1 |
Symposium Stanford NGI. 2018 outlook for energy: a view to 2040[R]. ExxonMobil, 2018.
|
2 |
BP. BP statistical review of world energy 2018[R]. 2018.
|
3 |
CASTAÑEDA L C, MUÑOZ J A D, ANCHEYTA J. Current situation of emerging technologies for upgrading of heavy oils[J]. Catalysis Today, 2014, 220/221/222: 248-273.
|
4 |
ARCELUS-ARRILLAGA P, PINILLA J L, HELLGARDT K, et al. Application of water in hydrothermal conditions for upgrading heavy oils: a review[J]. Energy & Fuels, 2017, 31: 4571-4587.
|
5 |
GALADIMA A, MURAZA O. Hydrocracking catalysts based on hierarchical zeolites: a recent progress[J]. Journal of Industrial and Engineering Chemistry, 2018, 61: 265-280.
|
6 |
SAHU R, SONG B J, IM J S,et al. A review of recent advances in catalytic hydrocracking of heavy residues[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 12-24.
|
7 |
THYBAUT J W, NARASIMHAN C S L, DENAYER J F, et al. Acid-metal balance of a hydrocracking catalyst: ideal versus nonideal behavior[J]. Industrial & Engineering Chemistry Research, 2005, 44: 5159-5169.
|
8 |
WEITKAMP J. Catalytic hydrocracking—Mechanisms and versatility of the process[J]. ChemCatChem, 2012, 4: 292-306.
|
9 |
PRIMO A, GARCIA H. Zeolites as catalysts in oil refining[J]. Chemical Society Reviews, 2014, 43: 7548-7561.
|
10 |
SCHWIEGER W, MACHOKE A G, WEISSENBERGER T, et al. Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity[J]. Chemical Society Reviews, 2016, 45(12): 3353-3376.
|
11 |
SUN Minghui, CHEN Chen, CHEN Lihua, et al. Hierarchically porous materials: synthesis strategies and emerging applications[J]. Frontiers of Chemical Science Engineering, 2016, 10(3): 301-347.
|
12 |
JONG K P, ZEČEVIĆ J, FRIEDRICH H, et al. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts[J]. Angewandte Chemie: International Edition, 2010, 122: 10272-10276.
|
13 |
LI Kunhao, VALLA J, GARCIA-MARTINEZ J. Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking[J]. ChemCatChem, 2014, 6(1): 46-66.
|
14 |
VALTCHEV V, TOSHEVA L. Porous nanosized particles: preparation, properties, and applications[J]. Chemical Reviews, 2013, 113: 6734-6760.
|
15 |
SATO K, IWATA Y, YONEDA T, et al. Hydrocracking of diphenylmethane and tetralin over bifunctional NiW sulfide catalysts supported on three kinds of zeolites[J]. Catalysis Today, 1998, 45: 367-374.
|
16 |
BROWNING B E, PITAULT I, COUENNE F, et al. Effects of bifunctional catalyst geometry on vacuum gas oil hydrocracking conversion and selectivity for middle distillate[J]. Industrial & Engineering Chemistry Research, 2018, 57: 16579-16592.
|
17 |
DIK P P, DANILOVA I G, GOLUBEV I S, et al. Hydrocracking of vacuum gas oil over NiMo/zeolite-Al2O3: influence of zeolite properties[J]. Fuel, 2019, 237: 178-190.
|
18 |
WANG Liang, SHEN Baojian, FANG Fang, et al. Upgrading of light cycle oil via coupled hydrogenation and ring-opening over NiW/Al2O3-USY catalysts[J]. Catalysis Today, 2010, 158: 343-347.
|
19 |
ISODA T, KUSAKABE K, MOROOKA S. Reactivity and selectivity for the hydrocracking of vacuum gas oil over metal-loaded and dealuminated Y-zeolites[J]. Energy & Fuels, 1998, 12: 493-502.
|
20 |
DONK S VAN, JANSSEN A H, BITTER J H, et al. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Catalysis Reviews, 2003, 45: 297-319.
|
21 |
JIN Junsu, PENG Chaoyun, WANG Jiujiang, et al. Facile synthesis of mesoporous zeolite Y with improved catalytic performance for heavy oil fluid catalytic cracking[J]. Industrial Engineering Chemistry Research, 2014, 53: 3406-3411.
|
22 |
KAZAKOVA M O, NADEINA K A, DANILOVA I G, et al. Hydrocracking of vacuum gas oil over NiMo/Y-Al2O3: effect of mesoporosity introduced by zeolite Y recrystallization[J]. Catalysis Today, 2018, 305: 117-125.
|
23 |
秦波, 黄茂生, 杜艳泽, 等. FC-80专用加氢裂化催化剂的研制[J]. 炼油技术与工程, 2017, 47(12): 51-55.
|
|
QIN Bo, HUANG Maosheng, DU Yanze, al at. Development of dedicated hydrocracking catalyst for producing feedstock for lube base oil[J]. Petroleum Refinery Engineering, 2017, 47(12): 51-55.
|
24 |
VERHEYEN E, JO C, KURTTEPELI M, et al. Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking[J]. Journal of Catalysis, 2013, 300: 70-80.
|
25 |
ABELLÓ S, BONILLA A, PÉREZ-RAMÍREZ J. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J]. Applied Catalysis A: General, 2009, 364(1/2): 191-198.
|
26 |
SU Lingling,LIU Lin,ZHUANG Jianqin,et al. Creating mesopores in ZSM-5 zeolite by alkali treatment: a new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts[J]. Catalysis Letters, 2003, 91(3/4): 155-167.
|
27 |
VALTCHEV V, MINTOVA S. Hierarchical zeolites[J]. MRS Bulletin, 2016, 41: 689-693.
|
28 |
XUE Zhaoteng, MA Jinghong, ZHENG Jiajun, et al. Hierarchical structure and catalytic properties of a microspherical zeolite with intracrystalline mesopores[J]. Acta Materialia, 2012, 60: 5712-5722.
|
29 |
MANRIQUE C, GUZMÁN A, PÉREZ-PARIENTE J, et al. Effect of synthesis conditions on zeolite beta properties and its performance in vacuum gas oil hydrocracking activity[J]. Microporous and Mesoporous Materials, 2016, 234: 347-360.
|
30 |
ZHANG Qiangqiang, MING Weixing, MA Jinghong, et al. De novo assembly of a mesoporous beta zeolite with intracrystalline channels and its catalytic performance for biodiesel production[J]. Journal of Materials Chemistry A, 2014, 2: 8712-8718.
|
31 |
CALDEIRAA V P S, PERALB A, LINARESB M, et al. Properties of hierarchical Beta zeolites prepared from protozeolitic nanounits for the catalytic cracking of high density polyethylene[J]. Applied Catalysis A: General, 2017, 531: 187-196.
|
32 |
LANDAU M V, VRADMAN L, VALTCHEV V, et al. Hydrocracking of heavy vacuum gas oil with a Pt/H-beta-Al2O3 catalyst: effect of zeolite crystal size in the nanoscale range[J]. Industrial & Engineering Chemistry Research, 2003, 42: 2773-2782.
|
33 |
DIK P P, DANILOVA I G, GOLUBEV I S, et al. Hydrocracking of vacuum gas oil over NiMo/zeolite-Al2O3: influence of zeolite properties[J]. Fuel, 2019, 237: 178-190.
|
34 |
FERNANDEZ S, OSTRAAT M L, LAWRENCE III J A, et al. Tailoring the hierarchical architecture of beta zeolites using base leaching and pore-directing agents[J]. Microporous and Mesoporous Materials, 2018, 263: 201-209.
|
35 |
WANG Bin, HAN Chaoyi, ZHANG Qiang, et al. Studies on the preliminary cracking of heavy oils: the effect of matrix acidity and a proposal of a new reaction route[J]. Energy Fuels, 2015, 29: 5701-5713.
|
36 |
HAMDY M S, MUL G. TUD-1-encapsulated HY zeolite: a new hierarchical microporous/mesoporous composite with extraordinary performance in benzylation reactions[J]. ChemCatChem, 2013, 5: 3156-3163.
|
37 |
ISHIHARA A, KIMURA K, OWAKI A, et al. Catalytic cracking of VGO by hierarchical ZSM-5 zeolite containing mesoporous silicaaluminas using a curie point pyrolyzer[J]. Catalysis Communications, 2012, 28: 163-167.
|
38 |
JIA Lixia, SUN Xiaoyan, YE Xiuqun, et al. Core-shell composites of USY@mesosilica: synthesis and application in cracking heavy molecules with high liquid yield[J]. Microporous and Mesoporous Materials, 2013, 176: 16-24.
|
39 |
ZHANG Xiwen, GUO Qun, QIN Bo, et al. Structural features of binary microporous zeolite composite Y-beta and its hydrocracking performance[J]. Catalysis Today, 2010, 149: 212-217.
|
40 |
WHITE R J, FISCHER A, GOEBEL C, et al. A sustainable template for mesoporous zeolite synthesis[J]. Journal of American Chemical Society, 2014, 136: 2715-2718.
|
41 |
ZHENG Jiajun, ZENG Qinghu, ZHANG Yanyu, et al. Hierarchical porous zeolite composite with a core-shell structure fabricated using β-zeolite crystals as nutrients as well as cores[J]. Chemistry of Materials, 2010, 22: 6065-6074.
|
42 |
ZHAO Qiang, QIN Bo, ZHENG Jiajun, et al. Core-shell structured zeolite-zeolite composites comprising Y zeolite cores and nano-β zeolite shells: synthesis and application in hydrocracking of VGO oil[J]. Chemical Engineering Journal, 2014, 257: 262-272.
|
43 |
PAN Meng, LI Peng, ZHENG Jiajun, et al. Zeolite-zeolite composite composed of Y zeolite and single-crystallike ZSM-5 zeolite: fabricated by a process like “big fish swallowing little one”[J]. Materials Chemistry and Physics, 2017, 194: 49-54.
|
44 |
PAN Meng, ZHENG Jiajun, LIU Yujian, et al. Construction and practical application of a novel zeolite catalyst for hierarchically cracking of heavy oil[J]. Journal of Catalysis, 2019, 369: 72-85.
|
45 |
WANG Guangshuai, LIU Yujian, ZHENG Jiajun, et al. Zeolite-zeolite composite fabricated by polycrystalline Y zeolite crystals parasitizing ZSM-5 zeolite[J]. Journal of Materials Research, 2015, 30(16): 2434-2446.
|
46 |
ZHANG Likang, QU Shudong, WANG Li, et al. Preparation and performance of hierarchical HZSM-5 coatings on stainless-steeled microchannels for catalytic cracking of hydrocarbons[J]. Catalysis Today, 2013, 216: 64-70.
|
47 |
XIAN Xiaochao, LIU Guozhu, ZHANG Xiangwen, et al. Catalytic cracking of n-dodecane over HZSM-5 zeolite under supercritical conditions: experiments and kinetics[J]. Chemical Engineering Science, 2010, 65: 5588-5604.
|
48 |
ZHENG Jiajun, ZHANG Xiwen, ZHANG Yan, et al. Structural effects of hierarchical pores in zeolite composite[J]. Microporous and Mesoporous Materials, 2009, 122: 264-269.
|
49 |
ZHENG Jiajun, YI Yumin, WANG Wenli, et al. Synthesis of bi-phases composite zeolites MFZ and its hierarchical effects in isopropylbenzene catalytic cracking[J]. Microporous and Mesoporous Materials, 2013, 171: 44-52.
|