-xZrxO2 for oxidative dehydrogenation of ethylbenzene with carbon dioxide[J]. Journal of CO2 Utilization, 2019, 34: 99-107. |
94 | WANG T H, GUAN X L, LU H Y, et al. Nanoflake-assembled Al2O3-supported CeO2-ZrO2 as an efficient catalyst for oxidative dehydrogenation of ethylbenzene with CO2[J]. Applied Surface Science, 2017, 398: 1-8. |
95 | ZHANG S J, LI X H, FENG J, et al. Ethylbenzene dehydrogenation with CO2 over V2O5-Fe2O3/Al2O3-TiO2 catalyst[J]. Advanced Materials Research, 2012, 550/551/552/553: 301-305. |
96 | TARASOV A L, FINASHINA E D. Oxidative dehydrogenation of ethylbenzene to styrene on a mixed Mo-V-Te-NbOx oxide catalyst under thermal and microwave heating[J]. Russian Journal of Physical Chemistry A, 2019, 93(1): 39-43. |
97 | SATO S, OHHARA M, SODESAWA T, et al. Combination of ethylbenzene dehydrogenation and carbon dioxide shift-reaction over a sodium oxide/alumina catalyst[J]. Applied Catalysis, 1988, 37(1/2): 207-215. |
98 | DULAMITA N, MAICANEANU A, SAYLE D C, et al. Ethylbenzene dehydrogenation on Fe2O3-Cr2O3-K2CO3 catalysts promoted with transitional metal oxides[J]. Applied Catalysis A: General, 2005, 287(1): 9-18. |
99 | 张海新, 陈树伟, 崔杏雨, 等. Ce助剂对V/SiO2催化CO2氧化乙苯脱氢性能的影响[J]. 物理化学学报, 2014, 30(2): 351-358. |
ZHANG Haixin, CHEN Shuwei, CUI Xingyu, et al. Effect of Ce promoter on catalytic performance of V/SiO2 in oxidative dehydrogenation of ethylbenzene with carbon dioxide[J]. Acta Physico-Chimica Sinica, 2014, 30(2): 351-358. | |
100 | LI X H, LI W Y. Effect of TiO2 loading on the activity of V/TiO2-Al2O3 in the catalytic oxidehydrogenation of ethylbenzene with carbon dioxide[J]. Frontiers of Chemical Engineering in China, 2010, 4(2): 142-146. |
101 | SAKURAI Y, SUZAKI T, IKENAGA N, et al. Dehydrogenation of ethylbenzene with an activated carbon-supported vanadium catalyst[J]. Applied Catalysis A: General, 2000, 192: 281-288. |
102 | SUN A L, QIN Z F, CHEN S W, et al. Ethylbenzene dehydrogenation in the presence of carbon dioxide over alumina supported catalysts[J]. Catalysis Today, 2004, 93/94/95: 273-279. |
103 | LIU B S, RUI G, CHANG R Z, et al. Dehydrogenation of ethylbenzene to styrene over LaVOx/SBA-15 catalysts in the presence of carbon dioxide[J]. Applied Catalysis A: General, 2008, 335(1): 88-94. |
104 | LI X H, FENG J, FAN H X, et al. The dehydrogenation of ethylbenzene with CO2 over CexZr1-xO2 solid solutions[J]. Catalysis Communications, 2015, 59: 104-107. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[4] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[5] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[6] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[7] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[8] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[14] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[15] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |