化工进展 ›› 2021, Vol. 40 ›› Issue (S1): 215-222.DOI: 10.16085/j.issn.1000-6613.2021-0005
收稿日期:
2021-01-04
修回日期:
2021-01-20
出版日期:
2021-10-25
发布日期:
2021-11-09
通讯作者:
郑丽君
作者简介:
张轩(1987—),男,博士,工程师,研究方向为石油化工和新能源。E-mail:Received:
2021-01-04
Revised:
2021-01-20
Online:
2021-10-25
Published:
2021-11-09
Contact:
ZHENG Lijun
摘要:
氢能能量密度高、环境友好,是一种潜力巨大的可再生能源,可以有效减轻甚至解决传统化石能源所带来的全球气候挑战。利用太阳能光催化水解制氢是一种理想的制氢方法,其中光解催化剂是这一领域的研究核心。本文介绍了近些年TiO2、CdS和g-C3N4这3种最典型、最有前景的单相催化材料的研究现状及进展,分别对每种催化剂的特点和改性方法进行了总结。通过调变表面形貌或者与其他物质掺混,可以有效地改善光解催化剂对太阳能利用率不足、光生电子/空穴复合过快等问题,并由此提高光催化活性和稳定性,但离工业化仍有很大距离。最后指出了当前光解水制氢催化剂所面临的问题并展望了研究方向,为未来设计合成高效、稳定的光催化剂提供参考。
中图分类号:
张轩, 郑丽君. 光解水制氢单相催化剂研究进展[J]. 化工进展, 2021, 40(S1): 215-222.
ZHANG Xuan, ZHENG Lijun. Process of single phase photocatalysts for hydrogen production[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 215-222.
催化体系 | 照射条件 | 产氢速率/μmol·h-1·g-1 |
---|---|---|
Mo/g-C3N4[ | 300W氙灯 | 79 |
Cu/g-C3N4[ | 300W氙灯,λ>420nm | 3020 |
K/g-C3N4[ | 300W氙灯,λ=420nm | 1337.2 |
S/g-C3N4[ | 300W氙灯,λ>420nm | 1511.2 |
Br/g-C3N4[ | 300W氙灯,λ>420 nm | 48 |
P/g-C3N4[ | 300W氙灯,λ>420nm | 50.6 |
C/g-C3N4[ | 300W氙灯,λ=420nm | 807.4 |
O/g-C3N4[ | 300W氙灯,λ=420nm | 1968 |
表1 其他金属及非金属改性对g-C3N4的光催化制氢性能的影响
催化体系 | 照射条件 | 产氢速率/μmol·h-1·g-1 |
---|---|---|
Mo/g-C3N4[ | 300W氙灯 | 79 |
Cu/g-C3N4[ | 300W氙灯,λ>420nm | 3020 |
K/g-C3N4[ | 300W氙灯,λ=420nm | 1337.2 |
S/g-C3N4[ | 300W氙灯,λ>420nm | 1511.2 |
Br/g-C3N4[ | 300W氙灯,λ>420 nm | 48 |
P/g-C3N4[ | 300W氙灯,λ>420nm | 50.6 |
C/g-C3N4[ | 300W氙灯,λ=420nm | 807.4 |
O/g-C3N4[ | 300W氙灯,λ=420nm | 1968 |
29 | FAJRINA Nur, TAHIR Muhammad. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(2): 540-577. |
30 | LIN Zhongjin, WANG Xiaohong, LIU Jun, et al. On the role of localized surface plasmon resonance in UV-vis light irradiated Au/TiO2 photocatalysis systems: pros and cons[J]. Nanoscale, 2015, 7(9):4114-4123. |
1 | SUN Hewei, CHEN Jingjing, LIU Shan, et al. Photocatalytic H2 evolution of porous silicon derived from magnesiothermic reduction of mesoporous SiO2[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7216-7221. |
2 | FUJISHIMA Akira, HONDA Kenichi. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38. |
31 | ZHU Zhen, Cheng Tse KAO, TANG Bing Hong, et al. Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light[J]. Ceramics International, 2016, 42(6): 6749-6754. |
32 | ISMAEL Mohammed. Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe(Ⅲ) doped TiO2 nanoparticles[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103676-103685. |
3 | CHEN Shanshan, TAKATA Tsuyoshi, DOMEN Kazunari. Particulate photocatalysts for overall water splitting[J]. Nature Reviews Materials, 2017, 2(10): 1-17. |
4 | ISMAEL Mohammed, ELHADAD Engy, TAFFA Dereje, et al. Synthesis of phase pure hexagonal YFeO3 perovskite as efficient visible light active photocatalyst[J]. Catalysts, 2017, 7(11): 326-336. |
33 | MÉNDEZ Franklin J, Andrés GONZÁLEZ-MILLÁN, GARCÍA-MACEDO Jorge A, et al. A new insight into Au/TiO2-catalyzed hydrogen production from water-methanol mixture using lamps containing simultaneous ultraviolet and visible radiation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 14945-14954. |
34 | NISHIOKA Shunta, HYODO Junji, VEQUIZO Junie Jhon M, et al. Homogeneous electron doping into nonstoichiometric strontium titanate improves its photocatalytic activity for hydrogen and oxygen evolution[J]. ACS Catalysis, 2018, 8(8): 7190-7200. |
35 | SELVARAJ A, PARIMILADEVI R, RAJESH K B. Synthesis of nitrogen doped titanium dioxide (TiO2) and its photocatalytic performance for the degradation of indigo carmine dye[J]. Journal of Environmental Nanotechnology, 2013, 2(1): 35-41. |
36 | WANG Chong, HU Qianqian, HUANG Jiquan, et al. Effective water splitting using N-doped TiO2 films: role of preferred orientation on hydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(5): 1967-1971. |
5 | ISMAEL Mohammed, WARK Michael. Perovskite-type LaFeO3: photoelectrochemical properties and photocatalytic degradation of organic pollutants under visible light irradiation[J]. Catalysts, 2019, 9(4): 342-351. |
6 | TSUJI Issei, KATO Hideki, KUDO Akihiko. Photocatalytic hydrogen evolution on ZnS-CuInS2-AgInS2 solid solution photocatalysts with wide visible light absorption bands[J]. Chemistry of Materials, 2006, 18(7): 1969-1975. |
37 | XIANG Quanjun, YU Jiaguo, WANG Wenguang, et al. Nitrogen self-doped nanosized TiO2 sheets with exposed 001 facets for enhanced visible-light photocatalytic activity[J]. Chemical Communications, 2011, 47: 6906-6908. |
38 | PARAYIL Sreenivasan Koliyat, KIBOMBO Harrison S, WU Chia-Ming, et al. Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8257-8267. |
7 | ZHANG Fuxiang, MAEDA Kazuhiko, TAKATA Tsuyoshi, et al. Modification of oxysulfides with two nanoparticulate cocatalysts to achieve enhanced hydrogen production from water with visible light[J]. Chemical Communications, 2010, 46: 7313-7315. |
8 | EDALATI Kaveh, UEHIRO Ryoko, TAKECHI Shuhei, et al. Enhanced photocatalytic hydrogen production on GaN-ZnO oxynitride by introduction of strain-induced nitrogen vacancy complexes[J]. Acta Materialia, 2020, 185:149-156. |
9 | HUANG Cunping, YAO Weifeng, T-Raissi ALI, et al. Development of efficient photoreactors for solar hydrogen production[J]. Solar Energy, 2011, 85(1): 19-27. |
10 | XIAO Mu, WANG Zhiliang, Miaoqiang LYU, et al. Hollow nanostructures for photocatalysis: advantages and challenges[J]. Advanced Materials, 2019, 31(38): 1801369-1801374. |
11 | SUN Bojing, ZHOU Wei, LI Haoze, et al. Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production[J]. Advanced Materials, 2018, 30(43): 1804282-1804287. |
12 | XIAO Yu, GUO Xiangyang, YANG Nengcong, et al. Heterostructured MOFs photocatalysts for water splitting to produce hydrogen [J]. Journal of Energy Chemistry, 2021, 58: 508-522. |
13 | ISMAEL Mohammed. A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2nanoparticles[J]. Solar Energy, 2020, 211: 522-546. |
14 | Ryu ABE. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010, 11(4): 179-209. |
15 | MAEDA Kazuhiko, TERAMURA Kentaro, TAKATA Tsuyoshi, et al. Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: relationship between physical properties and photocatalytic activity[J]. Journal of Physical Chemistry B, 2005, 109(43): 20504-20510. |
16 | TAKANABE Kazuhiro. Addressing fundamental experimental aspects of photocatalysisstudies[J]. Journal of Catalysis, 2019, 370: 480-484. |
17 | KANG Yanshang, LU Yi, CHEN Kai, et al. Metal-organic frameworks with catalytic centers: from synthesis to catalytic application[J]. Coordination Chemistry Reviews, 2019, 378: 262-280. |
18 | ACHARYA Rashmi, NAIK Brundabana, PARIDA Kulamani. Cr(Ⅵ) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction[J]. Beilstein Journal of Nanotechnology, 2018, 9: 1448-1470. |
19 | FEIZPOOR Solmaz, Aziz HABIBI-YANGJEH, YUBUTA Kunio. Integration of carbon dots and polyaniline with TiO2 nanoparticles: substantially enhanced photocatalytic activity to removal various pollutants under visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367: 94-104. |
20 | MATSUZAKI Hiroki, MATSUI Yoshiko, UCHIDA Rokuroh, et al. Photocarrier dynamics in anatase TiO2 investigated by pump-probe absorption spectroscopy[J]. Journal of Applied Physics, 2014, 115(5): 053514-05319. |
21 | WANG Mengye, PANG Xinchang, ZHENG Dajiang, et al. Nonepitaxial growth of uniform and precisely size-tunable core/shell nanoparticles and their enhanced plasmon-driven photocatalysis[J]. Journal of Materials Chemistry A, 2016, 4(19): 7190-7199. |
22 | RAHIMI Nazanin, Randolph PAX, GRAY Evan M. Review of functional titanium oxides.Ⅱ: hydrogen-modified TiO2[J]. Progress in Solid State Chemistry, 2019, 55: 1-19. |
23 | ZHANG Dainan, MA Xiyang, ZHANG Huaiwu, et al. Enhanced photocatalytic hydrogen evolution activity of carbon and nitrogen self-doped TiO2 hollow sphere with the creation of oxygen vacancy and Ti3+[J]. Materials Today Energy, 2018, 10: 132-140. |
24 | ZHANG Xiangcheng, HU Weiyao, ZHANG Kaifu, et al. Ti3+ self-doped black TiO2 nanotubes with mesoporous nanosheet architecture as efficient solar-driven hydrogen evolution photocatalysts[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6894-6901. |
25 | SUN Mingjie, LIU Haobo, SUN Ziqi, et al. Donor-acceptor codoping effects on tuned visible light response of TiO2[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):104168-104172. |
26 | KIM Geo Jong, LEE Sang Moon, HONG Sung Chang, et al. Active oxygen species adsorbed on the catalyst surface and its effect on formaldehyde oxidation over Pt/TiO2 catalysts at room temperature; role of the Pt valence state on this reaction[J]. RSC Advances, 2018, 8(7): 3626-3636. |
27 | PRAKASH Jai, SUN Shuhui, SWART Hendrik C, et al. Noble metals-TiO2 nanocomposites: from fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications[J]. Applied Materials Today, 2018, 11: 82-135. |
28 | ZHANG Peng, WANG Tuo, GONG Jinlong. Current mechanistic understanding of surface reactions over water-splitting photocatalysts[J]. Chem., 2018, 4(2):223-245. |
39 | AL-MAMUN M R, KADER S, ISLAM M S, et al. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103248-103256. |
40 | KUMAR Ajay, REDDY Kumbam Lingeshwar, KUMAR Suneel, et al. Rational design and development of lanthanide-doped NaYF4@CdS-Au-RGO as quaternary plasmonic photocatalysts for harnessing visible-near-infrared broadband spectrum[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15565-15581. |
41 | SINGH A, SINHA A S K. Synthesis and characterization of CdS based ternary composite for enhanced visible light-driven photocatalysis[J]. Journal of Physics and Chemistry of Solids, 2018, 120: 123-132. |
42 | CHENG Lei, XIANG Quanjun, LIAO Yulong, et al. CdS-based photocatalysts[J]. Energy & Environmental Science, 2018, 11(6): 1362-1391. |
43 | SHABAEV A, EFROS A L. 1D Exciton spectroscopy of semiconductor nanorods[J]. Nano Letters, 2004, 4(10):1821-1825. |
44 | SHEN Rongchen, REN Doudou, DING Yingna, et al. Nanostructured CdS for efficient photocatalytic H2 evolution: a review[J]. Science China Materials, 2020, 63: 2153-2188. |
45 | XU You, ZHAO Weiwei, XU Rui, et al. Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution[J]. Chemical Communications, 2013, 49(84): 9803-9805. |
46 | BIE Chuanbiao, FU Junwei, CHENG Bei, et al. Ultrathin CdS nanosheets with tunable thickness and efficient photocatalytic hydrogen generation[J]. Applied Surface Science, 2018, 462: 606-614. |
47 | XIE Yameng, LIU Xiaohua, ZHANG Rui, et al. Ultrathin cadmium sulfide nanosheets for visible-light photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2020, 8(7): 3586-3589. |
48 | ZHANG Jun, GUO Yun, XIONG Yuhan, et al. An environmentally friendly Z-scheme WO3/CDots/CdS heterostructure with remarkable photocatalytic activity and anti-photocorrosion performance[J]. Journal of Catalysis, 2017, 356: 1-13. |
49 | LI Cuixia, HAN Lijun, LIU Rongji, et al. Controlled synthesis of CdS micro/nano leaves with (0001) facets exposed: enhanced photocatalytic activity toward hydrogen evolution[J]. Journal of Materials Chemistry, 2012, 22(45): 23815-23820. |
50 | MAJEED Imran, NADEEM Muhammad Amtiaz, HUSSAIN Ejaz, et al. Effect of deposition method on metal loading and photocatalytic activity of Au/CdS for hydrogen production in water electrolyte mixture[J]. International Journal of Hydrogen Energy, 2017, 42(5): 3006-3018. |
51 | ZHANG Li, FU Xianliang, MEMG Sugang, et al. Ultra-low content of Pt modified CdS nanorods: one-pot synthesis and high photocatalytic activity for H2 production under visible light[J]. Journal of Materials Chemistry A, 2015, 3(47): 23732-23742. |
52 | LIU Shuzi, GUO Zhuang, QIAN Xianhao, et al. Sonochemical deposition of ultrafine metallic Pt nanoparticles on CdS for efficient photocatalytic hydrogen evolution[J]. Sustain Energy Fuels, 2019, 3(47): 1048-1054. |
53 | HUANG Sheng, LIN Yu, YANG Jianhua, et al. Enhanced photocatalytic activity and stability of semiconductor by Ag doping and simultaneous deposition: the case of CdS[J]. RSC Advances, 2013, 3(43): 20782-20792. |
54 | MONIRUDDIN Md, OPPONG Ellis, STEWART David, et al. Designing CdS-based ternary heterostructures consisting of co-metal and CoOxcocatalysts for photocatalytic H2 evolution under visible light[J]. Inorganic Chemistry, 2019, 58(18):12325-12333. |
55 | YANG Hao, JIN Zhiliang, FAN Kai, et al. The roles of Ni nanoparticles over CdS nanorods for improved photocatalytic stability and activity[J]. Superlattices and Microstructures, 2017, 111: 687-695. |
56 | CHEN Jianmin, Siming LYU, SHEN Zirong, et al. Novel ZnCdS quantum dots engineering for enhanced visible-light-driven hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 13805-13814. |
57 | AL-HUSSAINI A S, EL-BANA W E, EL-GHAMAZ N A. New semiconducting core-shell nanocomposites[J]. Composite Interfaces, 2020, 27(4): 385-399. |
58 | OSSOSS K M, HASSAN M E R, AL-HUSSAINI A S. Novel Fe2O3@PANI-o-PDA core-shell nanocomposites for photocatalytic degradation of aromatic dyes[J]. Journal of Polymer Research, 2019, 26: 199-205. |
59 | YU Guiyang, WANG Xiang, CAO Jungang, et al. Plasmonic Au nanoparticles embedding enhances the activity and stability of CdS for photocatalytic hydrogen evolution[J]. Chemical Communications, 2016, 52(11): 2394-2397. |
60 | WANG Juan, WANG Guohong, WANG Xiao, et al. 3D/2D direct Z-scheme heterojunctions of hierarchical TiO2 microflowers/g-C3N4 nanosheets with enhanced charge carrier separation for photocatalytic H2 evolution[J]. Carbon, 2019, 149: 618-626. |
61 | FU Yanhui, LIANG Wei, GUO Jinqiu, et al. MoS2 quantum dots decorated g-C3N4/Ag heterostructures for enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2018, 430: 234-242. |
62 | CHEN Zhe, YANG Shuibin, TIAN Zhengfang, et al. NiS and grapheme as dual cocatalysts for the enhanced photocatalytic H2 production activity of g-C3N4[J]. Applied Surface Science, 2019, 469: 657-665. |
63 | JIA Jingjing, WHITE Edward R, CLANCY Adam J. et al. Fast exfoliation and functionalisation of two-dimensional crystalline carbon nitride by framework charging[J]. Angewandte Chemie, 2018,130(39): 12838-12842 |
64 | ZHANG Xiao, WANG Peng, YANG Ping, et al. Photo-chemical property evolution of superior thin g-C3N4nanosheets with their crystallinity and Pt deposition[J]. International Journal of Hydrogen Energy, 2020, 45(41):21523-21531. |
65 | LI Yunfeng, JIN Renxi, XING Yan, et al. Macroscopic foam-like holey ultrathin g-C3N4nanosheets for drastic improvement of visible-light photocatalytic activity[J]. Advanced Energy Materials, 2016, 6(24): 1601273-1601284. |
66 | HAN Qing, WANG Bing, GAO Jian, et al. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution[J]. ACS Nano, 2016, 10(2): 2745-2751. |
67 | SUN Jiuyu, LI Xingxing,Yang Jinlong. Significantly enhanced charge separation in rippled monolayer graphitic C3N4[J]. ChemCatChem, 2019, 11(24): 6252-6257. |
68 | PATNAIK Sulagna, MARTHA Satyabadi, MADRAS Giridhar, et al. The effect of sulfate pre-treatment to improve deposition of Au-nanoparticles in gold-modified sulphated g-C3N4 plasmonic photocatalyst towards visible light induced water reduction reaction[J]. Physical Chemistry Chemical Physics, 2016, 18(41): 28502-28514. |
69 | CAO Shaowen, JIANG Jing, ZHU Bicheng, et al. Shape-dependent photocatalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C3N4photocatalyst[J]. Physical Chemistry Chemical Physics, 2016, 18(28):19457-19463. |
70 | Man OU, WAN Shipeng, ZHONG Qin. Single Pt atoms deposition on g-C3N4nanosheetsfor photocatalytic H2 evolution or NO oxidation under visible light[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27043-27054. |
71 | CHEN Peiwen, LI Kui, YU Yuxiang, et al. Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution[J]. Applied Surface Science, 2017, 392:608-615. |
72 | SUN Chuanzhi, ZHANG Hui, LIU Hao, et al. Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4photocatalyst via nanoparticle metal Ni as cocatalyst[J]. Applied Catalysis B: Environmental, 2018, 235: 66-74. |
73 | MOON Gunhee, FUJITSUKA Mamoru, KIM Sooyeon, et al. Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements[J]. ACS Catalysis, 2017, 7(4): 2886-2895. |
74 | WANG Hao, YANG Chuanfeng, LI Ming, et al. Enhanced photocatalytic hydrogen production of restructured B/F codoped g-C3N4via post-thermal treatment[J]. Materials Letters, 2018, 212: 319-322. |
75 | ZHOU Yajun, ZHANG Lingxia, HUANG Weimin, et al. N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light[J]. Carbon, 2016, 99:111-117. |
76 | CHEN Dongdong, LIU Junguang, JIA Zhenzhen, et al. Efficient visible-light-driven hydrogen evolution and Cr(Ⅵ) reduction over porous P and Mo co-doped g-C3N4 with feeble N vacancies photocatalyst[J]. Journal of Hazardous Materials, 2019, 361: 294-304. |
77 | YAN Xiaoxiao, JIA Zhiyuan, CHE Haibing, et al. A selective ion replacement strategy for the synthesis of copper doped carbon nitride nanotubes with improved photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 234: 19-25. |
78 | WANG Yanyun, ZHAO Shuo, ZHANG Yiwei, et al. One-pot synthesis of K-doped g-C3N4nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation[J]. Applied Surface Science, 2018, 440: 258-265. |
79 | WANG Hao, BIAN Yaru, HU Jintang, et al. Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation[J]. Applied Catalysis B: Environmental, 2018, 238: 592-598. |
80 | LAN Zhian, ZHANG Guigang, WANG Xinchen. A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting[J]. Applied Catalysis B: Environmental, 2016, 192: 116-125. |
81 | ZHOU Yanjun, ZHANG Lingxia, LIU Jianjun, et al. Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and rhodamine B degradation under visible light[J]. Journal of Materials Chemistry A, 2015, 3(7): 3862-3867. |
82 | XIAO Peng, JIANG Deli, LIU Tong, et al. Facile synthesis of carbon-doped g-C3N4 for enhanced photocatalytic hydrogen evolution under visible light[J]. Materials Letters, 2018, 21: 111-113. |
83 | ZHANG Jingwen, GONG Si, MAHMOOD Nasir, et al. Oxygen-doped nanoporous carbon nitride via water-based homogeneous supramolecular assembly for photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 221: 9-16. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[13] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[14] | 吕程远, 张函, 杨明旺, 杜健军, 樊江莉. 生物成像用二氧杂环丁烷余辉发光体系的研究进展[J]. 化工进展, 2023, 42(8): 4108-4122. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |