1 |
曹礼梅, 王青, 张巍, 等. 典型燃煤电厂废SCR催化剂解析及环境管理思考[J]. 装备环境工程, 2018, 15(2): 45-51.
|
|
CAO Limei, WANG Qing, ZHANG Wei, et al. Spent SCR catalysts and environmental management in typical coal-fired power plant[J]. Equipment Environmental Engineering, 2018, 15(2): 45-51.
|
2 |
MCEWEN J S, GASPARD P, DE DECKER Y, et al. Catalytic reduction of NO2 with hydrogen on Pt field emitter tips: kinetic instabilities on the nanoscale[J]. Langmuir,2010, 26(21): 16381-16391.
|
3 |
SAVVA P G, COSTA C N. Hydrogen lean-deNOx as an alternative to the ammonia and hydrocarbon selective catalytic reduction (SCR)[J]. Catalysis Reviews: Science and Engineering, 2011, 53(2): 91-151.
|
4 |
LI Y H, LEE D W, HONG Y K, et al. Influence of Pd precursors on Pd/TiO2/Al2O3 catalysts for lean NOx reduction with CO and H2[J]. Reaction Kinetics Mechanisms and Catalysis, 2010, 99(2): 361-369.
|
5 |
COSTA C N, SAVVA P G, FIERRO J L G, et al. Industrial H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst[J]. Applied Catalysis B: Environmental,2007, 75(3/4): 147-156.
|
6 |
SHANGGUAN W F, TERAOKA Y, KAGAWA S. Simultaneous catalytic removal of NOx and diesel soot particulates over ternary AB2O4 spinel-type oxides[J]. Applied Catalysis B:Environmental, 1996, 8(2): 217-227.
|
7 |
DONG N, HE F Z, XIN J L, et al. Preparation of CoFe2O4 magnetic fiber nanomaterial via a template-assisted solvothermal method[J]. Materials Letters, 2015, 141: 238-241.
|
8 |
XU C C, SUN W, CAO L M, et al. Selective catalytic reduction of nitric oxide by hydrogen over NiFe2-xPdxO4 catalysts at low temperature[J]. Chemical Engineering Journal, 2016, 283: 1137-1144.
|
9 |
FIERRO G, FERRARIS G, DRAGONE R, et al. H2 reduction behavior and NO/N2O abatement catalytic activity of manganese based spinels doped with copper, cobalt and iron ions[J]. Catalysis Today, 2006, 116(1): 38-49.
|
10 |
YANG S J, LI J H, WANG C Z, et al. Fe-Ti spinel for the selective catalytic reduction of NO with NH3: mechanism and structure-activity relationship[J]. Applied Catalysis B:Environmental, 2012, 117: 73-80.
|
11 |
YANG S J, WANG C Z, CHEN J H, et al. A novel magnetic Fe-Ti-V spinel catalyst for the selective catalytic reduction of NO with NH3 in a broad temperature range[J]. Catalysis Science & Technology, 2012, 2(5): 915-917.
|
12 |
YANG S J, QI F H, XIONG S C, et al. MnOx supported on Fe-Ti spinel: a novel Mn based low temperature SCR catalyst with a high N2 selectivity[J]. Applied Catalysis B: Environmental, 2016, 181: 570-580.
|
13 |
KIJLSTRA W S, BRANDS D S, POELS E K, et al. Kinetics of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3 catalysts at low temperature[J]. Catalysis Today, 1999, 50(1): 133-140.
|
14 |
XU C C, SUN W, CAO L M, et al. Highly efficient Pd-doped ferrite spinel catalysts for the selective catalytic reduction of NO with H2 at low temperature[J]. Chemical Engineering Journal, 2016, 289: 231-238.
|
15 |
FERRI D, FORNI L, DEKKERS M A P, et al. NO reduction by H2 over perovskite-like mixed oxides[J]. Applied Catalysis B:Environmental, 1998, 16(4): 339-345.
|
16 |
DUAN K J, CHEN B H, ZHU T L, et al. Mn promoted Pd/TiO2-Al2O3 catalyst for the selective catalytic reduction of NOx by H2[J]. Applied Catalysis B: Environmental, 2015, 176: 618-626.
|
17 |
TAN X Y, LI G Y, ZHAO Y, et al. The effect of Cu content on the structure of Ni1-xCuxFe2O4 spinels[J]. Materials Research Bulletin, 2009, 44(12): 2160-2168.
|
18 |
AMER M A. Spectral studies of the ferrite system Zn0.5Cu0.5AlxFe2-xO4[J]. Hyperfine Interactions, 2000, 131(1/2/3/4): 29-42.
|
19 |
TSUKIMURA K, SASAKI S, KIMIZUKA N. Cation distributions in nickel ferrites[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1997, 36(6A): 3609-3612.
|
20 |
WANG C Z, YANG S J, CHANG H Z, et al. Structural effects of iron spinel oxides doped with Mn, Co, Ni and Zn on selective catalytic reduction of NO with NH3[J]. Journal of Molecular Catalysis A:Chemical, 2013, 376: 13-21.
|
21 |
QI G S, YANG R T, CHANG R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B:Environmental, 2004, 51(2): 93-106.
|
22 |
KANG S H, RYU J H, KIM J H, et al. Co-methanation of CO and CO2 on the NiX-Fe1-X/Al2O3 catalysts; effect of Fe contents[J]. Korean Journal of Chemical Engineering, 2011, 28(12): 2282-2286.
|
23 |
LEE M S, LEE J Y, LEE D W, et al. The effect of Zn addition into NiFe2O4 catalyst for high-temperature shift reaction of natural gas reformate assuming no external steam addition[J]. International Journal of Hydrogen Energy, 2012, 37(15): 11218-11226.
|