1 |
池滨, 侯三英, 刘广智, 等. 高性能高功率密度质子交换膜燃料电池膜电极[J]. 化学进展, 2018, 30(S1): 243-251.
|
|
CHI Bin, HOU Sanying, LIU Guangzhi, et al. High performance and high power density membrane electrode assembly for proton exchange membrane fuel cells[J]. Progress in Chemistry, 2018, 30(S1): 243-251.
|
2 |
王颖锋, 李凯, 李水荣, 等. 用于质子交换膜燃料电池的高温无机质子传导材料研究进展[J]. 化工进展, 2019, 38(5): 2212-2221.
|
|
WANG Yingfeng, LI Kai, LI Shuirong, et al. Progress in high temperature inorganic proton conduction materials used for proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2212-2221.
|
3 |
吴魁, 解东来. 高温质子交换膜研究进展[J]. 化工进展, 2012, 31(10): 2202-2206, 2220.
|
|
WU Kui, XIE Donglai. Research progress in high temperature proton exchange membranes[J]. Chemical Industry and Engineering Progress, 2012, 31(10): 2202-2206, 2220.
|
4 |
BINNIG G, QUATE C F, GERBER C. Atomic force microscope[J]. Physical Review Letters, 1986, 56(9): 930.
|
5 |
GARCIA R, HERRUZO E T. The emergence of multifrequency force microscopy[J]. Nature Nanotechnology, 2012, 7(4): 217-226.
|
6 |
GARCIA R, KNOLL A W, RIEDO E. Advanced scanning probe lithography[J]. Nature Nanotechnology, 2014, 9(8): 577-587.
|
7 |
GERBER C, LANG H P. How the doors to the nanoworld were opened[J]. Nature Nanotechnology, 2006, 1(1): 3-5.
|
8 |
DUFRÊNE Y F, ANDO T, GARCIA R, et al. Imaging modes of atomic force microscopy for application in molecular and cell biology[J]. Nature Nanotechnology, 2017, 12(4): 295-307.
|
9 |
LIPSON A L, HERSAM M C. Conductive scanning probe characterization and nanopatterning of electronic and energy materials[J]. The Journal of Physical Chemistry C, 2013, 117(16): 7953-7963.
|
10 |
MELITZ W, SHEN J, KUMMEL A C, et al. Kelvin probe force microscopy and its application[J]. Surface Science Reports, 2011, 66(1): 1-27.
|
11 |
LIU L M, LI G Y. Electrical characterization of single-walled carbon nanotubes in organic solar cells by Kelvin probe force microscopy[J]. Applied Physics Letters, 2010, 96(8): 083302.
|
12 |
MASUDA H, ISHIDA N, OGATA Y, et al. Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy[J]. Nanoscale, 2017, 9(2): 893-898.
|
13 |
MANNE S, HANSMA P K, MASSIE J, et al. Atomic-resolution electrochemistry with the atomic force microscope: copper deposition on gold[J]. Science, 1991, 251(4990): 183-186.
|
14 |
BREITWIESER M, KLINGELE M, VIERRATH S, et al. Tailoring the membrane-electrode interface in PEM fuel cells: a review and perspective on novel engineering approaches[J]. Advanced Energy Materials, 2018, 8(4): 1701257.
|
15 |
HAN B, MO J K, KANG Z Y, et al. Effects of membrane electrode assembly properties on two-phase transport and performance in proton exchange membrane electrolyzer cells[J]. Electrochimica Acta, 2016, 188: 317-326.
|
16 |
NISHIHARA S, OTANI M. Hybrid solvation models for bulk, interface, and membrane: reference interaction site methods coupled with density functional theory[J]. Physical Review B, 2017, 96(11): 115429.
|
17 |
MENDIL-JAKANI H, ZAMANILLO LÓPEZ I, MAREAU V H, et al. Optimization of hydrophilic/hydrophobic phase separation in sPEEK membranes by hydrothermal treatments[J]. Physical Chemistry Chemical Physics, 2017, 19(24): 16013-16022.
|
18 |
SHIN D W, GUIVER M D, LEE Y M. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability[J]. Chemical Reviews, 2017, 117(6): 4759-4805.
|
19 |
HE Q, KUSOGLU A, LUCAS I T, et al. Correlating humidity-dependent ionically conductive surface area with transport phenomena in proton-exchange membranes[J]. The Journal of Physical Chemistry B, 2011, 115(40): 11650-11657.
|
20 |
KALISVAART W P, FRITZSCHE H, MÉRIDA W. Water uptake and swelling hysteresis in a nafion thin film measured with neutron reflectometry[J]. Langmuir, 2015, 31(19): 5416-5422.
|
21 |
DECALUWE S C, KIENZLE P A, BHARGAVA P, et al. Phase segregation of sulfonate groups in Nafion interface lamellae, quantified via neutron reflectometry fitting techniques for multi-layered structures[J]. Soft Matter, 2014, 10(31): 5763-5776.
|
22 |
SUSAC D, BEREJNOV V, HITCHCOCK A P, et al. STXM study of the ionomer distribution in the PEM fuel cell catalyst layers[J]. ECS Transactions, 2019, 41(1): 629-635.
|
23 |
HOLDCROFT S. Fuel cell catalyst layers: a polymer science perspective[J]. Chemistry of Materials, 2014, 26(1): 381-393.
|
24 |
何丽, 韩喆, 冯坤, 等. 操作条件对质子交换膜燃料电池电化学阻抗动态行为的影响[J]. 化工进展, 2018, 37(2): 533-539.
|
|
HE Li, HAN Zhe, FENG Kun, et al. Effects of operating conditions on PEMFC dynamic behavior by EIS[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 533-539.
|
25 |
付凤艳, 张杰, 程敬泉, 等. 氧化石墨烯在燃料电池质子交换膜中的应用[J]. 化工进展, 2019, 38(5): 2233-2241.
|
|
FU Fengyan, ZHANG Jie, CHENG Jingquan, et al. Application of graphene oxide in proton exchange membrane for fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2233-2241.
|
26 |
MAJLAN E H, ROHENDI D, DAUD W R W, et al. Electrode for proton exchange membrane fuel cells: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 117-134.
|
27 |
ROSLI R E, SULONG A B, DAUD W R W, et al. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9293-9314.
|
28 |
OTT S, ORFANIDI A, SCHMIES H, et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells[J]. Nature Materials, 2020, 19(1): 77-85.
|
29 |
SLADE S, CAMPBELL S A, RALPH T R, et al. Ionic conductivity of an extruded nafion 1100 EW series of membranes[J]. Journal of the Electrochemical Society, 2002, 149(12): A1556.
|
30 |
HICKNER M A, GHASSEMI H, KIM Y S, et al. Alternative polymer systems for proton exchange membranes (PEMs)[J]. Chemical Reviews, 2004, 104(10): 4587-4611.
|
31 |
SCHUSTER M F H, MEYER W H. Anhydrous proton-conducting polymers[J]. Annual Review of Materials Research, 2003, 33(1): 233-261.
|
32 |
CHEN L, TANG H L, LI J R, et al. Highly ordered Nafion-silica-HPW proton exchange membrane for elevated temperature fuel cells[J]. International Journal of Energy Research, 2013, 37(8): 879-887.
|
33 |
LU J L, LU S F, JIANG S P. Highly ordered mesoporous Nafion membranes for fuel cells[J]. Chemical Communications, 2011, 47(11): 3216.
|
34 |
SON B, OH K, PARK S, et al. Study of morphological characteristics on hydrophilicity-enhanced SiO2 /Nafion composite membranes by using multimode atomic force microscopy[J]. International Journal of Energy Research, 2019, 43(9): 4157-4169.
|
35 |
CHANDRA SUTRADHAR S, RAHMAN M M, AHMED F, et al. Improved proton conductive membranes from poly(phenylenebenzophenone)s with pendant sulfonyl imide acid groups for fuel cells[J]. Journal of Power Sources, 2019, 442: 227233.
|
36 |
CHEN R M, JIN J H, YANG S L, et al. Effect of pendant group containing fluorine on the properties of sulfonated poly(arylene ether sulfone)s as proton exchange membrane[J]. Journal of Materials Science, 2017, 52(2): 1028-1038.
|
37 |
HIESGEN R, ALEKSANDROVA E, MEICHSNER G, et al. High-resolution imaging of ion conductivity of Nafion® membranes with electrochemical atomic force microscopy[J]. Electrochimica Acta, 2009, 55(2): 423-429.
|
38 |
O’HAYRE R, FENG G, NIX W D, et al. Quantitative impedance measurement using atomic force microscopy[J]. Journal of Applied Physics, 2004, 96(6): 3540-3549.
|
39 |
WANG X, HABTE B T, ZHANG S, et al. Localized electrochemical impedance measurements on nafion membranes: observation and analysis of spatially diverse proton transport using atomic force microscopy[J]. Analytical Chemistry, 2019, 91(18): 11678-11686.
|
40 |
张健, 党岱, 姬文晋, 等. 非铂燃料电池电催化剂研究进展[J]. 化工进展, 2019, 38(7): 3153-3162.
|
|
ZHANG Jian, DANG Dai, JI Wenjin, et al. Research progress in non-platinum fuel cells electrocatalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3153-3162.
|
41 |
GONG K, DU F, XIA Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764.
|