化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4962-4974.DOI: 10.16085/j.issn.1000-6613.2021-0244
收稿日期:
2021-02-01
修回日期:
2021-03-30
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
崔志明
作者简介:
余素云(1996—),女,硕士研究生,研究方向为电催化。E-mail:基金资助:
YU Suyun(), LIANG Lecheng, CUI Zhiming()
Received:
2021-02-01
Revised:
2021-03-30
Online:
2021-09-05
Published:
2021-09-13
Contact:
CUI Zhiming
摘要:
甲醇的电催化氧化是直接甲醇燃料电池的核心反应,高效、长寿命的阳极催化剂的开发是直接甲醇燃料电池研究的一个重要方向。本文总结了近年来酸性环境中直接甲醇燃料电池阳极催化剂的研究进展,包括甲醇电催化反应机理、催化剂的设计合成及其应用。重点介绍了铂基催化剂纳米材料活性和稳定性的增强策略,如组分调控、形貌调控、非金属掺杂以及氧化物的协同催化、载体材料的选用等。最后,对阳极催化剂目前仍存在的制备成本高、催化剂耐久性不足、表征技术有限等问题进行了分析讨论,并对阳极催化剂未来的发展方向进行了展望。
中图分类号:
余素云, 梁乐程, 崔志明. 酸性环境中甲醇电氧化催化剂的研究进展[J]. 化工进展, 2021, 40(9): 4962-4974.
YU Suyun, LIANG Lecheng, CUI Zhiming. Recent advances of nanostructured catalysts for methanol oxidation in acidic solution[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4962-4974.
1 | ARICÒ A S, SRINIVASAN S, ANTONUCCI V. DMFCs: from fundamental aspects to technology development[J]. Fuel Cells, 2001, 1(2):133-161. |
2 | DEMIRCI U B. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells[J]. Journal of Power Sources, 2007, 173(1):11-18. |
3 | NEUROCK M, JANIK M, WIECKOWSKI A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt[J]. Faraday Discussions, 2009, 140: 363-378. |
4 | CAO D, LU G Q, WIECKOWSKI A, et al. Mechanisms of methanol decomposition on platinum: a combined experimental and ab initio approach[J]. The Journal of Physical Chemistry B, 2005, 109(23): 11622-11633. |
5 | PETRII O A. The progress in understanding the mechanisms of methanol and formic acid electrooxidation on platinum group metals (a review)[J]. Russian Journal of Electrochemistry, 2019, 55(1):1-33. |
6 | BAVAND R, WEI Q, ZHANG G, et al. PtRu alloy nanoparticles. 2. Chemical and electrochemical surface characterization for methanol oxidation[J]. The Journal of Physical Chemistry C, 2017, 121(41): 23120-23128. |
7 | DING Jiabao, ZHU Xing, BU Lingzheng, et al. Highly open rhombic dodecahedral PtCu nanoframes[J]. Chemical Communications, 2015, 51(47): 9722-9725. |
8 | GU Jun, ZHANG Yawen, TAO Franklin. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches[J]. Chemical Society Reviews, 2012, 41(24): 8050. |
9 | XIA Baoyu, WU Haobin, YAN Ya, et al. One-pot synthesis of platinum nanocubes on reduced graphene oxide with enhanced electrocatalytic activity[J]. Small, 2014, 10(12): 2336-2339. |
10 | ZHU Enbo, YAN Xucheng, WANG Shiyi, et al. Peptide-assisted 2-D assembly toward free-floating ultrathin platinum nanoplates as effective electrocatalysts[J]. Nano Letters, 2019, 19(6): 3730-3736. |
11 | HAO Yanfei, WANG Xudan, SHEN Jianfeng, et al. One-pot synthesis of single-crystal Pt nanoplates uniformly deposited on reduced graphene oxide, and their high activity and stability on the electrocalalytic oxidation of methanol[J]. Nanotechnology, 2016, 27(14): 145602. |
12 | LI Cuiling, SATO Takaaki, YAMAUCHI Yusuke. Electrochemical synthesis of one-dimensional mesoporous Pt nanorods using the assembly of surfactant micelles in confined space[J]. Angewandte Chemie International Edition, 2013, 52(31): 8050-8053. |
13 | WANG Shuangyin, JIANG Sanping, WANG Xin, et al. Enhanced electrochemical activity of Pt nanowire network electrocatalysts for methanol oxidation reaction of fuel cells[J]. Electrochimica Acta, 2011, 56(3): 1563-1569. |
14 | HO V T T, NGUYEN N G, PAN C J, et al. Advanced nanoelectrocatalyst for methanol oxidation and oxygen reduction reaction, fabricated as one-dimensional Pt nanowires on nanostructured robust Ti0.7Ru0.3O2 support[J]. Nano Energy, 2012, 1(5): 687-695. |
15 | LI Cuiling, MALGRAS Victor, ALSHEHERI S, et al. Electrochemical synthesis of mesoporous Pt nanowires with highly electrocatalytic activity toward methanol oxidation reaction[J]. Electrochimica Acta, 2015, 183:107-111. |
16 | ALIA Shun M, ZHANG Gang, KISAILUS David, et al. Porous platinum nanotubes for oxygen reduction and methanol oxidation reactions[J]. Advanced Functional Materials, 2010, 20(21): 3742-3746. |
17 | CHENG Aozhi, WANG Yuan, MA Liang, et al. One-pot synthesis of three-dimensional Pt nanodendrites with enhanced methanol oxidation reaction and oxygen reduction reaction activities[J]. Nanotechnology, 2020, 31(43): 435403. |
18 | ZHANG Chengwei, XU Lianbin, SHAN Nannan, et al. Enhanced electrocatalytic activity and durability of Pt particles supported on ordered mesoporous carbon spheres[J]. ACS Catalysis, 2014, 4(6): 1926-1930. |
19 | ZHOU Yang, HU Xianchao, XIAO Youjun, et al. Platinum nanoparticles supported on hollow mesoporous tungsten trioxide microsphere as electrocatalyst for methanol oxidation[J]. Electrochimica Acta, 2013, 111: 588-592. |
20 | YANG Cuizhen, JIANG Quanguo, LI Weihua, et al. Ultrafine Pt nanoparticle-decorated 3D hybrid architectures built from reduced graphene oxide and MXene nanosheets for methanol oxidation[J]. Chemistry of Materials, 2019, 31(22): 9277-9287. |
21 | KAMYABI M A, EBRAHIMI-QARATAPEH K, MOHARRAMNEZHAD M. Silica template as a morphology-controlling agent for deposition of platinum nanostructure on 3D-Ni-foam and its superior electrocatalytic performance towards methanol oxidation[J]. Journal of Porous Materials, 2021, 28(2): 393-405. |
22 | BAI Gailing, LIU Chang, GAO Zhe, et al. Atomic carbon layers supported Pt nanoparticles for minimized CO poisoning and maximized methanol oxidation[J]. Small, 2019, 15(38): e1902951. |
23 | ZHANG Yiqiong, SHI Yongliang, CHEN Ru, et al. Enriched nucleation sites for Pt deposition on ultrathin WO3 nanosheets with unique interactions for methanol oxidation[J]. Journal of Materials Chemistry A, 2018, 6(45): 23028-23033. |
24 | CUI Zhiming, JIANG Sanping, LI Changming. Highly dispersed MoOx on carbon nanotube as support for high performance Pt catalyst towards methanol oxidation[J]. Chemical Communications, 2011, 47(29): 8418-8420. |
25 | TRAN N D, FARNESI C M, FABRIS S. Probing the reactivity of Pt/ceria nanocatalysts toward methanol oxidation: from ionic single-atom sites to metallic nanoparticles[J]. The Journal of Physical Chemistry C, 2018, 122(31): 17917-17927. |
26 | QI Jian, CHEN Jie, LI Guodong, et al. Facile synthesis of core-shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation[J]. Energy & Environmental Science, 2012, 5(10): 8937-8941. |
27 | YANG Siyuan, ZHAO Chen, GE Chunyu, et al. Ternary Pt-Ru-SnO2 hybrid architectures: unique carbon-mediated 1-D configuration and their electrocatalytic activity to methanol oxidation[J]. Journal of Materials Chemistry, 2012, 22(15): 7104-7107. |
28 | ZHOU Yawei, CHEN Yafeng, JIANG Kun, et al. Probing the enhanced methanol electrooxidation mechanism on platinum-metal oxide catalyst[J]. Applied Catalysis B: Environmental, 2021, 280: 119393. |
29 | ANTOLINI Ermete. Photo-assisted methanol oxidation on Pt-TiO2 catalysts for direct methanol fuel cells: a short review[J]. Applied Catalysis B: Environmental, 2018, 237: 491-503. |
30 | YAN Haijing, TIAN Chungui, SUN Li, et al. Small-sized and high-dispersed WN from [SiO4(W3O9)4]4- clusters loading on GO-derived graphene as promising carriers for methanol electro-oxidation[J]. Energy & Environmental Science, 2014, 7(6): 1939-1949. |
31 | ZHANG Wenyao, YAO Qiushi, JIANG Gaopeng, et al. Molecular trapping strategy to stabilize subnanometric Pt clusters for highly active electrocatalysis[J]. ACS Catalysis, 2019, 9(12): 11603-11613. |
32 | CHANG Jinfa, FENG Ligang, JIANG Kun, et al. Pt-CoP/C as an alternative PtRu/C catalyst for direct methanol fuel cells[J]. Journal of Materials Chemistry A, 2016, 4(47): 18607-18613. |
33 | CHANG Jinfa, FENG Ligang, LIU Changpeng, et al. Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells[J]. Energy & Environmental Science, 2014, 7(5): 1628. |
34 | LIU Hui, YANG Dawen, BAO Yufei, et al. One-step efficiently coupling ultrafine Pt-Ni2P nanoparticles as robust catalysts for methanol and ethanol electro-oxidation in fuel cells reaction[J]. Journal of Power Sources, 2019, 434: 226754. |
35 | DUAN Yaqiang, SUN Ye, WANG Lei, et al. Enhanced methanol oxidation and CO tolerance using oxygen-passivated molybdenum phosphide/carbon supported Pt catalysts[J]. Journal of Materials Chemistry A, 2016, 4(20): 7674-7682. |
36 | DUAN Yaqiang, SUN Ye, PAN Siyu, et al. Self-stable WP/C support with excellent cocatalytic functionality for Pt: enhanced catalytic activity and durability for methanol electro-oxidation[J]. ACS Applied Materials & Interfaces, 2016, 8(49): 33572-33582. |
37 | DING Junjie, HU Weiling, MA Li, et al. Facile construction of mesoporous carbon enclosed with NiCoPx nanoparticles for desirable Pt-based catalyst support in methanol oxidation[J]. Journal of Power Sources, 2021, 481: 228888. |
38 | YOU Hongjun, ZHANG Fangling, LIU Zhen, et al. Free-standing Pt-Au hollow nanourchins with enhanced activity and stability for catalytic methanol oxidation[J]. ACS Catalysis, 2014, 4(9): 2829-2835. |
39 | YAMAUCHI Yusuke, TONEGAWA Akihisa, KOMATSU Masaki, et al. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance[J]. Journal of the American Chemical Society, 2012, 134(11): 5100-5109. |
40 | ZHANG Rui, XIA Wenfang, KANG Wenjun, et al. Methanol oxidation reaction performance on graphene-supported PtAg alloy nanocatalyst: contrastive study of electronic and geometric effects induced from Ag doping[J]. ChemistrySelect, 2018, 3(13): 3615-3620. |
41 | YAO Wenqing, JIANG Xian, LI Meng, et al. Engineering hollow porous platinum-silver double-shelled nanocages for efficient electro-oxidation of methanol[J]. Applied Catalysis B: Environmental, 2021, 282: 119595. |
42 | PENG Xiuying, LU Dongtao, QIN Yingnan, et al. Pt-on-Pd dendritic nanosheets with enhanced bifunctional fuel cell catalytic performance[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30336-30342. |
43 | BAI Zhiyong, LUO Juanjuan, MING Dongquan, et al. High active and durable N-doped carbon spheres-supported flowerlike PtPd nanoparticles for electrochemical oxidation of liquid alcohols[J]. Electrochimica Acta, 2020, 356: 136794. |
44 | LU Qingqing, HUANG Jianshe, HAN Ce, et al. Facile synthesis of composition-tunable PtRh nanosponges for methanol oxidation reaction[J]. Electrochimica Acta, 2018, 266: 305-311. |
45 | BHUVANENDRAN Narayanamoorthy, RAVICHANDRAN Sabarinathan, ZHANG Weiqi, et al. Highly efficient methanol oxidation on durable PtxIr/MWCNT catalysts for direct methanol fuel cell applications[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6447-6460. |
46 | KWON S, HAM D J, KIM T, et al. Active methanol oxidation reaction by enhanced CO tolerance on bimetallic Pt/Ir electrocatalysts using electronic and bifunctional effects[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39581-39589. |
47 | ELBERT Katherine, HU Jue, MA Zhong, et al. Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized Pt shell thickness on the Ru core[J]. ACS Catalysis, 2015, 5(11): 6764-6772. |
48 | XIE Jin, ZHANG Qinghua, GU Lin, et al. Ruthenium-platinum core-shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation[J]. Nano Energy, 2016, 21: 247-257. |
49 | ZHANG Junming, QU Ximing, HAN Yu, et al. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: enhanced catalytic performance[J]. 2020, 263:118345. |
50 | SHI Yandi, ZHU Wenxiang, SHI Huixian, et al. Mesocrystal PtRu supported on reduced graphene oxide as catalysts for methanol oxidation reaction[J]. Journal of Colloid and Interface Science, 2019, 557: 729-736. |
51 | ZHANG Shuping, RONG Hongpan, YANG Tianyi, et al. Ultrafine PtRu dilute alloy nanodendrites for enhanced electrocatalytic methanol oxidation[J]. Chemistry, 2020, 26(18): 4025-4031. |
52 | ZHANG Linwei, GAO Ang, LIU Yan, et al. PtRu nanoparticles dispersed on nitrogen-doped carbon nanohorns as an efficient electrocatalyst for methanol oxidation reaction[J]. Electrochimica Acta, 2014, 132: 416-422. |
53 | ZHANG Yunlong, LI Jialong, ZHAO Lei, et al. Nitrogen doped carbon coated Mo modified TiO2 nanowires (NC@MTNWs-FI) with functionalized interfacial as advanced PtRu catalyst support for methanol electrooxidation[J]. Electrochimica Acta, 2020, 331: 135410. |
54 | BAI Xiaoxiao, GENG Jiarun, ZHAO Shuo, et al. Tunable hollow Pt@Ru dodecahedra via galvanic replacement for efficient methanol oxidation[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23046-23050. |
55 | WANG Yajing, WANG Jiankang, HAN Guokang, et al. Superior catalytic performance and CO tolerance of Ru@Pt/C-TiO2 electrocatalyst toward methanol oxidation reaction[J]. Applied Surface Science, 2019, 473: 943-950. |
56 | KLEIN Jens, ARGAST Fabian, ENGSTFELD Albert K, et al. Electro-oxidation of methanol on Ru-core Pt-shell type model electrodes[J]. Electrochimica Acta, 2019, 311: 244-254. |
57 | CAO Lin, SCHEIBA Frieder, ROTH Christina, et al. Novel nanocomposite Pt/RuO2⋅x H2O/carbon nanotube catalysts for direct methanol fuel cells[J]. Angewandte Chemie International Edition, 2006, 45(32): 5315-5319. |
58 | ALAYOGLU Selim, NILEKAR Anand U, MAVRIKAKIS Manos, et al. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen[J]. Nature Materials, 2008, 7(4): 333-338. |
59 | ZHAO Weiyue, NI Bing, YUAN Qiang, et al. Highly active and durable Pt72Ru28 porous nanoalloy assembled with sub-4.0nm particles for methanol oxidation[J]. Advanced Energy Materials, 2017, 7(8): 1601593. |
60 | HUANG Liang, ZHANG Xueping, WANG Qingqing, et al. Shape-control of Pt-Ru nanocrystals: tuning surface structure for enhanced electrocatalytic methanol oxidation[J]. Journal of the American Chemical Society, 2018, 140(3): 1142-1147. |
61 | ZENG Rui, YANG Yao, SHEN Tao, et al. Methanol oxidation using ternary ordered intermetallic electrocatalysts: a DEMS study[J]. ACS Catalysis, 2020, 10(1): 770-776. |
62 | ZHANG Yangping, GAO Fei, SONG Tongxin, et al. Novel networked wicker-like PtFe nanowires with branch-rich exteriors for efficient electrocatalysis[J]. Nanoscale, 2019, 11(33): 15561-15566. |
63 | XIA Baoyu, WU Haobin, LI Nan, et al. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties[J]. Angewandte Chemie International Edition, 2015, 54(12): 3797-3801. |
64 | LU Qingqing, SUN Litai, ZHAO Xue, et al. One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction[J]. Nano Research, 2018, 11(5): 2562-2572. |
65 | TENG X A, SHAN A X, ZHU Y C, et al. Promoting methanol-oxidation-reaction by loading PtNi nano-catalysts on natural graphitic-nano-carbon[J]. Electrochimica Acta, 2020, 353: 136542. |
66 | SHAN Aixian, HUANG Shuoyuan, ZHAO Haofei, et al. Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction[J]. Nano Research, 2020, 13(11): 3088-3097. |
67 | LI Chaozhong, LIU Taiyang, HE Ting, et al. Composition-driven shape evolution to Cu-rich PtCu octahedral alloy nanocrystals as superior bifunctional catalysts for methanol oxidation and oxygen reduction reaction[J]. Nanoscale, 2018, 10(10): 4670-4674. |
68 | SHI Yan, FANG Yan, ZHANG Genlei, et al. Hollow PtCu nanorings with high performance for the methanol oxidation reaction and their enhanced durability by using trace Ir[J]. Journal of Materials Chemistry A, 2020, 8(7): 3795-3802. |
69 | LONG Xiangyu, YIN Ping, LEI Ting, et al. Methanol electro-oxidation on Cu@Pt/C core-shell catalyst derived from Cu-MOF[J]. Applied Catalysis B: Environmental, 2020, 260: 118187. |
70 | PEI Jiajing, MAO Junjie, LIANG Xin, et al. Ultrathin Pt-Zn nanowires: high-performance catalysts for electrooxidation of methanol and formic acid[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 77-81. |
71 | WANG Lijuan, TIAN Xinlong, XU Yangyang, et al. Engineering one-dimensional and hierarchical PtFe alloy assemblies towards durable methanol electrooxidation[J]. Journal of Materials Chemistry A, 2019, 7(21): 13090-13095. |
72 | LI Zhijuan, JIANG Xian, WANG Xiaoru, et al. Concave PtCo nanocrosses for methanol oxidation reaction[J]. Applied Catalysis B: Environmental, 2020, 277: 119135. |
73 | LIANG Yanxia, SUN Yingjun, WANG Xinyu, et al. High electrocatalytic performance inspired by crystalline/amorphous interface in PtPb nanoplate[J]. Nanoscale, 2018, 10(24): 11357-11364. |
74 | CHEN G J, SHAN H Q, LI Y, et al. Hollow PtCu nanoparticles encapsulated into a carbon shell via mild annealing of Cu metal-organic frameworks[J]. Journal of Materials Chemistry A, 2020, 8(20): 10337-10345. |
75 | CUI Zhiming, CHEN Hao, ZHAO Mengtian, et al. Synthesis of structurally ordered Pt3Ti and Pt3V nanoparticles as methanol oxidation catalysts[J]. Journal of the American Chemical Society, 2014, 136(29): 10206-10209. |
76 | MAKSIMUK Sean, YANG Shengchun, PENG Zhenmeng, et al. Synthesis and characterization of ordered intermetallic PtPb nanorods[J]. Journal of the American Chemical Society, 2007, 129(28): 8684-8685. |
77 | KANG Y, PYO J B, YE X, et al. Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals[J]. ACS Nano, 2012, 6(6): 5642-5647. |
78 | QIN Yingnan, LUO Mingchuan, SUN Yingjun, et al. Intermetallic hcp-PtBi/fcc-Pt core/shell nanoplates enable efficient bifunctional oxygen reduction and methanol oxidation electrocatalysis[J]. ACS Catalysis, 2018, 8(6): 5581-5590. |
79 | CHEN Wei, LEI Zhao, ZENG Tang, et al. Structurally ordered PtSn intermetallic nanoparticles supported on ATO for efficient methanol oxidation reaction[J]. Nanoscale, 2019, 11(42): 19895-19902. |
80 | FENG Quanchen, ZHAO Shu, HE Dongsheng, et al. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga[J]. Journal of the American Chemical Society, 2018, 140(8): 2773-2776. |
81 | Amado VELÁZQUEZ-PALENZUELA, CENTELLAS Francesc, GARRIDO José Antonio, et al. Structural properties of unsupported Pt-Ru nanoparticles as anodic catalyst for proton exchange membrane fuel cells[J]. The Journal of Physical Chemistry C, 2010, 114(10): 4399-4407. |
82 | NARAYANAMOORTHY B, DATTA K K R, ESWARAMOORTHY M, et al. Highly active and stable Pt3Rh nanoclusters as supportless electrocatalyst for methanol oxidation in direct methanol fuel cells[J]. ACS Catalysis, 2014, 4(10): 3621-3629. |
83 | HUANG Junjie, YANG Hui, HUANG Qinghong, et al. Methanol oxidation on carbon-supported Pt-Os bimetallic nanoparticle electrocatalysts[J]. Journal of the Electrochemical Society, 2004, 151(11): A1810. |
84 | LU Yan, WANG Wei, CHEN Xiaowei, et al. Composition optimized trimetallic PtNiRu dendritic nanostructures as versatile and active electrocatalysts for alcohol oxidation[J]. Nano Research, 2019, 12(3): 651-657. |
85 | WANG Qingmei, CHEN Siguo, LAN Huiying, et al. Thermally driven interfacial diffusion synthesis of nitrogen-doped carbon confined trimetallic Pt3CoRu composites for the methanol oxidation reaction[J]. Journal of Materials Chemistry A, 2019, 7(30): 18143-18149. |
86 | WANG Qingmei, CHEN Siguo, LI Pan, et al. Surface Ru enriched structurally ordered intermetallic PtFe@PtRuFe core-shell nanostructure boosts methanol oxidation reaction catalysis[J]. Applied Catalysis B: Environmental, 2019, 252: 120-127. |
87 | YANG Shaohan, LI Shuna, SONG Lianghao, et al. Defect-density control of platinum-based nanoframes with high-index facets for enhanced electrochemical properties[J]. Nano Research, 2019, 12(11): 2881-2888. |
88 | WANG Cheng, XU Hui, GAO Fei, et al. High-density surface protuberances endow ternary PtFeSn nanowires with high catalytic performance for efficient alcohol electro-oxidation[J]. Nanoscale, 2019, 11(39): 18176-18182. |
89 | ZHANG Tao, BAI Yu, SUN Yiqiang, et al. Laser-irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity[J]. Journal of Materials Chemistry A, 2018, 6(28): 13735-13742. |
90 | CHENG Na, ZHANG Ling, JIANG Hao, et al. Locally-ordered PtNiPb ternary nano-pompons as efficient bifunctional oxygen reduction and methanol oxidation catalysts[J]. Nanoscale, 2019, 11(36): 16945-16953. |
91 | WANG Zhen, HUANG Lei, TIAN Zhiqun, et al. The controllable growth of PtCuRh rhombic dodecahedral nanoframes as efficient catalysts for alcohol electrochemical oxidation[J]. Journal of Materials Chemistry A, 2019, 7(31): 18619-18625. |
92 | AHMAD Y H, EL-SAYED H A, MOHAMED A T, et al. Rational one-pot synthesis of ternary PtIrCu nanocrystals as robust electrocatalyst for methanol oxidation reaction[J]. Applied Surface Science, 2020, 534: 147617. |
93 | ZHANG Qiqi, LIU Jialong, XIA Tianyu, et al. Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells[J]. Nano Research, 2019, 12(10): 2520-2527. |
94 | ZHU Jing, YANG Yao, CHEN Lingxuan, et al. Copper-induced formation of structurally ordered Pt-Fe-Cu ternary intermetallic electrocatalysts with tunable phase structure and improved stability[J]. Chemistry of Materials, 2018, 30(17): 5987-5995. |
95 | YANG Long, LI Guoqiang, GE Junjie, et al. TePbPt alloy nanotube as electrocatalyst with enhanced performance towards methanol oxidation reaction[J]. Journal of Materials Chemistry A, 2018, 6(35): 16798-16803. |
96 | MA Siyue, LI Huihui, HU Bicheng, et al. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity[J]. Journal of the American Chemical Society, 2017, 139(16): 5890-5895. |
97 | WANG W, CHEN X W, ZHANG X, et al. Quatermetallic Pt-based ultrathin nanowires intensified by Rh enable highly active and robust electrocatalysts for methanol oxidation[J]. Nano Energy, 2020, 71: 104623. |
98 | GAO Wei, LI Xiyan, LI Yunhui, et al. Facile synthesis of Pt3Sn/graphene nanocomposites and their catalysis for electro-oxidation of methanol[J]. CrystEngComm, 2012, 14(21): 7137-7139. |
99 | LIU Yi, LI Dongguo, STAMENKOVIC Vojislav R, et al. Synthesis of Pt3Sn alloy nanoparticles and their catalysis for electro-oxidation of CO and methanol[J]. ACS Catalysis, 2011, 1(12): 1719-1723. |
100 | LU Xiaoqing, DENG Zhigang, GUO Chen, et al. Methanol oxidation on Pt3Sn(111) for direct methanol fuel cells: methanol decomposition[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12194-12204. |
101 | WANG Liang, WU Wei, LEI Zhao, et al. High-performance alcohol electrooxidation on Pt3Sn-SnO2 nanocatalysts synthesized through the transformation of Pt-Sn nanoparticles[J]. Journal of Materials Chemistry A, 2020, 8(2): 592-598. |
102 | KWON Yongmin, KIM Yena, WHANG Youngjoo, et al. One-pot production of ceria nanosheet-supported PtNi alloy nanodendrites with high catalytic performance toward methanol oxidation and oxygen reduction[J]. Journal of Materials Chemistry A, 2020, 8(48): 25842-25849. |
103 | SEBASTIÁN D, STASSI A, SIRACUSANO S, et al. Influence of metal oxide additives on the activity and stability of PtRu/C for methanol electro-oxidation[J]. Journal of the Electrochemical Society, 2015, 162(7): F713-F717. |
104 | QUOC PHAM H, THIEN HUYNH T, TRUONG NGUYEN S T, et al. Superior CO-tolerance and stability toward alcohol electro-oxidation reaction of 1D-bimetallic platinum-cobalt nanowires on Tungsten-modified anatase TiO2 nanostructure[J]. Fuel, 2020, 276: 118078. |
105 | DIMITROVA Nina, DHIFALLAH Marwa, MINEVA Tzonka, et al. High performance of PtCu@TiO2 nanocatalysts toward methanol oxidation reaction: from synthesis to molecular picture insight[J]. RSC Advances, 2019, 9(4): 2073-2080. |
106 | ZHANG Jingfang, LI Kaidan, ZHANG Bin. Synthesis of dendritic Pt-Ni-P alloy nanoparticles with enhanced electrocatalytic properties[J]. Chemical Communications, 2015, 51(60): 12012-12015. |
107 | DING Liangxin, WANG Anliang, LI Gaoren, et al. Porous Pt-Ni-P composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation[J]. Journal of the American Chemical Society, 2012, 134(13): 5730-5733. |
108 | ZHANG Lili, WEI Meng, WANG Suqing, et al. Highly stable PtP alloy nanotube arrays as a catalyst for the oxygen reduction reaction in acidic medium[J]. Chemical Science, 2015, 6(5): 3211-3216. |
109 | ZHANG Lili, DING Liangxin, CHEN Hongbin, et al. Self-supported PtAuP alloy nanotube arrays with enhanced activity and stability for methanol electro-oxidation[J]. Small, 2017, 13(17): 1604000. |
110 | LIN Mengliang, Manyin LO, MOU Chungyuan. PtRuP nanoparticles supported on mesoporous carbon thin film as highly active anode materials for direct methanol fuel cell[J]. Catalysis Today, 2011, 160(1): 109-115. |
111 | LI Mengmeng, FANG Yan, ZHANG Genlei, et al. Carbon-supported Pt5P2 nanoparticles used as a high-performance electrocatalyst for the methanol oxidation reaction[J]. Journal of Materials Chemistry A.2020, 8(20): 10433-10438 |
112 | DENG Kai, XU You, YANG Dandan, et al. Pt-Ni-P nanocages with surface porosity as efficient bifunctional electrocatalysts for oxygen reduction and methanol oxidation[J]. Journal of Materials Chemistry A, 2019, 7(16): 9791-9797. |
113 | WANG Fulong, FANG Bo, YU Xu, et al. Coupling ultrafine Pt nanocrystals over the Fe2P surface as a robust catalyst for alcohol fuel electro-oxidation[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 9496-9503. |
114 | BAO Yufei, WANG Fulong, GU Xiaocong, et al. Core-shell structured PtRu nanoparticles@FeP promoter with an efficient nanointerface for alcohol fuel electrooxidation[J]. Nanoscale, 2019, 11(40): 18866-18873. |
115 | YANG Zhenzhen, SHI Yan, WANG Xianshun, et al. Boron as a superior activator for Pt anode catalyst in direct alcohol fuel cell[J]. Journal of Power Sources, 2019, 431: 125-134. |
116 | FAN Jingjing, FAN Youjun, WANG Ruixiang, et al. A novel strategy for the synthesis of sulfur-doped carbon nanotubes as a highly efficient Pt catalyst support toward the methanol oxidation reaction[J]. Journal of Materials Chemistry A, 2017, 5(36): 19467-19475. |
117 | SUN Yongrong, DU Chunyu, HAN Guokang, et al. Boron, nitrogen co-doped graphene: a superior electrocatalyst support and enhancing mechanism for methanol electrooxidation[J]. Electrochimica Acta, 2016, 212: 313-321. |
118 | AN Meichen, DU Lei, DU Chunyu, et al. Pt nanoparticles supported by sulfur and phosphorus co-doped graphene as highly active catalyst for acidic methanol electrooxidation[J]. Electrochimica Acta, 2018, 285: 202-213. |
119 | CHANG Ying, YUAN Conghui, LI Yuntong, et al. Controllable fabrication of a N and B co-doped carbon shell on the surface of TiO2 as a support for boosting the electrochemical performances[J]. Journal of Materials Chemistry A, 2017, 5(4): 1672-1678. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[9] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[10] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[11] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[12] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[13] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[14] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[15] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |