化工进展 ›› 2021, Vol. 40 ›› Issue (2): 594-604.DOI: 10.16085/j.issn.1000-6613.22020-1402
刘义涛1(), 朱明辉1, 杨子旭1, 孟博2, 涂维峰2, 韩一帆1,2(
)
收稿日期:
2020-07-20
修回日期:
2020-11-14
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
韩一帆
作者简介:
刘义涛(1994—),男,博士研究生,研究方向为化学工程。E-mail:基金资助:
Yitao LIU1(), Minghui ZHU1, Zixu YANG1, Bo MENG2, Weifeng TU2, Yifan HAN1,2(
)
Received:
2020-07-20
Revised:
2020-11-14
Online:
2021-02-05
Published:
2021-02-09
Contact:
Yifan HAN
摘要:
低碳烯烃是重要的化工原料,直接法合成气制低碳烯烃是非石油路线生产烯烃的新途径。本文首先介绍了直接法合成气催化转化制烯烃的两种工艺路线,即双功能催化剂反应偶联和费-托合成路线制低碳烯烃;接着对CO加氢反应的热力学进行了分析。重点从催化剂活性相、尺寸效应、助剂、金属载体相互作用等方面对合成气直接法制低碳烯烃催化剂的研究进展以及CO加氢反应机理进行了综述。文章指出:在基础研究方面,反应机理仍待进一步明晰,催化剂的开发应聚焦于对O/P及产物链长的精准调控;工业化方面,要考虑到真实的工业化反应环境与实验室反应之间的差异,同时要注意与上下游的产业联合。
中图分类号:
刘义涛, 朱明辉, 杨子旭, 孟博, 涂维峰, 韩一帆. 煤制化学品:合成气直接制低碳烯烃催化剂研究进展[J]. 化工进展, 2021, 40(2): 594-604.
Yitao LIU, Minghui ZHU, Zixu YANG, Bo MENG, Weifeng TU, Yifan HAN. Advances of catalysts for direct synthesis of lower olefins from syngas[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 594-604.
产物 | 主反应 |
---|---|
甲烷 | |
烷烃 | |
烯烃 | |
水气变换 | |
产物及类型 | 副反应 |
醇类 | |
Boudouard反应 | |
催化剂变化 | 反应式 |
催化剂氧化/还原 | |
体相碳化物生成 |
表1 CO加氢反应[7]
产物 | 主反应 |
---|---|
甲烷 | |
烷烃 | |
烯烃 | |
水气变换 | |
产物及类型 | 副反应 |
醇类 | |
Boudouard反应 | |
催化剂变化 | 反应式 |
催化剂氧化/还原 | |
体相碳化物生成 |
阶段 | 碳化物机理 | 烯醇机理 | CO插入机理 |
---|---|---|---|
链引发 | |||
链增长 | |||
链终止 |
表2 费-托合成反应机理[48-49]
阶段 | 碳化物机理 | 烯醇机理 | CO插入机理 |
---|---|---|---|
链引发 | |||
链增长 | |||
链终止 |
1 | TORRES G H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: a review[J]. ACS Catal., 2013, 3(9): 2130-2149. |
2 | TIAN P, WEI Y, YE M, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5: 1922-1938. |
3 | CAI Guangyu, LIU Zhongmin, SHI Renmin, et al. Light alkenes from syngas via dimethyl ether[J]. Appl. Catalysis, A, 1995, 125(1): 29-38. |
4 | JIAO F, LI J, PAN X, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
5 | CHENG K, GU B, LIU X L, et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie International Edition, 2016, 55(15): 4725-4728. |
6 | CHENG K, KANG J, ZHANG Q, et al. Reaction coupling as a promising methodology for selective conversion of syngas into hydrocarbons beyond Fischer-Tropsch synthesis[J]. Sci. China: Chem., 2017, 60(11): 1382-1385. |
7 | JAMES O O, CHOWDHURY B, MESUBI M A, et al. Reflections on the chemistry of the Fischer-Tropsch synthesis[J]. RSC Advances, 2012, 2(19): 7347-7366. |
8 | BÜSSEMEIER B, FROHNING C D, CORNILS B. Lower olefins via Fischer-Tropsch[J]. Hydrocarbon Processing, 1976, 55(11): 105. |
9 | DRY M E. The Fischer-Tropsch process: 1950—2000[J]. Catalysis Today, 2002, 71(3/4): 227-241. |
10 | TORRES G H M, BITTER J H, KHARE C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838. |
11 | CHANG Q, ZHANG C, LIU C, et al. Relationship between iron carbide phases (ϵ-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalyst[J]. ACS Catalysis, 2018, 8: 3304-3316. |
12 | XU K, SUN B, LIN J, et al. ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst[J]. Nat. Commun., 2014, 5: 5783. |
13 | LIU Y, CHEN J-F, BAO J, et al. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catalysis, 2015, 5(6): 3905-3909. |
14 | ZHONG L S, YU F, AN Y L, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538(7623): 84-87. |
15 | DEN B J P, RADSTAKE P B, BEZEMER G L, et al. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. Journal of the American Chemical Society, 2009, 131(20): 7197-7203. |
16 | BEZEMER G L, BITTER J H, KUIPERS H P C E, et al. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. Journal of the American Chemical Society, 2006, 128(12): 3956-3964. |
17 | TORRES G H M, BITTER J H, DAVIDIAN T, et al. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society, 2012, 134(39): 16207-16215. |
18 | O'BRIEN R J, XU L, SPICER R L, et al. Activity and selectivity of precipitated iron Fischer-Tropsch catalysts[J]. Catalysis Today, 1997, 36(3): 325-334. |
19 | MORALES F, WECKHUYSEN B M. Promotion effects in Co-based Fischer-Tropsch catalysis[J]. Catalysis, 2006, 19: 1-40. |
20 | HAYAKAWA H, TANAKA H, FUJIMOTO K. Studies on precipitated iron catalysts for Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2006, 310: 24-30. |
21 | MORADI G R, BASIR M M, TAEB A, et al. Promotion of Co/SiO2 Fischer-Tropsch catalysts with zirconium[J]. Catalysis Communications, 2003, 4(1): 27-32. |
22 | TAN K F, CHANG J, BORGNA A, et al. Effect of boron promotion on the stability of cobalt Fischer-Tropsch catalysts[J]. Journal of Catalysis, 2011, 280(1): 50-59. |
23 | BÜSSEMEIER B, FROHNING C D, HORN G, et al. Process for the production of unsaturated hydro-carbons: US4455395A[P]. 1984-06-19. |
24 | BÜSSEMEIER B, FROHNING C D, HORN G, et al. Process for the manufacture of unsaturated hydrocarbons: US4564642A[P]. 1986-01-14. |
25 | ROY S C, PRASAD H L, DUTTA P, et al. Conversion of syn-gas to lower alkenes over Fe-TiO2-ZnO-K2O catalyst system[J]. Applied Catalysis A: General, 2001, 220(1): 153-164. |
26 | TIHAY F, ROGER A C, KIENNEMANN A, et al. Fe-Co based metal/spinel to produce light olefins from syngas[J]. Catalysis Today, 2000, 58(4): 263-269. |
27 | TIHAY F, POURROY G, RICHARD P M, et al. Effect of Fischer-Tropsch synthesis on the microstructure of Fe-Co-based metal/spinel composite materials[J]. Applied Catalysis A: General, 2001, 206(1): 29-42. |
28 | KALAKKAD D S, SHROFF M D, KÖHLER S, et al. Attrition of precipitated iron Fischer-Tropsch catalysts[J]. Applied Catalysis A: General, 1995, 133(2): 335-350. |
29 | VAN D W L, NIEMANTSVERDRIET J W, VAN D K A M, et al. Effects of manganese oxide and sulphate on the olefin selectivity of iron catalysts in the Fischer-Tropsch reaction[J]. Applied Catalysis, 1982, 2(4): 273-288. |
30 | BROMFIELD T C, COVILLE N J. The effect of sulfide ions on a precipitated iron Fischer-Tropsch catalyst[J]. Applied Catalysis A: General, 1999, 186(1): 297-307. |
31 | BROMFIELD T C, COVILLE N J. Surface characterization of sulfided precipitated-iron Fischer-Tropsch catalysts by X-ray photoelectron spectroscopy[J]. Applied Surface Science, 1997, 119(1): 19-24. |
32 | WU B, BAI L, XIANG H, et al. An active iron catalyst containing sulfur for Fischer-Tropsch synthesis[J]. Fuel, 2004, 83(2): 205-212. |
33 | GOLDWASSER M R, DORANTES V E, PÉREZ Z M J, et al. Modified iron perovskites as catalysts precursors for the conversion of syngas to low molecular weight alkenes[J]. Journal of Molecular Catalysis A: Chemical, 2003, 193(1): 227-236. |
34 | SHI B, ZHANG Z, LIU Y, et al. Promotional effect of Mn-doping on the structure and performance of spinel ferrite microspheres for CO hydrogenation[J]. Journal of Catalysis, 2020, 381: 150-162. |
35 | BAKER B G, CLARK N J, MCARTHUR H, et al. Catalysts: WO1984000702[P]. 1984-03-01. |
36 | TORRES G H M, KOEKEN A C J, BITTER J H, et al. Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Journal of Catalysis, 2013, 303: 22-30. |
37 | ZAHNG Z P, ZHANG J, WANG X, et al. Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer-Tropsch to olefins[J]. Journal of Catalysis, 2018, 365: 71-85. |
38 | SUN J, LI X, TAGUCHI A, et al. Highly-dispersed metallic Ru nanoparticles sputtered on H-beta zeolite for directly converting syngas to middle isoparaffins[J]. ACS Catalysis, 2014, 4(1): 1-8. |
39 | LI Y-P, WANG T-J, WU C-Z, et al. Gasoline-range hydrocarbon synthesis over Co/SiO2/HZSM-5 catalyst with CO2-containing syngas[J]. Fuel Processing Technology, 2010, 91(4): 388-393. |
40 | HE J, LIU Z, YONEYAMA Y, et al. Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas[J]. Chemistry-a European Journal, 2006, 12(32): 8296-8304. |
41 | KANG S-H, BAE J W, SAI P P S, et al. Fischer-Tropsch synthesis using zeolite-supported iron catalysts for the production of light hydrocarbons[J]. Catalysis Letters, 2008, 125(3): 264. |
42 | XU L-Y, WANG Q-X, XU Y-D, et al. Promotion effect of K2O and MnO additives on the selective production of light alkenes via syngas over Fe/silicalite-2 catalysts[J]. Catalysis Letters, 1995, 31(2): 253-266. |
43 | DAS D, RAVICHANDRAN G, CHAKRABARTY D K. Conversion of syngas to light olefins over silicalite-1 supported iron and cobalt catalysts: effect of manganese addition[J]. Catalysis Today, 1997, 36(3): 285-293. |
44 | LIU, X, ZHOU W, YANG Y, et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem. Sci., 2018, 9 (20): 4708-4718. |
45 | PAN X, GONG K, CHEN Y. et al. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate[J]. 2018, 57 (17): 4692-4696. |
46 | MARKVOORT A J, SANTEN R A, HILBERS P A J, et al. Kinetics of the Fischer-Tropsch reaction[J]. Angew. Chem.: Int. Ed., 2012, 51(36): 9105-9109. |
47 | ZHANG Z P, DAI W W, XU X C, et al. MnOx promotional effects on olefins synthesis directly from syngas over bimetallic Fe-MnOx/SiO2 catalysts[J]. AIChE Journal, 2017, 63(10): 4451-4464. |
48 | DAVIS B H. Fischer-Tropsch synthesis: reaction mechanisms for iron catalysts[J]. Catalysis Today, 2009, 141(1): 25-33. |
49 | VAN D L J, BOTES F G, CIOBICA I M, et al. Fischer-Tropsch synthesis: catalysts and chemistry. In comprehensive inorganic chemistry II[M]. Second Edition, Poeppelmeier J R, Ed., Amsterdam: Elsevier, 2013: 525-557. |
50 | LAHTINEN J, VAARI J, KAURAALA K. Adsorption and structure dependent desorption of CO on Co (0001) [J]. Surface Science, 1998, 418(3): 502-510. |
51 | BEITEL G A, LASKOV A, OOSTERBEEK H, et al. Polarization modulation infrared reflection absorption spectroscopy of CO adsorption on Co (0001) under a high-pressure regime[J]. The Journal of Physical Chemistry, 1996, 100(30): 12494-12502. |
52 | KRISHNAMOORTHY S, LI A, IGLESIA E. Pathways for CO2 formation and conversion during Fischer-Tropsch synthesis on iron-based catalysts[J]. Catalysis Letters, 2002, 80(1): 77-86. |
53 | OJEDA M, NABAR R, NILEKAR A U, et al. CO activation pathways and the mechanism of Fischer-Tropsch synthesis[J]. Journal of Catalysis, 2010, 272(2): 287-297. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[13] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 899
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 701
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |