1 |
TORRES G H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: a review[J]. ACS Catal., 2013, 3(9): 2130-2149.
|
2 |
TIAN P, WEI Y, YE M, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5: 1922-1938.
|
3 |
CAI Guangyu, LIU Zhongmin, SHI Renmin, et al. Light alkenes from syngas via dimethyl ether[J]. Appl. Catalysis, A, 1995, 125(1): 29-38.
|
4 |
JIAO F, LI J, PAN X, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068.
|
5 |
CHENG K, GU B, LIU X L, et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie International Edition, 2016, 55(15): 4725-4728.
|
6 |
CHENG K, KANG J, ZHANG Q, et al. Reaction coupling as a promising methodology for selective conversion of syngas into hydrocarbons beyond Fischer-Tropsch synthesis[J]. Sci. China: Chem., 2017, 60(11): 1382-1385.
|
7 |
JAMES O O, CHOWDHURY B, MESUBI M A, et al. Reflections on the chemistry of the Fischer-Tropsch synthesis[J]. RSC Advances, 2012, 2(19): 7347-7366.
|
8 |
BÜSSEMEIER B, FROHNING C D, CORNILS B. Lower olefins via Fischer-Tropsch[J]. Hydrocarbon Processing, 1976, 55(11): 105.
|
9 |
DRY M E. The Fischer-Tropsch process: 1950—2000[J]. Catalysis Today, 2002, 71(3/4): 227-241.
|
10 |
TORRES G H M, BITTER J H, KHARE C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838.
|
11 |
CHANG Q, ZHANG C, LIU C, et al. Relationship between iron carbide phases (ϵ-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalyst[J]. ACS Catalysis, 2018, 8: 3304-3316.
|
12 |
XU K, SUN B, LIN J, et al. ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst[J]. Nat. Commun., 2014, 5: 5783.
|
13 |
LIU Y, CHEN J-F, BAO J, et al. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catalysis, 2015, 5(6): 3905-3909.
|
14 |
ZHONG L S, YU F, AN Y L, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538(7623): 84-87.
|
15 |
DEN B J P, RADSTAKE P B, BEZEMER G L, et al. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. Journal of the American Chemical Society, 2009, 131(20): 7197-7203.
|
16 |
BEZEMER G L, BITTER J H, KUIPERS H P C E, et al. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. Journal of the American Chemical Society, 2006, 128(12): 3956-3964.
|
17 |
TORRES G H M, BITTER J H, DAVIDIAN T, et al. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society, 2012, 134(39): 16207-16215.
|
18 |
O'BRIEN R J, XU L, SPICER R L, et al. Activity and selectivity of precipitated iron Fischer-Tropsch catalysts[J]. Catalysis Today, 1997, 36(3): 325-334.
|
19 |
MORALES F, WECKHUYSEN B M. Promotion effects in Co-based Fischer-Tropsch catalysis[J]. Catalysis, 2006, 19: 1-40.
|
20 |
HAYAKAWA H, TANAKA H, FUJIMOTO K. Studies on precipitated iron catalysts for Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2006, 310: 24-30.
|
21 |
MORADI G R, BASIR M M, TAEB A, et al. Promotion of Co/SiO2 Fischer-Tropsch catalysts with zirconium[J]. Catalysis Communications, 2003, 4(1): 27-32.
|
22 |
TAN K F, CHANG J, BORGNA A, et al. Effect of boron promotion on the stability of cobalt Fischer-Tropsch catalysts[J]. Journal of Catalysis, 2011, 280(1): 50-59.
|
23 |
BÜSSEMEIER B, FROHNING C D, HORN G, et al. Process for the production of unsaturated hydro-carbons: US4455395A[P]. 1984-06-19.
|
24 |
BÜSSEMEIER B, FROHNING C D, HORN G, et al. Process for the manufacture of unsaturated hydrocarbons: US4564642A[P]. 1986-01-14.
|
25 |
ROY S C, PRASAD H L, DUTTA P, et al. Conversion of syn-gas to lower alkenes over Fe-TiO2-ZnO-K2O catalyst system[J]. Applied Catalysis A: General, 2001, 220(1): 153-164.
|
26 |
TIHAY F, ROGER A C, KIENNEMANN A, et al. Fe-Co based metal/spinel to produce light olefins from syngas[J]. Catalysis Today, 2000, 58(4): 263-269.
|
27 |
TIHAY F, POURROY G, RICHARD P M, et al. Effect of Fischer-Tropsch synthesis on the microstructure of Fe-Co-based metal/spinel composite materials[J]. Applied Catalysis A: General, 2001, 206(1): 29-42.
|
28 |
KALAKKAD D S, SHROFF M D, KÖHLER S, et al. Attrition of precipitated iron Fischer-Tropsch catalysts[J]. Applied Catalysis A: General, 1995, 133(2): 335-350.
|
29 |
VAN D W L, NIEMANTSVERDRIET J W, VAN D K A M, et al. Effects of manganese oxide and sulphate on the olefin selectivity of iron catalysts in the Fischer-Tropsch reaction[J]. Applied Catalysis, 1982, 2(4): 273-288.
|
30 |
BROMFIELD T C, COVILLE N J. The effect of sulfide ions on a precipitated iron Fischer-Tropsch catalyst[J]. Applied Catalysis A: General, 1999, 186(1): 297-307.
|
31 |
BROMFIELD T C, COVILLE N J. Surface characterization of sulfided precipitated-iron Fischer-Tropsch catalysts by X-ray photoelectron spectroscopy[J]. Applied Surface Science, 1997, 119(1): 19-24.
|
32 |
WU B, BAI L, XIANG H, et al. An active iron catalyst containing sulfur for Fischer-Tropsch synthesis[J]. Fuel, 2004, 83(2): 205-212.
|
33 |
GOLDWASSER M R, DORANTES V E, PÉREZ Z M J, et al. Modified iron perovskites as catalysts precursors for the conversion of syngas to low molecular weight alkenes[J]. Journal of Molecular Catalysis A: Chemical, 2003, 193(1): 227-236.
|
34 |
SHI B, ZHANG Z, LIU Y, et al. Promotional effect of Mn-doping on the structure and performance of spinel ferrite microspheres for CO hydrogenation[J]. Journal of Catalysis, 2020, 381: 150-162.
|
35 |
BAKER B G, CLARK N J, MCARTHUR H, et al. Catalysts: WO1984000702[P]. 1984-03-01.
|
36 |
TORRES G H M, KOEKEN A C J, BITTER J H, et al. Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Journal of Catalysis, 2013, 303: 22-30.
|
37 |
ZAHNG Z P, ZHANG J, WANG X, et al. Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer-Tropsch to olefins[J]. Journal of Catalysis, 2018, 365: 71-85.
|
38 |
SUN J, LI X, TAGUCHI A, et al. Highly-dispersed metallic Ru nanoparticles sputtered on H-beta zeolite for directly converting syngas to middle isoparaffins[J]. ACS Catalysis, 2014, 4(1): 1-8.
|
39 |
LI Y-P, WANG T-J, WU C-Z, et al. Gasoline-range hydrocarbon synthesis over Co/SiO2/HZSM-5 catalyst with CO2-containing syngas[J]. Fuel Processing Technology, 2010, 91(4): 388-393.
|
40 |
HE J, LIU Z, YONEYAMA Y, et al. Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas[J]. Chemistry-a European Journal, 2006, 12(32): 8296-8304.
|
41 |
KANG S-H, BAE J W, SAI P P S, et al. Fischer-Tropsch synthesis using zeolite-supported iron catalysts for the production of light hydrocarbons[J]. Catalysis Letters, 2008, 125(3): 264.
|
42 |
XU L-Y, WANG Q-X, XU Y-D, et al. Promotion effect of K2O and MnO additives on the selective production of light alkenes via syngas over Fe/silicalite-2 catalysts[J]. Catalysis Letters, 1995, 31(2): 253-266.
|
43 |
DAS D, RAVICHANDRAN G, CHAKRABARTY D K. Conversion of syngas to light olefins over silicalite-1 supported iron and cobalt catalysts: effect of manganese addition[J]. Catalysis Today, 1997, 36(3): 285-293.
|
44 |
LIU, X, ZHOU W, YANG Y, et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem. Sci., 2018, 9 (20): 4708-4718.
|
45 |
PAN X, GONG K, CHEN Y. et al. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate[J]. 2018, 57 (17): 4692-4696.
|
46 |
MARKVOORT A J, SANTEN R A, HILBERS P A J, et al. Kinetics of the Fischer-Tropsch reaction[J]. Angew. Chem.: Int. Ed., 2012, 51(36): 9105-9109.
|
47 |
ZHANG Z P, DAI W W, XU X C, et al. MnOx promotional effects on olefins synthesis directly from syngas over bimetallic Fe-MnOx/SiO2 catalysts[J]. AIChE Journal, 2017, 63(10): 4451-4464.
|
48 |
DAVIS B H. Fischer-Tropsch synthesis: reaction mechanisms for iron catalysts[J]. Catalysis Today, 2009, 141(1): 25-33.
|
49 |
VAN D L J, BOTES F G, CIOBICA I M, et al. Fischer-Tropsch synthesis: catalysts and chemistry. In comprehensive inorganic chemistry II[M]. Second Edition, Poeppelmeier J R, Ed., Amsterdam: Elsevier, 2013: 525-557.
|
50 |
LAHTINEN J, VAARI J, KAURAALA K. Adsorption and structure dependent desorption of CO on Co (0001) [J]. Surface Science, 1998, 418(3): 502-510.
|
51 |
BEITEL G A, LASKOV A, OOSTERBEEK H, et al. Polarization modulation infrared reflection absorption spectroscopy of CO adsorption on Co (0001) under a high-pressure regime[J]. The Journal of Physical Chemistry, 1996, 100(30): 12494-12502.
|
52 |
KRISHNAMOORTHY S, LI A, IGLESIA E. Pathways for CO2 formation and conversion during Fischer-Tropsch synthesis on iron-based catalysts[J]. Catalysis Letters, 2002, 80(1): 77-86.
|
53 |
OJEDA M, NABAR R, NILEKAR A U, et al. CO activation pathways and the mechanism of Fischer-Tropsch synthesis[J]. Journal of Catalysis, 2010, 272(2): 287-297.
|