化工进展 ›› 2021, Vol. 40 ›› Issue (2): 577-593.DOI: 10.16085/j.issn.1000-6613.32020-1403
张超1(), 张玉龙1, 朱明辉1, 孟博2, 涂维峰2, 韩一帆1,2()
收稿日期:
2020-07-20
修回日期:
2020-10-28
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
韩一帆
作者简介:
张超(1994—),男,博士研究生,研究方向为CO2高值化利用。E-mail:基金资助:
Chao ZHANG1(), Yulong ZHANG1, Minghui ZHU1, Bo MENG2, Weifeng TU2, Yifan HAN1,2()
Received:
2020-07-20
Revised:
2020-10-28
Online:
2021-02-05
Published:
2021-02-09
Contact:
Yifan HAN
摘要:
大气中CO2浓度逐年升高,而其高值化利用是实现减排的重要途径之一。低碳烯烃是重要的化工原料,CO2作为碳源加氢制取烯烃(CTO)是缓解化石能源的消耗及温室效应的有效方法之一。铁基催化剂因其优异的催化反应性能,被视为该反应最具应用前景的催化剂之一;但铁基催化剂烯烃选择性仍有待进一步提高。本文综述了铁基催化剂CTO反应研究进展,包括反应热力学分析、理论模型、催化剂设计与开发(助剂和载体对催化剂结构及性能的影响)、反应机理、构-效关系、失活机理等;提出未来催化研究方向,即借助Operando技术聚焦反应过程中催化剂活性相的动态结构变化规律,探究外界因素引起的催化材料表界面的作用机制,为工业催化剂的理性设计提供思路。
中图分类号:
张超, 张玉龙, 朱明辉, 孟博, 涂维峰, 韩一帆. CO2 高值化利用新途径:铁基催化剂CO2加氢制烯烃研究进展[J]. 化工进展, 2021, 40(2): 577-593.
Chao ZHANG, Yulong ZHANG, Minghui ZHU, Bo MENG, Weifeng TU, Yifan HAN. New pathway for CO2 high-valued utilization: Fe-based catalysts for CO2 hydrogenation to low olefins[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 577-593.
1 | Mauna Loa Observatory. NOAA-NCEI state of the climate: global analysis [EB/OL]. [2019-10-07]. . |
2 | MEEHL Gerald A, WASHINGTON Warren M, COLLINS William D, et al. How much more global warming and sea level rise?[J]. Science, 2005, 307: 1769-1772. |
3 | WANG Wei, WANG Shengping, MA Xinbin, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Review, 2011, 40: 3703-3727. |
4 | DATTA Shuvo Jit, KHUMNOON Chutharat, Zhen Hao LEE, et al. CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate[J]. Science, 2015, 350: 302-306. |
5 | BROECKER Wallace S. CO2 Arithmetic[J]. Science, 2007, 315: 1371-1371. |
6 | MATSUMOTO Hiroyo, HAMASAKI Akihiro, SIOJI Norio, et al. Influence of CO2, SO2 and NO in flue gas on microalgae productivity[J]. Journal of Chemical Engineering of Japan, 1997, 30: 620-624. |
7 | 但世辉,方向东. 二氧化碳的另一面——海洋酸化[J]. 化学教育, 2013(9): 9-13. |
Shihui DAN,FANG Xiangdong. The other side of carbon dioxide—ocean acidification[J]. Chinese Journal of Chemical Education, 2013(9): 9-13. | |
8 | BP. Statistical Review of World Energy[EB/OL]. [2017-06]. . |
9 | 王文蔚,王祖明. 能源研究与利用[J]. 中国能源可持续发展的途径, 2018(6): 41-45. |
WANG Wenwei,WANG Zuming. Paths for sustainable development of China’s energy[J]. Energy Research & Utilization, 2018(6): 41-45. | |
10 | 中国石油新闻中心. 中国原油对外依存度近70%天然气超过40%[EB/OL]. [2020-05-25] . |
China Petroleum News Center. China relies on nearly 70% of its crude oil and more than 40% of its natural gas[EB/OL]. [2020-05-25]. . | |
11 | 赵晓飞. 工业经济回暖,能源市场小“惊喜”不断[J]. 中国石油和化工, 2017(8): 20-22. |
ZHAO Xiaofei. The recovery of industrial economy and the "surprises" of energy market[J]. China Petroleum and Chemical Industry, 2017(8): 20-22. | |
12 | 李妍,花翠,张玉春. 碳交易机制内的限排企业行为对策研究——以北京碳交易市场为例[J]. 工业技术与职业教育, 2018, 16(4): 83-86. |
LI Yan, HUA Cui, ZHANG Yuchun. Behavioral strategies of restricted enterprises in carbon trading mechanism——A case study of Beijing carbon trading market[J]. Industrial Technology and Vocational Education, 2018,16(4): 83-86. | |
13 | POROSOFF Marc D, YAN Binhang, CHEN Jingguang G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities[J]. Energy & Environmental Science, 2016, 9: 62-73. |
14 | AYGüN A, YENISOY-KARAKAŞ S, DUMAN I. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties[J]. Microporous and Mesoporous Materials, 2003, 66: 189-195. |
15 | DORNER Robert W, HARDY Dennis R, WILLIAMS Frederick W, et al. Heterogeneous catalytic CO2 conversion to value-added hydrocarbons[J]. Energy Environmental Science, 2010, 3: 884-890. |
16 | MALYSHENKO S P, GRYAZNOV A N, FILATOV N I. High-pressure H2/O2-steam generators and their possible applications[J]. International Journal of Hydrogen Energy, 2004, 29: 589-596. |
17 | 付汉卿, 马春令, 刘刚, 等. 富余氢气的综合利用[J]. 中国氯碱, 2011(9): 15-16. |
FU Hanqing, MA Chunling, LIU Gang, et al. Comprehensive utilization of surplus hydrogen[J]. China Chlor-Alkali, 2011(9): 15-16. | |
18 | 立鼎产业研究网. 2018年全球乙烯供需稳增,开工率高位[EB/OL]. [2018-04-11] . |
Leading Industry Research. In2018, global ethylene supply and demand increased steadily, with a high operating rate[EB/OL]. [2018-04-11]. . | |
19 | 唐可. 2019重点产品产能预警报告发布[J]. 中国石油与化工, 2019(5): 78. |
TANG Ke. 2019 Key product capacity warning report was released[J].China Petroleum and Chemical Industry, 2019(5): 78. | |
20 | WANG Wan-Hui, HIMEDA Yuichiro, MUCKERMAN James T, et al. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction[J]. Chemical Reviews, 2015, 115: 12936-12973. |
21 | CHENG Ya-Hsin, NGUYEN Van-Huy, CHAN Hsiang-Yu, et al. Photo-enhanced hydrogenation of CO2 to mimic photosynthesis by CO co-feed in a novel twin reactor[J]. Applied Energy, 2015, 147: 318-324. |
22 | Jai Hyun KOH, Da Hye WON, Taedaehyeong EOM, et al. Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst[J]. ACS Catalysis, 2017, 7: 5071-5077. |
23 | BEBELIS S, KARASALI H, VAYENAS C G. Electrochemical promotion of the CO2 hydrogenation on Pd/YSZ and Pd/β-Al2O3 catalyst-electrodes[J]. Solid State Ionics, 2008, 179: 1391-1395. |
24 | HUFF Chelsea A, SANFORD Melanie S. Cascade catalysis for the Homogeneous hydrogenation of CO2 to methanol[J]. Journal of the American Chemical Society, 2011, 133: 18122-18125. |
25 | ARENA Francesco, ITALIANO Giuseppe, BARBERA Katia, et al. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Applied Catalysis A: General, 2008, 350: 16-23. |
26 | FISCHER Franz, TROPSCH Hans. Über die direkte Synthese von Erdöl-Kohlenwasserstoffen bei gewöhnlichem Druck. , Erste Mitteilung[J]. Berichte der deutschen chemischen Gesellschaft, A and B Series, 1926, 59: 830-831. |
27 | TORRES GALVIS H M, BITTER J H, DAVIDIAN T, et al. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society, 2012, 134: 16207-16215. |
28 | JIAO Feng, LI Jinjing, PAN Xiulian, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351: 1065-1068. |
29 | VISCONTI Carlo Giorgio, MARTINELLI Michela, FALBO Leonardo, et al. CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst[J]. Applied Catalysis B: Environmental, 2017, 200: 530-542. |
30 | GRABOW L C, MAVRIKAKIS M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation[J]. ACS Catalysis, 2011, 1: 365-384. |
31 | YANG Ce, ZHAO Huabo, HOU Yanglong, et al. Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. Journal of the American Chemical Society, 2012, 134: 15814-15821. |
32 | CHEN Ching-Shiun, CHENG Wu-Hsun, LIN Shou-Shiun. Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst[J]. Applied Catalysis A: General, 2003, 238: 55-67. |
33 | MARTIN Oliver, MARTíN Antonio J, MONDELLI Cecilia, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angewandte Chemie: International Edition, 2016, 55: 6261-6265. |
34 | YE Jingyun, LIU Changjun, GE Qingfeng. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface[J]. The Journal of Physical Chemistry C, 2012, 116: 7817-7825. |
35 | RUNGTAWEEVORANIT Bunyarat, BAEK Jayeon, ARAUJO Joyce R, et al. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol[J]. Nano Letters, 2016, 16: 7645-7649. |
36 | GUTTERøD Emil Sebastian, Sigurd ØIEN-ØDEGAARD, BOSSERS Koen, et al. CO2 Hydrogenation over Pt-containing UiO-67 Zr-MOFs—The base case[J]. Industrial & Engineering Chemistry Research, 2017, 56: 13206-13218. |
37 | CHIAVASSA Dante L, BARRANDEGUY Julieta, BONIVARDI Adrian L, et al. Methanol synthesis from CO2/H2 using Ga2O3-Pd/silica catalysts: Impact of reaction products[J]. Catalysis Today, 2008, 133-135: 780-786. |
38 | QU Jin, ZHOU Xiwen, XU Feng, et al. Shape effect of Pd-promoted Ga2O3 nanocatalysts for methanol synthesis by CO2 hydrogenation[J]. The Journal of Physical Chemistry C, 2014, 118: 24452-24466. |
39 | AN Xin, ZUO Yi-Zan, ZHANG Qiang, et al. Dimethyl Ether Synthesis from CO2 hydrogenation on a CuO-ZnO-Al2O3-ZrO2/HZSM-5 bifunctional catalyst[J]. Industrial & Engineering Chemistry Research, 2008, 47: 6547-6554. |
40 | GAO Wengui, WANG Hua, WANG Yuhao, et al. Dimethyl ether synthesis from CO2 hydrogenation on La-modified CuO-ZnO-Al2O3/HZSM-5 bifunctional catalysts[J]. Journal of Rare Earths, 2013, 31: 470-476. |
41 | LIU Xiaoliang, WANG Mengheng, ZHOU Cheng, et al. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chemical Communications, 2018, 54: 140-143. |
42 | ARAKAWA Hironori. Research and development on new synthetic routes for basic chemicals by catalytic hydrogenation of CO2[J]. Studies in Surface Science and Catalysis, 1998, 114: 19-30. |
43 | AMOYAL Meital, Roxana VIDRUK-NEHEMYA, LANDAU Miron V, et al. Effect of potassium on the active phases of Fe catalysts for carbon dioxide conversion to liquid fuels through hydrogenation[J]. Journal of Catalysis, 2017, 348: 29-39. |
44 | ZHANG Yulong, FU Donglong, LIU Xianglin, et al. Operando spectroscopic study of dynamic structure of iron oxide catalysts during CO2 hydrogenation[J]. ChemCatChem, 2018, 10: 1272-1276. |
45 | ZHANG Yongqing, JACOBS Gary, SPARKS Dennis E, et al. CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts[J]. Catalysis Today, 2002, 71: 411-418. |
46 | JELETIC Matthew S, MOCK Michael T, APPEL Aaron M, et al. A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions[J]. Journal of the American Chemical Society, 2013, 135: 11533-11536. |
47 | YAO Benzhen, MA Wangjing, Sergio GONZALEZ-CORTES, et al. Thermodynamic study of hydrocarbon synthesis from carbon dioxide and hydrogen[J]. Greenhouse Gases: Science and Technology, 2017, 7(5): 942-957. |
48 | 余强 刘仲能, 王仰东, 等. 逆水煤气变换催化剂的制备及反应性能[J]. 化学反应工程与工艺, 2014, 30: 421-427. |
YU Qiang, LIU Zhongneng, WANG Yangdong,et al. Preparation and reaction performance of reverse water gas conversion catalyst [J].Chemical Reaction Engineering and Technology, 2014, 30: 421-427. | |
49 | YAO Benzhen, MA Wangjing, Sergio GONZALEZ-CORTES, et al. Thermodynamic study of hydrocarbon synthesis from carbon dioxide and hydrogen[J]. Greenhouse Gases: Science and Technology, 2017, 7: 942-957. |
50 | PRIETO Gonzalo. Carbon dioxide hydrogenation into higher hydrocarbons and oxygenates: thermodynamic and kinetic bounds and progress with heterogeneous and homogeneous catalysis[J]. ChemSusChem, 2017, 10: 1056-1070. |
51 | SCHULZ Hans. Short history and present trends of Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 1999, 186: 3-12. |
52 | PÉREZ-ALONSO F J, OJEDA M, HERRANZ T, et al. Carbon dioxide hydrogenation over Fe-Ce catalysts[J]. Catalysis Communications, 2008, 9: 1945-1948. |
53 | YOU Zhenya, DENG Weiping, ZHANG Qinghong, et al. Hydrogenation of carbon dioxide to light olefins over non-supported iron catalyst[J]. Chinese Journal of Catalysis, 2013, 34: 956-963. |
54 | WEI Jian, SUN Jian, WEN Zhiyong, et al. New insights into the effect of sodium on Fe3O4-based nanocatalysts for CO2 hydrogenation to light olefins[J]. Catalysis Science & Technology, 2016, 6: 4786-4793. |
55 | CHOI Pyoung Ho, Ki-Won JUN, Soo-Jae LEE, et al. Hydrogenation of carbon dioxide over alumina supported Fe-K catalysts[J]. Catalysis Letters, 1996, 40: 115-118. |
56 | XU Longya, WANG Qingxia, LIANG Dongbai, et al. The promotions of MnO and K2O to Fe/silicalite-2 catalyst for the production of light alkenes from CO2 hydrogenation[J]. Applied Catalysis A: General, 1998, 173: 19-25. |
57 | Wilfried NGANTSOUE-HOC, ZHANG Yongqing, O’BRIEN Robert J, et al. Fischer-Tropsch synthesis: activity and selectivity for group Ⅰ alkali promoted iron-based catalysts[J]. Applied Catalysis A: General, 2002, 236: 77-89. |
58 | ZHANG Jianli, LU Shipeng, SU Xiaojuan, et al. Selective formation of light olefins from CO2 hydrogenation over Fe-Zn-K catalysts[J]. Journal of CO2 Utilization, 2015, 12: 95-100. |
59 | WEI Jian, GE Qingjie, YAO Ruwei, et al. Directly converting CO2 into a gasoline fuel[J]. Nature Communications, 2017, 8: 15174. |
60 | GUO Lisheng, SUN Jian, JI Xuewei, et al. Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts[J]. Communications Chemistry, 2018, 1: 11. |
61 | KANGVANSURA Praewpilin, CHEW Ly May, SAENGSUI Worasarit, et al. Product distribution of CO2 hydrogenation by K- and Mn-promoted Fe catalysts supported on N-functionalized carbon nanotubes[J]. Catalysis Today, 2016, 275: 59-65. |
62 | Sung-Chul LEE, JANG Jea-Hun, Byung-Yong LEE, et al. Promotion of hydrocarbon selectivity in CO2 hydrogenation by Ru component[J]. Journal of Molecular Catalysis A: Chemical, 2004, 210: 131-141. |
63 | Marita NIEMELä, Milja NOKKOSMäKI. Activation of carbon dioxide on Fe-catalysts[J]. Catalysis Today, 2005, 100: 269-274. |
64 | DORNER Robert W, HARDY Dennis R, WILLIAMS Frederick W, et al. C2-C5+ olefin production from CO2 hydrogenation using ceria modified Fe/Mn/K catalysts[J]. Catalysis Communications, 2011, 15: 88-92. |
65 | DORNER Robert W, HARDY Dennis R, WILLIAMS Frederick W, et al. K and Mn doped iron-based CO2 hydrogenation catalysts: detection of KAlH4 as part of the catalyst’s active phase[J]. Applied Catalysis A: General, 2010, 373: 112-121. |
66 | WILLAUER Heather D, ANANTH Ramagopal, OLSEN Matthew T, et al. Modeling and kinetic analysis of CO2 hydrogenation using a Mn and K-promoted Fe catalyst in a fixed-bed reactor[J]. Journal of CO2 Utilization, 2013, 3/4: 56-64. |
67 | AL-DOSSARY M, ISMAIL Adel A, FIERRO J L G, et al. Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction[J]. Applied Catalysis B: Environmental, 2015, 165: 651-660. |
68 | BAI Rongxian, TAN Yisheng, HAN Yizhuo. Study on the carbon dioxide hydrogenation to iso-alkanes over Fe-Zn-M/zeolite composite catalysts[J]. Fuel Processing Technology, 2004, 86: 293-301. |
69 | YANG Yong, XIANG Hongwei, ZHANG Rongle, et al. A highly active and stable Fe-Mn catalyst for slurry Fischer-Tropsch synthesis[J]. Catalysis Today, 2005, 106: 170-175. |
70 | FALBO Leonardo, MARTINELLI Michela, VISCONTI Carlo Giorgio, et al. Effects of Zn and Mn promotion in Fe-based catalysts used for COxhydrogenation to long-chain hydrocarbons[J]. Industrial & Engineering Chemistry Research, 2017, 56: 13146-13156. |
71 | PRASAD P S SAI, Jong Wook BAE, Ki-Won JUN, et al. Fischer-Tropsch synthesis by carbon dioxide hydrogenation on Fe-based catalysts[J]. Catalysis Surveys from Asia, 2008, 12: 170-183. |
72 | SAEIDI Samrand, AMIN Nor Aishah Saidina, RAHIMPOUR Mohammad Reza. Hydrogenation of CO2 to value-added products—A review and potential future developments[J]. Journal of CO2 Utilization, 2014, 5: 66-81. |
73 | Sang-Sung NAM, Soo-Jae LEE, KIM Ho, et al. Catalytic conversion of carbon dioxide into hydrocarbons over zinc promoted iron catalysts[J]. Energy Conversion and Management, 1997, 38: S397-S402. |
74 | CHOI Yo Han, Eun Cheol RA, KIM Eun Hyup, et al. Sodium-containing spinel zinc ferrite as a catalyst precursor for the selective synthesis of liquid hydrocarbon fuels[J]. ChemSusChem, 2017, 10: 4764-4770. |
75 | WANG Wenjia, JIANG Xiao, WANG Xiaoxing, et al. Fe-Cu bimetallic catalysts for selective CO2 hydrogenation to olefin-rich C2+ hydrocarbons[J]. Industrial & Engineering Chemistry Research, 2018, 57: 4535-4542. |
76 | CHOI Yo Han, JANG Youn Jeong, PARK Hunmin, et al. Carbon dioxide Fischer-Tropsch synthesis: a new path to carbon-neutral fuels[J]. Applied Catalysis B: Environmental, 2017, 202: 605-610. |
77 | QIN Zu-zeng, ZHOU Xin-hui, SU Tong-ming, et al. Hydrogenation of CO2 to dimethyl ether on La-, Ce-modified Cu-Fe/HZSM-5 catalysts[J]. Catalysis Communications, 2016, 75: 78-82. |
78 | SU Tongming, ZHOU Xinhui, QIN Zuzeng, et al. Intrinsic kinetics of dimethyl ether synthesis from plasma activation of CO2 hydrogenation over Cu-Fe-Ce/HZSM-5[J]. ChemPhysChem, 2017, 18: 299-309. |
79 | CHUN Dong Hyun, PARK Ji Chan, HONG Seok Yong, et al. Highly selective iron-based Fischer-Tropsch catalysts activated by CO2-containing syngas[J]. Journal of Catalysis, 2014, 317: 135-143. |
80 | HU Boxun, GUILD Curtis, SUIB Steven L. Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products[J]. Journal of CO2 Utilization, 2013, 1: 18-27. |
81 | SUO Zhang-huai, KOU Yuan, NIU Jian-zhong, et al. Characterization of TiO2-, ZrO2- and Al2O3-supported iron catalysts as used for CO2 hydrogenation[J]. Applied Catalysis A: General, 1997, 148: 301-313. |
82 | DING Fanshu, ZHANG Anfeng, LIU Min, et al. CO2 Hydrogenation to hydrocarbons over iron-based catalyst: effects of physicochemical properties of Al2O3 supports[J]. Industrial & Engineering Chemistry Research, 2014, 53: 17563-17569. |
83 | XIE C, CHEN C, YU Y, et al. Tandem catalysis for CO2 hydrogenation to C2-C4 hydrocarbons[J]. Nano Letter, 2017, 17: 3798-3802. |
84 | TORRES GALVIS Hirsa M, BITTER Johannes H, DAVIDIAN Thomas, et al. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society, 2012, 134: 16207-16215. |
85 | SAMANTA A, LANDAU M V, VIDRUK-NEHEMYA R, et al. CO2 hydrogenation to higher hydrocarbons on K/Fe-Al-O spinel catalysts promoted with Si, Ti, Zr, Hf, Mn and Ce[J]. Catalysis Science & Technology, 2017, 7: 4048-4063. |
86 | TORRENTE-MURCIANO L, CHAPMAN R S L, NARVAEZ-DINAMARCA A, et al. Effect of nanostructured ceria as support for the iron catalysed hydrogenation of CO2 into hydrocarbons[J]. Physical Chemistry Chemical Physics, 2016, 18: 15496-15500. |
87 | ZHANG Zhengpai, DAI Weiwei, XU Xinchao, et al. MnOx promotional effects on olefins synthesis directly from syngas over bimetallic Fe-MnOx/SiO2 catalysts[J]. AIChE Journal, 2017, 63: 4451-4464. |
88 | CHEW Ly May, KANGVANSURA Praewpilin, RULAND Holger, et al. Effect of nitrogen doping on the reducibility, activity and selectivity of carbon nanotube-supported iron catalysts applied in CO2 hydrogenation[J]. Applied Catalysis A: General, 2014, 482: 163-170. |
89 | MANNA Kuntal, ZHANG Teng, CARBONI Michaël, et al. Salicylaldimine-based metal-organic framework enabling highly active olefin hydrogenation with iron and cobalt catalysts[J]. Journal of the American Chemical Society, 2014, 136: 13182-13185. |
90 | László GUCZI, STEFLER G, GESZTI O, et al. CO hydrogenation over cobalt and iron catalysts supported over multiwall carbon nanotubes: effect of preparation[J]. Journal of Catalysis, 2006, 244: 24-32. |
91 | YANG Zhiqiang, GUO Shujing, PAN Xiulian, et al. FeN nanoparticles confined in carbon nanotubes for CO hydrogenation[J]. Energy & Environmental Science, 2011, 4: 4500-4503. |
92 | GUPTA Sharad, JAIN Vivek K, JAGADEESAN Dinesh. Fine tuning the composition and nanostructure of Fe-based core-shell nanocatalyst for efficient CO2 hydrogenation[J]. ChemNanoMat, 2016, 2: 989-996. |
93 | GAO Yunnan, LIU Shizhen, ZHAO Zhenqing, et al. Heterogeneous catalysis of CO2 hydrogenation to C2+ products[J]. Acta Phys.-Chim. Sin., 2018, 34: 858-872. |
94 | LIU Junhui, ZHANG Anfeng, LIU Min, et al. Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons[J]. Journal of CO2 Utililization, 2017, 21: 100-107. |
95 | RAMIREZ Adrian, GEVERS Lieven, BAVYKINA Anastasiya, et al. Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins[J]. ACS Catalysis, 2018, 8: 9174-9182. |
96 | NUMPILAI Thanapa, WITOON Thongthai, CHANLEK Narong, et al. Structure-activity relationships of Fe-Co/K-Al2O3 catalysts calcined at different temperatures for CO2 hydrogenation to light olefins[J]. Applied Catalysis A: General, 2017, 547: 219-229. |
97 | SU Xiaojuan, ZHANG Jianli, FAN Subing, et al. Effect of preparation of Fe-Zr-K catalyst on the product distribution of CO2 hydrogenation[J]. RSC Advances, 2015, 5: 80196-80202. |
98 | SATTHAWONG Ratchprapa, KOIZUMI Naoto, SONG Chunshan, et al. Light olefin synthesis from CO2 hydrogenation over K-promoted Fe-Co bimetallic catalysts[J]. Catalysis Today, 2015, 251: 34-40. |
99 | HU Boxun, FRUEH Samuel, GARCES Hector F, et al. Selective hydrogenation of CO2 and CO to useful light olefins over octahedral molecular sieve manganese oxide supported iron catalysts[J]. Applied Catalysis B: Environmental, 2013, 132/133: 54-61. |
100 | DING Fanshu, ZHANG Anfeng, LIU Min, et al. Effect of SiO2-coating of FeK/Al2O3 catalysts on their activity and selectivity for CO2 hydrogenation to hydrocarbons[J]. RSC Advances, 2014, 4: 8930. |
101 | Sung-Chul LEE, KIM Jun-Sik, SHIN Woo Cheol, et al. Catalyst deactivation during hydrogenation of carbon dioxide: effect of catalyst position in the packed bed reactor[J]. Journal of Molecular Catalysis A: Chemical, 2009, 301: 98-105. |
102 | MENG Qing, DONG Huanli, HU Wenping, et al. Recent progress of high performance organic thin film field-effect transistors[J]. Journal of Materials Chemistry, 2011, 21: 11708-11721. |
103 | DE SMIT Emiel, WECKHUYSEN Bert M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chemical Society Review, 2008, 37: 2758-2781. |
104 | RIEDEL Thomas, SCHAUB Georg, Ki-Won JUN, et al. Kinetics of CO2 hydrogenation on a K-promoted Fe catalyst[J]. Industrial & Engineering Chemistry Research, 2001, 40: 1355-1363. |
105 | ZHU Jie, ZHANG Guanghui, LI Wenhui, et al. Deconvolution of the particle size effect on CO2 hydrogenation over iron-based catalysts[J]. ACS Catalysis, 2020, 10: 7424-7433. |
106 | ZHANG Yulong, FU Donglong, LIU Xianglin, et al. Operando spectroscopic study of dynamic structure of iron oxide catalysts during CO2 hydrogenation[J]. ChemCatChem, 2018, 10: 1272-1276. |
107 | Jyh-Fu LEE, CHERN Wen-Shing, Min-Dar LEE, et al. Hydrogenation of carbon dioxide on iron catalysts doubly promoted with manganese and potassium[J]. The Canadian Journal of Chemical Engineering, 1992, 70: 511-515. |
108 | LANDAU Miron V, VIDRUK Roxana, HERSKOWITZ Moti. Sustainable production of green feed from carbon dioxide and hydrogen[J]. ChemSusChem, 2014, 7: 785-794. |
109 | ZHANG Yulong, CAO Chenxi, ZHANG Chao, et al. The study of structure-performance relationship of iron catalyst during a full life cycle for CO2 hydrogenation[J]. Journal of Catalysis, 2019, 378: 51-62. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[8] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[11] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[12] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[13] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[14] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[15] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |