化工进展 ›› 2020, Vol. 39 ›› Issue (2): 567-576.doi: 10.16085/j.issn.1000-6613.2019-0544
陈静宇(),张建红,盛浩,吴大凯,高新华(
),马清祥,张建利(
),范素兵,赵天生
收稿日期:
2019-04-09
出版日期:
2020-02-05
发布日期:
2019-09-27
通讯作者:
高新华,张建利
E-mail:852858917@qq.com;gxh@ nxu.edu.cn;zhangjl@nxu.edu.cn
作者简介:
陈静宇(1993—),女,硕士研究生,研究方向为煤基应用催化。E-mail:基金资助:
Jingyu CHEN(),Jianhong ZHANG,Hao SHENG,Dakai WU,Xinhua GAO(
),Qingxiang MA,Jianli ZHANG(
),Subing FAN,Tiansheng ZHAO
Received:
2019-04-09
Online:
2020-02-05
Published:
2019-09-27
Contact:
Xinhua GAO,Jianli ZHANG
E-mail:852858917@qq.com;gxh@ nxu.edu.cn;zhangjl@nxu.edu.cn
摘要:
CO2加氢经甲醇(含氧中间体)制低碳烯烃工艺路线,可实现成醇、脱水两步反应串联协同进行,打破费托合成产物Anderson-Schulz-Flory(ASF)分布限制,高选择性地制取低碳烯烃。传统甲醇合成Cu基催化剂加氢能力较强,在两步反应中产物以CH4、低碳烷烃为主。实验设计、制备了CuZnTiO2/(Zn-)SAPO-34复合催化剂,实现了CO2加氢在Cu基复合催化剂上高选择性合成C2~C4烯烃(约60%)。研究表明,两步反应过程中甲醇体积分数较低(<6%),且高温下逆水煤气变换反应严重,导致催化剂酸性变化对产物分布的影响较大。调变两类活性位点比例发现,CH4的产生与串联反应存在竞争关系,SAPO-34酸量的增加抑制了CH4的生成,促进串联反应正向进行;合适的酸性有助于生成C2~C4烯烃。控制成醇、脱水两类活性位点接触距离可调变烯烃的二次反应,降低加氢能力,改善产物分布。
中图分类号:
陈静宇,张建红,盛浩,吴大凯,高新华,马清祥,张建利,范素兵,赵天生. CuZnTiO2/SAPO-34双功能催化剂的设计、制备及其用于CO2加氢制烯烃性能[J]. 化工进展, 2020, 39(2): 567-576.
Jingyu CHEN,Jianhong ZHANG,Hao SHENG,Dakai WU,Xinhua GAO,Qingxiang MA,Jianli ZHANG,Subing FAN,Tiansheng ZHAO. Design and preparation of CuZnTiO2/SAPO-34 bifunctional catalyst and its catalytic performance in CO2 hydrogenation to light olefins[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 567-576.
表3
催化剂催化活性数据"
催化剂 | CO2转化率/% | 产物选择性/% | 烃类选择性/% | O/P | |||||
---|---|---|---|---|---|---|---|---|---|
CO | CH | CH3OH | CH4 | ||||||
CZT | 17.93 | 93.34 | 2.55 | 4.11 | 94.62 | 2.56 | 2.82 | 0 | 0.91 |
CZT/SAPO-34(2∶1) | 11.7 | 83.94 | 16.06 | — | 54.77 | 26.08 | 19.14 | 0 | 1.36 |
CZT/SAPO-34(1∶1) | 7.38 | 82.96 | 17.04 | — | 58.87 | 16.96 | 24.17 | 0 | 0.7 |
CZT/SAPO-34(1∶2) | 9.23 | 86.12 | 13.88 | — | 38.98 | 14.28 | 45.51 | 1.23 | 0.31 |
CZT/Zn-SAPO-34(1∶2) | 5.34 | 76.18 | 23.82 | — | 22.37 | 59.2 | 16.81 | 1.63 | 3.52 |
1 | CORMA A, MELO F V, SAUVANAUD L, et al. Light cracked naphtha processing: controlling chemistry for maximum propylene production[J]. Catalysis Today, 2005, 107: 699-706. |
2 | DIERCKS R, ARNDT J D, FREYER S, et al. Raw material changes in the chemical industry[J]. Chem. Eng. Technol., 2008, 31: 631-637. |
3 | CENTI G, QUADRELLI E A, PERATHONER S. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries[J]. Energy & Environmental Science, 2013, 6(6): 1711-1731. |
4 | 丁云杰. 用于合成气高选择性直接制备低碳烯烃的碳化钴纳米棱柱结构[J]. 催化学报, 2017, 38(1): 1-4. |
DING Y J. Co2C nanoprisms for syngas conversion to lower olefins with highselectivity[J]. Chinese Journal of Catalysis, 2017, 38(1): 1-4. | |
5 | 张跃, 李静, 严生虎, 等. Ce助剂对CuO-ZnO-Al2O3/HZSM-5在CO2加氢合成二甲醚中的性能影响[J]. 化工进展, 2011, 30(3): 542-546. |
ZHANG Y, LI J, YAN S H, et al. Effect of Ce loading in CuO-ZnO-Al2O3/HZSM-5 on catalytic performance of dimethyl ether synthesis from carbon dioxide[J]. Chemical Industry and Engineering Progress, 2011, 30(3): 542-546. | |
6 | PACHECO M A, MARSHALL C L. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive[J]. Energy Fuels, 1997, 11: 2-9. |
7 | 马光远, 徐艳飞, 王捷, 等. 合成气直接法制取低碳烯烃铁基催化体系研究进展[J]. 化工进展, 2018, 37(3): 992-1000. |
MA G Y, XU Y F, WANG J, et al. Research progress of iron-based catalyst for converting syngas directly to light olefins[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 992-1000. | |
8 | ZHANG J L, LU S P, SU X J, et al. Selective formation of light olefins from CO2 hydrogenation over Fe-Zn-K catalysts[J]. Journal of CO2 Utilization, 2015, 12: 95-100. |
9 | JIAO F, LI J, PAN X, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
10 | CHENG K, GU B, LIU X L, et al. Direct and highly selective conversion of synthesis gas into lower olefns: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew. Chem. Int. Ed., 2016, 55: 4725-4728. |
11 | GAO P, DANG S S, LI S G, et al. Direct production of lower olefns from CO2 conversion via bifunctional catalysis[J]. ACS Catal., 2017, 8: 571-578. |
12 | FUJIWARA M, SOUMA Y. Hydrocarbon synthesis from carbon dioxide and hydrogen over Cu-Zn-Cr oxide/zeolite hybrid catalysts[J]. Journal of the Chemical Society, Chemical Communications, 1992 (10): 767-768. |
13 | PARK Y K, PARK K C, IHM S K. Hydrocarbon synthesis through CO2 hydrogenation over CuZnOZrO2/zeolite hybrid catalysts[J]. Catalysis Today, 1998, 44(1/2/3/4): 165-173. |
14 | 张鲁湘, 张永春, 陈绍云. 助剂TiO2对CO2催化加氢制甲醇催化剂CuO-ZnO-Al2O3性能的影响[J]. 燃料化学学报, 2011, 39(12):912-917. |
ZHANG L X, ZHANG Y C, CHEN S Y. Effect of promoter TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for CO2 catalytic hydrogenation to methanol[J]. Journal of Fuel Chemistry and Technology, 2011, 39(12): 912-917. | |
15 | BAO Y F, HUANG C L, CHEN L M, et al. Highly efficient Cu/anatase TiO2 {001}-nanosheets catalysts for methanol synthesis from CO2[J]. Journal of Energy Chemistry, 2018, 27(2): 381-388. |
16 | TAGAWA T, NOMURA N, SHIMAKAGE M, et al. Effect of supports on copper catalysts for methanol synthesis from CO2+ H2[J]. Research on Chemical Intermediates, 1995, 21(2): 193-202. |
17 | NOMURA N, TAGAWA T, GOTO S. Effect of acid-base properties on copper catalysts for hydrogenation of carbon dioxide[J]. Reaction Kinetics and Catalysis Letters, 1998, 63(1): 21-25. |
18 | NOMURA N, TAGAWA T, GOTO S. Titania supported copper catalysts for methanol synthesis from carbon dioxide[J]. Reaction Kinetics and Catalysis Letters, 1998, 63(1): 9-13. |
19 | ÁLVAREZ A, BANSODE A, URAKAWA A, et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chemical Reviews, 2017, 117(14): 9804-9838. |
20 | CHEN J Y, WANG X, WU D K, et al. Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-) SAPO-34 catalysts: strategy for product distribution[J]. Fuel, 2019, 239: 44-52. |
21 | SŁOCZYŃSKI J, GRABOWSKI R, OLSZEWSKI P, et al. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2[J]. Applied Catalysis A: General, 2006, 310: 127-137. |
22 | 郭晓明, 毛东森, 卢冠忠, 等. CO2加氢合成甲醇催化剂的研究进展[J]. 化工进展, 2012, 31(3): 477-488. |
GUO X M, MAO D S, LU G Z, et al. Progress in catalysts for methanol synthesis from CO2 hydrogenation[J]. Chemical Industry and Engineering Progress, 2012, 31(3): 477-488. | |
23 | AHMADI S M A, ASKARI S, HALLADJ R. A review on kinetic modeling of deactivation of SAPO-34 catalyst during methanol to olefins (MTO) process[J]. Afinidad, 2013, 70(562): 130-138. |
24 | 赵云鹏. 温室气体CO2加氢合成甲醇CuO-ZnO/TiO2催化剂的制备与性能研究[D]. 哈尔滨:哈尔滨工业大学, 2013. |
ZHAO Y P. Preparation and preformance study of CuO-ZnO/TiO2 catalyst for methanol synthesis from greenhouse gas carbon dioxide hydrogenation[D]. Harbin:Harbin Institute of Technology, 2013. | |
25 | NAJAFI N, ASKARI S, HALLADJ R. Hydrothermal synthesis of nanosized SAPO-34 molecular sieves by different combinations of multi templates[J]. Powder technology, 2014, 254: 324-330. |
26 | RAVEENDRA G, LI C, CHENG Y, et al. Direct transformation of syngas to lower olefins synthesis over hybrid Zn-Al2O3/SAPO-34 catalysts[J]. New Journal of Chemistry, 2018, 42(6): 4419-4431. |
27 | LI Z, MARTÍNEZ-TRIGUERO J, CONCEPCIÓN P, et al. Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution[J]. Physical Chemistry Chemical Physics, 2013, 15(35): 14670-14680. |
28 | 袁奋云. 过渡金属改性SAPO-34催化甲醇制烯烃[D]. 太原:太原理工大学, 2012. |
YUAN F Y. Transition metals-modified SAPO-34 for methanol conversion to light olefins[D]. Taiyuan: Taiyuan University of Technology, 2012. | |
29 | AGHAEI E, HAGHIGHI M. High temperature synthesis of nanostructured Ce-SAPO-34 catalyst used in conversion of methanol to light olefins: effect of temperature on physicochemical properties and catalytic performance[J]. Journal of Porous Materials, 2015, 22(1): 187-200. |
30 | XU L, LIU Z M, DU A P, et al. Synthesis, characterization, and MTO performance of MeAPSO-34 molecular sieves[J]. Studies in Surface Science and Catalysis, 2004, 147: 445-450. |
31 | 季先进, 王继元, 曾崇余, 等. 焙烧温度对 TiO2 成型载体性能的影响[J]. 工业催化, 2008, 16(12): 30-33. |
JI X J, WANG J Y, ZENG C Y, et al. Effects of calcinations temperature on properties of formed TiO2 support[J]. Industrial Catalysis, 2008, 16(12): 30-33. | |
32 | 张同旺, 武雪峰, 侯拴弟. 催化剂积炭对甲醇制低碳烯烃效果的影响[J]. 石油学报(石油加工), 2011, 27(6):891-896. |
ZHANG T W, WU X F, HOU S D. The effect of coke deposition of catalyst on the reaction of methanol to olefins[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2011, 27(6):891-896. | |
33 | NIE R F, LEI H, PAN S Y, et al. Core-shell structured CuO-ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether[J]. Fuel, 2012, 96: 419-425. |
34 | SUN J, YANG G H, MA Q X, et al. Fabrication of active Cu-Zn nanoalloys on H-ZSM5 zeolite for enhanced dimethyl ether synthesis via syngas[J]. Journal of Materials Chemistry A, 2014, 2(23): 8637-8643. |
35 | YANG R Q, YU X C, ZHANG Y I, et al. A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2[J]. Fuel, 2008, 87(4/5): 443-450. |
36 | 辛勤, 罗孟飞. 现代催化研究方法[M].北京: 科学出版社, 2009: 21, 277. |
XIN Q, LUO M F. Modern catalytic research method[M]. Beijing: Science Press, 2009: 21, 277. | |
37 | JARONIEC M, SOLOVYOV L A. Improvement of the Kruk-Jaroniec-Sayar method for pore size analysis of ordered silicas with cylindrical mesopores[J]. Langmuir, 2006, 22: 6757-6760. |
38 | 魏民, 于跃, 许跃, 等. 水热合成法与机械混合法制备SAPO-34/ZSM-5复合分子筛的比较研究[J]. 应用化工, 2015(9):1694-1697. |
WEI M, YU Y, XU Y, et al. Comparison of composite molecular sieve SAPO-34/ZSM-5 synthesized by hydrothermal synthesis and physical mixing[J]. Applied Chemical Industry, 2015(9):1694-1697. | |
39 | LU P, SUN J, SHEN D M, et al. Direct syngas conversion to liquefed petroleum gas: importance of a multifunctional metal-zeolite interface[J]. Appl. Energy, 2018, 209: 1-7. |
40 | LI Z L, WANG J J, QU Y Z, et al. Highly selective conversion of carbon dioxide to lower olefns[J]. ACS Catal., 2017, 7: 8544-8548. |
41 | KIRILIN A V, DEWILDE J F, SANTOS V, et al. Conversion of synthesis gas to light olefins: impact of hydrogenation activity of methanol synthesis catalyst on the hybrid process selectivity over Cr-Zn and Cu-Zn with SAPO-34[J]. Industrial & Engineering Chemistry Research, 2017, 56(45): 13392-13401. |
42 | NIESKENS D L S, CIFTCI A, GROENENDIJK P E, et al. Production of light hydrocarbons from syngas using a hybrid catalyst[J]. Industrial & Engineering Chemistry Research, 2017, 56(10): 2722-2732. |
43 | ZHOU H B, LIU S, SU J J, et al. Light olefin synthesis from syngas over sulfide-zeolite composite catalyst[J]. Industrial & Engineering Chemistry Research, 2018, 57(20): 6815-6820. |
44 | LIU X L, WANG M H, ZHOU C, et al. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chemical Communications, 2018, 54(2): 140-143. |
45 | LIU X L, ZHOU W, YANG Y D, et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chemical Science, 2018, 9(20): 4708-4718. |
[1] | 张鹏, 孟凡会, 杨贵楠, 李忠. 金属氧化物在OX-ZEO催化剂中催化CO x 加氢制低碳烯烃研究进展[J]. 化工进展, 2022, 41(8): 4159-4172. |
[2] | 吴玉帅, 尤晴, 董旭杰, 朱子麒, 王旭, 陈汇勇, 马晓迅. 杂原子掺杂beta分子筛的烯烃环氧化催化性能[J]. 化工进展, 2022, 41(8): 4192-4203. |
[3] | 张嘉琪, 林丽娜, 高文桂, 祝星. CeO2的形貌对CuO/CeO2催化剂CO2加氢制甲醇性能的影响[J]. 化工进展, 2022, 41(8): 4213-4223. |
[4] | 周颖, 周红军, 徐春明. 氢能的思考及发展路径判断和实践[J]. 化工进展, 2022, 41(8): 4587-4592. |
[5] | 武传朋, 李传坤, 杨哲, 苟成冬, 高新江. 固体吸附材料脱除SO2研究进展[J]. 化工进展, 2022, 41(7): 3840-3854. |
[6] | 赵愉生, 崔瑞利, 牛贵峰, 赵元生, 程涛, 何盛宝, 宋俊男, 张霖宙. 俄罗斯渣油加氢处理技术开发与工业应用[J]. 化工进展, 2022, 41(7): 3582-3588. |
[7] | 庄雨婷, 王建华, 向智艳, 赵娟, 徐琼, 刘贤响, 尹笃林. 半纤维素及其衍生物转化为γ-戊内酯及其动力学研究进展[J]. 化工进展, 2022, 41(7): 3519-3533. |
[8] | 慕彦君, 宋倩倩, 王红秋, 付凯妹, 雪晶, 王春娇. 美国炼化行业低碳发展策略与启示[J]. 化工进展, 2022, 41(6): 2797-2805. |
[9] | 王龙, 刘永峰, 毕贵军, 宋金瓯. 基于量子化学计算柴油在CO2/O2氛围下的燃烧特性[J]. 化工进展, 2022, 41(6): 2948-2958. |
[10] | 陈波, 刘爱贤, 孙强, 王逸伟, 郭绪强, 杨庆伟, 龙有, 肖树萌, 马绍坤. 柴油加氢尾气中氢气的水合物法回收工业侧线试验[J]. 化工进展, 2022, 41(6): 2924-2930. |
[11] | 莫乾赐, 叶海波, 林行素, 李国华, 陈伟崇, 卢苇. 基于测试数据的蔗渣锅炉能量分析及能效提升措施[J]. 化工进展, 2022, 41(6): 3350-3359. |
[12] | 周红军, 周颖, 徐春明. 中国碳中和目标下CO2转化的思考与实践[J]. 化工进展, 2022, 41(6): 3381-3385. |
[13] | 张轩, 樊昕晔, 吴振宇, 郑丽君. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371. |
[14] | 李楠, 贾帅, 孙振峰, 孙长宇, 陈光进, 李璟明. 注CO2+N2混合气改造-开采CH4水合物储层[J]. 化工进展, 2022, 41(5): 2356-2363. |
[15] | 林栋, 冯翔, 刘熠斌, 陈小博, 杨朝合. 高性能钛硅分子筛可控合成及其催化丙烯气相环氧化研究进展[J]. 化工进展, 2022, 41(5): 2389-2403. |
|