化工进展 ›› 2021, Vol. 40 ›› Issue (4): 1948-1965.DOI: 10.16085/j.issn.1000-6613.2020-1949
收稿日期:
2020-09-24
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
刘光,李晋平
作者简介:
赵斐(1995—),女,硕士研究生,研究方向为电催化合成氨。E-mail:基金资助:
ZHAO Fei(), WANG Qi, LIU Guang(), LI Jinping()
Received:
2020-09-24
Online:
2021-04-05
Published:
2021-04-14
Contact:
LIU Guang,LI Jinping
摘要:
d区过渡金属基(d-TMs)材料易于改性,且因其空的d轨道有利于吸附氮气(N2),分离的d电子可以供给N2,被认为是理想的电化学合成氨(NRR)催化剂,在近年的深入研究中取得长足进展。本文综述了近几年改性d-TMs基材料应用于NRR的研究报道,简述了基于d-TMs基催化剂的NRR反应机理,并详细总结了表/界面工程、晶面调控与非晶化、缺陷工程、构建仿生位点等改性策略指导设计的d-TMs基NRR催化剂,重点分析了每种改性策略对NRR性能的影响。最后对该领域的发展前景进行了展望,从理论计算模型、催化剂改性、电化学体系、测试及表征手段、氨气(NH3)检测手段等角度进一步提出了今后需要关注的问题,为改性d-TMs基高效NRR催化剂的设计提供了参考。
中图分类号:
赵斐, 王琪, 刘光, 李晋平. d区过渡金属基催化剂用于电化学合成氨[J]. 化工进展, 2021, 40(4): 1948-1965.
ZHAO Fei, WANG Qi, LIU Guang, LI Jinping. d-Block transition metal-based catalysts for electrocatalytic ammonia synthesis[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1948-1965.
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
Ru2P-rGO | 0.1mol·L-1 HCl | -0.05 | 13.04 | 32.8μg·h-1·mgcat-1 | [ |
Mo2C/C | 0.5mol·L-1 Li2SO4 | -0.3 | 7.8 | 3.7μg·h-1·mgcat-1 | [ |
Mo0/GDY | 0.1mol·L-1 Na2SO4 | -1.2(vs.SCE) | 21 | 145.4μg·h-1·mgcat-1 | [ |
SA-Mo/NPC | 0.1mol·L-1 KOH | -0.3 | 14.6±1.6 | (34.0±3.6)μg·h-1·mgcat-1 | [ |
0.1mol·L-1 HCl | -0.25 | 6.8±0.3 | (31.5±1.2)μg·h-1·mgcat-1 | ||
Cu SAC | 0.1mol·L-1 KOH | -0.35 | 13.8 | 53.3μg·h-1·mgcat-1 | [ |
0.1mol·L-1 HCl | -0.3 | 11.7 | 49.3μg·h-1·mgcat-1 | ||
Ru SAs/N-C | 0.05mol·L-1 H2SO4 | -0.2 | 29.6 | 120.9μg·h-1·mgcat-1 | [ |
Y1/NC | 0.1mol·L-1 HCl | -0.1 | 12.1 | 23.2μg·h-1·cm-2 | [ |
Sc1/NC | 11.2 | 20.4μg·h-1·cm-2 | |||
FeSA-N-C | 0.1mol·L-1 KOH | 0 | 56.55 | 7.48μg·h-1·mgcat-1 | [ |
SACs-MoS2-Fe | 0.1mol·L-1 KCl | -0.2 | 31.6±2 | (97.5±6)μg·h-1·cm-2 | [ |
AuHNCs | 0.5mol·L-1 LiClO4 | -0.4 | 30.2 | [ | |
-0.5 | 3.9μg·h-1·cm-2 | ||||
Rh NNs | 0.1mol·L-1 KOH | -0.2 | 0.217 | 23.88μg·h-1·mgcat-1 | [ |
Dendritic Cu | 0.1mol·L-1 HCl | -0.4 | 15.12 | 25.63μg·h-1·mgcat-1 | [ |
Mo2C | 0.1mol·L-1 HCl | -0.3 | 8.13 | 95.1μg·h-1·mgcat-1 | [ |
Cr2O3 MHCMs | 0.1mol·L-1 Na2SO4 | -0.9 | 6.78 | 25.3μg·h-1·cm-2 | [ |
Cr2O3 nanofibers | 0.1mol·L-1 HCl | -0.75 | 8.56 | 28.13μg·h-1·mgcat-1 | [ |
NPG@ZIF-8 | 0.1mol·L-1 Na2SO4 | -0.6 | 44 | [ | |
-0.8 | (28.7±0.9)μg·h-1·mgcat-1 | ||||
Au-Fe3O4 NPs | 0.1mol·L-1 KOH | -0.2 | 10.54 | 21.42μg·h-1·mgcat-1 | [ |
C@NiO@Ni | 0.1mol·L-1 KOH | -0.7 | 10.9 | 43.15μg·h-1·mgcat-1 | [ |
CoS2/NS-G | 0.05mol·L-1 H2SO4 | -0.05 | 25.9 | [ | |
-0.2 | 25.0μg·h-1·mgcat-1 | ||||
Fe3C@C | 0.05mol·L-1 H2SO4 | -0.2 | 9.15 | 8.53μg·h-1·mgcat-1 | [ |
Cu/PI-300 | 0.1mol·L-1 KOH | -0.3 | 6.56 | [ | |
-0.4 | 17.2μg·h-1·cm-2 | ||||
FeNi-LDH | 0.1mol·L-1 Na2SO4 | -0.5 | 23 | 10.53μg·h-1·cm-2 | [ |
C@CoS@TiO2 | 0.1mol·L-1 Na2SO4 | -0.55 | 28.6 | 49.51μg·h-1·cm-2 | [ |
表1 表/界面工程策略指导的部分NRR催化剂性能总结
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
Ru2P-rGO | 0.1mol·L-1 HCl | -0.05 | 13.04 | 32.8μg·h-1·mgcat-1 | [ |
Mo2C/C | 0.5mol·L-1 Li2SO4 | -0.3 | 7.8 | 3.7μg·h-1·mgcat-1 | [ |
Mo0/GDY | 0.1mol·L-1 Na2SO4 | -1.2(vs.SCE) | 21 | 145.4μg·h-1·mgcat-1 | [ |
SA-Mo/NPC | 0.1mol·L-1 KOH | -0.3 | 14.6±1.6 | (34.0±3.6)μg·h-1·mgcat-1 | [ |
0.1mol·L-1 HCl | -0.25 | 6.8±0.3 | (31.5±1.2)μg·h-1·mgcat-1 | ||
Cu SAC | 0.1mol·L-1 KOH | -0.35 | 13.8 | 53.3μg·h-1·mgcat-1 | [ |
0.1mol·L-1 HCl | -0.3 | 11.7 | 49.3μg·h-1·mgcat-1 | ||
Ru SAs/N-C | 0.05mol·L-1 H2SO4 | -0.2 | 29.6 | 120.9μg·h-1·mgcat-1 | [ |
Y1/NC | 0.1mol·L-1 HCl | -0.1 | 12.1 | 23.2μg·h-1·cm-2 | [ |
Sc1/NC | 11.2 | 20.4μg·h-1·cm-2 | |||
FeSA-N-C | 0.1mol·L-1 KOH | 0 | 56.55 | 7.48μg·h-1·mgcat-1 | [ |
SACs-MoS2-Fe | 0.1mol·L-1 KCl | -0.2 | 31.6±2 | (97.5±6)μg·h-1·cm-2 | [ |
AuHNCs | 0.5mol·L-1 LiClO4 | -0.4 | 30.2 | [ | |
-0.5 | 3.9μg·h-1·cm-2 | ||||
Rh NNs | 0.1mol·L-1 KOH | -0.2 | 0.217 | 23.88μg·h-1·mgcat-1 | [ |
Dendritic Cu | 0.1mol·L-1 HCl | -0.4 | 15.12 | 25.63μg·h-1·mgcat-1 | [ |
Mo2C | 0.1mol·L-1 HCl | -0.3 | 8.13 | 95.1μg·h-1·mgcat-1 | [ |
Cr2O3 MHCMs | 0.1mol·L-1 Na2SO4 | -0.9 | 6.78 | 25.3μg·h-1·cm-2 | [ |
Cr2O3 nanofibers | 0.1mol·L-1 HCl | -0.75 | 8.56 | 28.13μg·h-1·mgcat-1 | [ |
NPG@ZIF-8 | 0.1mol·L-1 Na2SO4 | -0.6 | 44 | [ | |
-0.8 | (28.7±0.9)μg·h-1·mgcat-1 | ||||
Au-Fe3O4 NPs | 0.1mol·L-1 KOH | -0.2 | 10.54 | 21.42μg·h-1·mgcat-1 | [ |
C@NiO@Ni | 0.1mol·L-1 KOH | -0.7 | 10.9 | 43.15μg·h-1·mgcat-1 | [ |
CoS2/NS-G | 0.05mol·L-1 H2SO4 | -0.05 | 25.9 | [ | |
-0.2 | 25.0μg·h-1·mgcat-1 | ||||
Fe3C@C | 0.05mol·L-1 H2SO4 | -0.2 | 9.15 | 8.53μg·h-1·mgcat-1 | [ |
Cu/PI-300 | 0.1mol·L-1 KOH | -0.3 | 6.56 | [ | |
-0.4 | 17.2μg·h-1·cm-2 | ||||
FeNi-LDH | 0.1mol·L-1 Na2SO4 | -0.5 | 23 | 10.53μg·h-1·cm-2 | [ |
C@CoS@TiO2 | 0.1mol·L-1 Na2SO4 | -0.55 | 28.6 | 49.51μg·h-1·cm-2 | [ |
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
Au THH NR | 0.1mol·L-1 KOH | -0.2 | 4 | 1.648μg·h-1·cm-2 | [ |
Nb2O5 | 0.1mol·L-1 HCl | -0.55 | 9.26 | 43.6μg·h-1·mgcat-1 | [ |
a-Au/CeOx-RGO | HCl(pH=1) | -0.2 | 10.10 | 8.3μg·h-1·mgcat-1 | [ |
Pd0.2Cu0.8/rGO | 0.1mol·L-1 KOH | 0 | 约4.3 | [ | |
-0.2 | 2.80μg·h-1·mgcat-1 | ||||
Ir-Te | 1.0mol·L-1 KOH | -0.2 | 15.3 | 51.1μg·h-1·mgcat-1 | [ |
表2 晶面调控与非晶化策略指导的部分NRR催化剂性能总结
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
Au THH NR | 0.1mol·L-1 KOH | -0.2 | 4 | 1.648μg·h-1·cm-2 | [ |
Nb2O5 | 0.1mol·L-1 HCl | -0.55 | 9.26 | 43.6μg·h-1·mgcat-1 | [ |
a-Au/CeOx-RGO | HCl(pH=1) | -0.2 | 10.10 | 8.3μg·h-1·mgcat-1 | [ |
Pd0.2Cu0.8/rGO | 0.1mol·L-1 KOH | 0 | 约4.3 | [ | |
-0.2 | 2.80μg·h-1·mgcat-1 | ||||
Ir-Te | 1.0mol·L-1 KOH | -0.2 | 15.3 | 51.1μg·h-1·mgcat-1 | [ |
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
Aux/Ni | 0.05mol·L-1 H2SO4 | -0.14 | 67.8 | 7.4μg·h-1·mgcat-1 | [ |
Pd3Cu1 | 1mol·L-1 KOH | -0.05 | 1.56 | [ | |
-0.25 | 39.9μg·h-1·mgcat-1 | ||||
Fe-W18O49 | 0.25mol·L-1 LiClO4 | -0.15 | 20 | 24.7μg·h-1·mgcat-1 | [ |
Fe-Ni2P | 0.1mol·L-1 HCl | -0.3 | 7.92 | 88.51μg·h-1·mgcat-1 | [ |
Fe-CeO2 | 0.5mol·L-1 LiClO4 | -0.4 | 14.7 | [ | |
-0.5 | 26.2μg·h-1·mgcat-1 | ||||
Au-TiO2 | 0.1mol·L-1 HCl | -0.2 | 8.11 | 21.4μg·h-1·mgcat-1 | [ |
Fe-TiO2 | 0.5mol·L-1 LiClO4 | -0.4 | 25.6 | 25.47μg·h-1·mgcat-1 | [ |
V-TiO2 | 0.5mol·L-1 LiClO4 | -0.4 | 15.3 | [ | |
-0.5 | 17.73μg·h-1·mgcat-1 | ||||
B-TiO2 | 0.1mol·L-1 Na2SO4 | -0.8 | 3.4 | 14.4μgμg·h-1·mgcat-1 | [ |
C-TiO2 | 0.1mol·L-1 Na2SO4 | -0.7 | 1.84 | 16.22μg·h-1·mgcat-1 | [ |
C-TixOy/C | 0.1mol·L-1 LiClO4 | -0.4 | 17.8 | 14.8μg·h-1·mgcat-1 | [ |
np-PdH0.43 | 0.1mol·L-1 PBS | -0.15 | 43.6 | 20.4μg·h-1·mgcat-1 | [ |
MXene/SSM | 0.01mol·L-1 HCl | -0.1 | 4.62 | 4.72μg·h-1·cm-2 | [ |
Ti3C2Tx(T=F,OH) | 0.1mol·L-1 HCl | -0.4 | 9.3 | 20.4μg·h-1·mgcat-1 | [ |
TiO2/Ti3C2Tx | 0.1mol·L-1 HCl | -0.45 | 2.8 | [ | |
-0.55 | 32.17μg·h-1·mgcat-1 | ||||
Co3O4@NC | 0.05mol·L-1 H2SO4 | -0.2 | 8.5 | 42.58μg·h-1·mgcat-1 | [ |
TiO2/Ti | 0.1mol·L-1 Na2SO4 | -0.6 | 3.34 | [ | |
-0.7 | 2.5 | 5.61μg·h-1·cm-2 | |||
TiO2(Vo)_800 | 0.1mol·L-1 HCl | -0.12 | 6.5 | 3μg·h-1·mgcat-1 | [ |
d-TiO2/Ti | 0.1mol·L-1 HCl | -0.15 | 9.17 | 7.59μg·h-1·cm-2 | [ |
Ti3+-TiO2-x/TM | 0.1mol·L-1 Na2SO4 | -0.55 | 14.62 | 2.15μg·h-1·cm-2 | [ |
OV-TiO2-400 | 0.005mol·L-1 H2SO4 | -0.7 | 5.3 | [ | |
-0.8 | 35.6μg·h-1·mgcat-1 | ||||
0.57Mn3O4/b-TiO2 | 0.1mol·L-1 KOH | -0.35 | 15 | [ | |
-0.45 | 9.85μg·h-1·cm-2 | ||||
0.57SnO2/b-TiO2 | -0.45 | 21.3 | 13.4μg·h-1·cm-2 | ||
DR MoS2 | 0.1mol·L-1 Na2SO4 | -0.4 | 8.34 | 29.28μg·h-1·mgcat-1 | [ |
Co-doped MoS2-x | 0.01mol·L-1 H2SO4 | -0.3 | 10 | 10.71μg·h-1·mgcat-1 | [ |
VN/TM | 0.1mol·L-1 HCl | -0.5 | 2.25 | 5.14μg·h-1·cm-2 | [ |
W2N3 | 0.1mol·L-1 KOH | -0.2 | 11.67 | 11.66μg·h-1·mgcat-1 | [ |
MV-MoN@NC | 0.1mol·L-1 HCl | -0.2 | 6.9 | 76.9μg·h-1·mgcat-1 | [ |
表3 缺陷工程策略指导的部分NRR催化剂性能总结
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
Aux/Ni | 0.05mol·L-1 H2SO4 | -0.14 | 67.8 | 7.4μg·h-1·mgcat-1 | [ |
Pd3Cu1 | 1mol·L-1 KOH | -0.05 | 1.56 | [ | |
-0.25 | 39.9μg·h-1·mgcat-1 | ||||
Fe-W18O49 | 0.25mol·L-1 LiClO4 | -0.15 | 20 | 24.7μg·h-1·mgcat-1 | [ |
Fe-Ni2P | 0.1mol·L-1 HCl | -0.3 | 7.92 | 88.51μg·h-1·mgcat-1 | [ |
Fe-CeO2 | 0.5mol·L-1 LiClO4 | -0.4 | 14.7 | [ | |
-0.5 | 26.2μg·h-1·mgcat-1 | ||||
Au-TiO2 | 0.1mol·L-1 HCl | -0.2 | 8.11 | 21.4μg·h-1·mgcat-1 | [ |
Fe-TiO2 | 0.5mol·L-1 LiClO4 | -0.4 | 25.6 | 25.47μg·h-1·mgcat-1 | [ |
V-TiO2 | 0.5mol·L-1 LiClO4 | -0.4 | 15.3 | [ | |
-0.5 | 17.73μg·h-1·mgcat-1 | ||||
B-TiO2 | 0.1mol·L-1 Na2SO4 | -0.8 | 3.4 | 14.4μgμg·h-1·mgcat-1 | [ |
C-TiO2 | 0.1mol·L-1 Na2SO4 | -0.7 | 1.84 | 16.22μg·h-1·mgcat-1 | [ |
C-TixOy/C | 0.1mol·L-1 LiClO4 | -0.4 | 17.8 | 14.8μg·h-1·mgcat-1 | [ |
np-PdH0.43 | 0.1mol·L-1 PBS | -0.15 | 43.6 | 20.4μg·h-1·mgcat-1 | [ |
MXene/SSM | 0.01mol·L-1 HCl | -0.1 | 4.62 | 4.72μg·h-1·cm-2 | [ |
Ti3C2Tx(T=F,OH) | 0.1mol·L-1 HCl | -0.4 | 9.3 | 20.4μg·h-1·mgcat-1 | [ |
TiO2/Ti3C2Tx | 0.1mol·L-1 HCl | -0.45 | 2.8 | [ | |
-0.55 | 32.17μg·h-1·mgcat-1 | ||||
Co3O4@NC | 0.05mol·L-1 H2SO4 | -0.2 | 8.5 | 42.58μg·h-1·mgcat-1 | [ |
TiO2/Ti | 0.1mol·L-1 Na2SO4 | -0.6 | 3.34 | [ | |
-0.7 | 2.5 | 5.61μg·h-1·cm-2 | |||
TiO2(Vo)_800 | 0.1mol·L-1 HCl | -0.12 | 6.5 | 3μg·h-1·mgcat-1 | [ |
d-TiO2/Ti | 0.1mol·L-1 HCl | -0.15 | 9.17 | 7.59μg·h-1·cm-2 | [ |
Ti3+-TiO2-x/TM | 0.1mol·L-1 Na2SO4 | -0.55 | 14.62 | 2.15μg·h-1·cm-2 | [ |
OV-TiO2-400 | 0.005mol·L-1 H2SO4 | -0.7 | 5.3 | [ | |
-0.8 | 35.6μg·h-1·mgcat-1 | ||||
0.57Mn3O4/b-TiO2 | 0.1mol·L-1 KOH | -0.35 | 15 | [ | |
-0.45 | 9.85μg·h-1·cm-2 | ||||
0.57SnO2/b-TiO2 | -0.45 | 21.3 | 13.4μg·h-1·cm-2 | ||
DR MoS2 | 0.1mol·L-1 Na2SO4 | -0.4 | 8.34 | 29.28μg·h-1·mgcat-1 | [ |
Co-doped MoS2-x | 0.01mol·L-1 H2SO4 | -0.3 | 10 | 10.71μg·h-1·mgcat-1 | [ |
VN/TM | 0.1mol·L-1 HCl | -0.5 | 2.25 | 5.14μg·h-1·cm-2 | [ |
W2N3 | 0.1mol·L-1 KOH | -0.2 | 11.67 | 11.66μg·h-1·mgcat-1 | [ |
MV-MoN@NC | 0.1mol·L-1 HCl | -0.2 | 6.9 | 76.9μg·h-1·mgcat-1 | [ |
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
FeSx/Fe | 0.1mol·L-1 KOH | -0.3 | 17.6 | 25.28μg·h-1·cm-2 | [ |
Mo-FeS2 | 0.1mol·L-1 KOH | -0.2 | 14.41 | 26.15μg·h-1·mg-2 | [ |
MoFeC | 0.1mol·L-1 Li2SO4 | 0.05 | 43.6 | [ | |
-0.05 | 1.23μg·h-1·mgcat-1 |
表4 构建仿生位点策略指导的部分NRR催化剂性能总结
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
FeSx/Fe | 0.1mol·L-1 KOH | -0.3 | 17.6 | 25.28μg·h-1·cm-2 | [ |
Mo-FeS2 | 0.1mol·L-1 KOH | -0.2 | 14.41 | 26.15μg·h-1·mg-2 | [ |
MoFeC | 0.1mol·L-1 Li2SO4 | 0.05 | 43.6 | [ | |
-0.05 | 1.23μg·h-1·mgcat-1 |
1 | ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639. |
2 | PENG Ming, QIAO Yijin, LUO Min, et al. Bioinspired Fe3C@C as highly efficient electrocatalyst for nitrogen reduction reaction under ambient conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40062-40068. |
3 | SMIL V. Detonator of the population explosion[J]. Nature, 1999, 400(6743): 415-415. |
4 | ZAMFIRESCU C, DINCER I. Using ammonia as a sustainable fuel[J]. Journal of Power Sources, 2008, 185(1): 459-465. |
5 | GIDDEY S, BADWAL S P S, KULKARNI A. Review of electrochemical ammonia production technologies and materials[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14576-14594. |
6 | SCHLÖGL R. Catalytic synthesis of ammonia—A “never-ending story”?[J]. Angewandte Chemie: International Edition, 2003, 42(18): 2004-2008. |
7 | GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. |
8 | WANG Lu, XIA Meikun, WANG Hong, et al. Greening ammonia toward the solar ammonia refinery[J]. Joule, 2018, 2(6): 1055-1074. |
9 | LI Sijia, BAO Di, SHI Miaomiao, et al. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions[J]. Advanced Materials, 2017, 29(33): 1700001. |
10 | GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70: 153-226. |
11 | BAO Di, ZHANG Qi, MENG Fanlu, et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle[J]. Advanced Materials, 2017, 29(3): 1604799. |
12 | CHEN Jingguang G, CROOKS R M, SEEFELDT L C, et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018, 360(6391): eaar6611. |
13 | BROWN K A, HARRIS D F, WILKER M B, et al. Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284): 448-450. |
14 | SHI Run, ZHAO Yunxuan, WATERHOUSE G I N, et al. Defect engineering in photocatalytic nitrogen fixation[J]. ACS Catalysis, 2019, 9(11): 9739-9750. |
15 | ZHENG Biyuan, MA Chao, LI Dong, et al. Band alignment engineering in two-dimensional lateral heterostructures[J]. Journal of the American Chemical Society, 2018, 140(36): 11193-11197. |
16 | GUO Chunxian, RAN Jingrun, VASILEFF A, et al. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions[J]. Energy & Environmental Science, 2018, 11(1): 45-56. |
17 | CHEN Gaofeng, REN Shiyu, ZHANG Lili, et al. Nitrogen reduction reactions: advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge[J]. Small Methods, 2019, 3(6): 1970016. |
18 | CUI Xiaoyang, TANG Cheng, ZHANG Qiang. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Advanced Energy Materials, 2018, 8(22): 1800369. |
19 | LIU Ruiquan, XU Gaochao. Comparison of electrochemical synthesis of ammonia by using sulfonated polysulfone and nation membrane with Sm1.5Sr0.5NiO4[J]. Chinese Journal of Chemistry, 2010, 28(2): 139-142. |
20 | KORDALI V, KYRIACOU G, LAMBROU C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell[J]. Chemical Communications, 2000(17): 1673-1674. |
21 | KUGLER K, LUHN M, SCHRAMM J A, et al. Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis[J]. Physical Chemistry Chemical Physics, 2015, 17(5): 3768-3782. |
22 | LIU Yanyan, HAN Miaomiao, XIONG Qizhong, et al. Dramatically enhanced ambient ammonia electrosynthesis performance by in-operando created Li-S interactions on MoS2 electrocatalyst[J]. Advanced Energy Materials, 2019, 9(14): 1803935. |
23 | ZHU Xiaojuan, LIU Zaichun, LIU Qin, et al. Efficient and durable N2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst[J]. Chemical Communications, 2018, 54(80): 11332-11335. |
24 | LI Laiquan, TANG Cheng, YAO Dazhi, et al. Electrochemical nitrogen reduction: identification and elimination of contamination in electrolyte[J]. ACS Energy Letters, 2019, 4: 2111-2116. |
25 | LIU Yanming, SU Yan, QUAN Xie, et al. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon[J]. ACS Catalysis, 2018, 8(2): 1186-1191. |
26 | LI Laiquan, TANG Cheng, XIA Bingquan, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction[J]. ACS Catalysis, 2019, 9(4): 2902-2908. |
27 | LIN Yunxiang, YANG Li, JIANG Hongliang, et al. Sulfur atomically doped bismuth nanobelt driven by electrochemical self-reconstruction for boosted electrocatalysis[J]. The Journal of Physical Chemistry Letters, 2020, 11(5): 1746-1752. |
28 | LI Peipei, LIU Zaichun, WU Tongwei, et al. Ambient electrocatalytic N2 reduction to NH3 by metal fluorides[J]. Journal of Materials Chemistry A, 2019, 7(30): 17761-17765. |
29 | LI Yuanfang, LI Tingshuai, ZHU Xiaojuan, et al. DyF3: an efficient electrocatalyst for N2 fixation to NH3 under ambient conditions[J]. Chemistry: an Asian Journal, 2020, 15(4): 487-489. |
30 | MONTOYA J H, TSAI C, VOJVODIC A, et al. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations[J]. ChemSusChem, 2015, 8(13): 2180-2186. |
31 | HÖSKULDSSON Á B, ABGHOUI Y, GUNNARSDÓTTIR A B, et al. Computational screening of rutile oxides for electrochemical ammonia formation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10327-10333. |
32 | ABGHOUI Y, GARDEN A L, HLYNSSON V F, et al. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design[J]. Physical Chemistry Chemical Physics, 2015, 17(7): 4909-4918. |
33 | TANG Cheng, QIAO Shizhang. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully[J]. Chemical Society Reviews, 2019, 48: 3166-3180. |
34 | Xingshuai LYU, WEI Wei, LI Fengping, et al. Metal-free B@g-CN: visible/infrared light-driven single atom photocatalyst enables spontaneous dinitrogen reduction to ammonia[J]. Nano Letters, 2019, 19(9): 6391-6399. |
35 | MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8): 17033. |
36 | LING Chongyi, ZHANG Yehui, LI Qiang, et al. New mechanism for N2 reduction: the essential role of surface hydrogenation[J]. Journal of the American Chemical Society, 2019, 141(45): 18264-18270. |
37 | ABGHOUI Y, SKÚLASON E. Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group Ⅲ-Ⅶtransition metal mononitrides[J]. Catalysis Today, 2017, 286: 78-84. |
38 | WAN Yuchi, XU Jichu, Ruitao LÜ. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions[J]. Materials Today, 2019, 27: 69-90. |
39 | SKULASON E, BLIGAARD T, GUDMUNDSDOTTIR S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry Chemical Physics, 2012, 14(3): 1235-1245. |
40 | YAO Yao, WANG Haijiang, YUAN Xiaozi, et al. Electrochemical nitrogen reduction reaction on ruthenium[J]. ACS Energy Letters, 2019, 4(6): 1336-1341. |
41 | ZHAO Runbo, LIU Chuangwei, ZHANG Xiaoxue, et al. An ultrasmall Ru2P nanoparticles-reduced graphene oxide hybrid: an efficient electrocatalyst for NH3 synthesis under ambient conditions[J]. Journal of Materials Chemistry A, 2020, 8(1): 77-81. |
42 | SHI Yun, YANG Yong, LI Yongwang, et al. Mechanisms of Mo2C(101)-catalyzed furfural selective hydrodeoxygenation to 2-methylfuran from computation[J]. ACS Catalysis, 2016, 6(10): 6790-6803. |
43 | CHENG Hui, DING Liangxin, CHEN Gaofeng, et al. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions[J]. Advanced Materials, 2018, 30(46): 1803694. |
44 | HUI Lan, XUE Yurui, YU Huidi, et al. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst[J]. Journal of the American Chemical Society, 2019, 141(27): 10677-10683. |
45 | LI Jie, CHEN Shang, QUAN Fengjiao, et al. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions[J]. Chem, 2020, 6(4): 885-901. |
46 | NAZEMI M, PANIKKANVALAPPIL S R, EL-SAYED M A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages[J]. Nano Energy, 2018, 49: 316-323. |
47 | LIU Huimin, HAN Shuhe, ZHAO Yue, et al. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction[J]. Journal of Materials Chemistry A, 2018, 6(7): 3211-3217. |
48 | ZHANG Ya, QIU Weibin, MA Yongjun, et al. High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions[J]. ACS Catalysis, 2018, 8(9): 8540-8544. |
49 | CHOI Changhyeok, BACK Seoin, KIM Na Young, et al. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline[J]. ACS Catalysis, 2018, 8(8): 7517-7525. |
50 | YANDULOV D V, SCHROCK R R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center[J]. Science, 2003, 301(5629): 76-78. |
51 | HAN Lili, LIU Xijun, CHEN Jinping, et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation[J]. Angewandte Chemie: International Edition, 2019, 58(8): 2321-2325. |
52 | ZANG Wenjie, YANG Tong, ZOU Haiyuan, et al. Copper single atoms anchored in porous nitrogen-doped carbon as efficient pH-universal catalysts for the nitrogen reduction reaction[J]. ACS Catalysis, 2019, 9(11): 10166-10173. |
53 | GENG Zhigang, LIU Yan, KONG Xiangdong, et al. Achieving a record-high yield rate of 120.9·mgcat-1·h-1 for N2 electrochemical reduction over Ru single-atom catalysts[J]. Advanced Materials, 2018, 30(40): 1803498. |
54 | SATO S, TAKAHASHI R, KOBUNE M, et al. Basic properties of rare earth oxides[J]. Applied Catalysis A: General, 2009, 356(1): 57-63. |
55 | LUO Yun, HABRIOUX A, CALVILLO L, et al. Thermally induced strains on the catalytic activity and stability of Pt-M2O3/C (M=Y or Gd) catalysts towards oxygen reduction reaction[J]. ChemCatChem, 2015, 7(10): 1573-1582. |
56 | LIU Jieyuan, KONG Xue, ZHENG Lirong, et al. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction[J]. ACS Nano, 2020, 14(1): 1093-1101. |
57 | WANG Mengfan, LIU Sisi, QIAN Tao, et al. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential[J]. Nature Communications, 2019, 10(1): 341. |
58 | JEONG Hojin, SHIN Sangyong, Hyunjoo LEE. Heterogeneous atomic catalysts overcoming the limitations of single-atom catalysts[J]. ACS Nano, 2020, 14(11): 14355-14374. |
59 | SHI Miaomiao, BAO Di, WULAN Bari, et al. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions[J]. Advanced Materials, 2017, 29(17): 1606550. |
60 | LIU Huiling, NOSHEEN F, WANG Xun. Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property[J]. Chemical Society Reviews, 2015, 44(10): 3056-3078. |
61 | JIANG Yaqi, SU Jingyun, YANG Yanan, et al. A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties[J]. Nano Research, 2016, 9(3): 849-856. |
62 | LI Chengbo, MOU Shiyong, ZHU Xiaojuan, et al. Dendritic Cu: a high-efficiency electrocatalyst for N2 fixation to NH3 under ambient conditions[J]. Chemical Communications, 2019, 55(96): 14474-14477. |
63 | REN Xiang, ZHAO Xiang, WEI Qin, et al. High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod[J]. ACS Central Science, 2019, 5(1): 116-121. |
64 | DU Huitong, GUO Xiaoxi, KONG Rongmei, et al. Cr2O3 nanofiber: a high-performance electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions[J]. Chemical Communications, 2018, 54(91): 12848-12851. |
65 | STRASSER P, KOH S, ANNIYEV T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nature Chemistry, 2010, 2(6): 454-460. |
66 | YANG Yijie, WANG Shuqi, WEN Haoming, et al. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation[J]. Angewandte Chemie: International Edition, 2019, 58(43): 15362-15366. |
67 | ZHANG Jin, JI Yujin, WANG Pengtang, et al. Adsorbing and activating N2 on heterogeneous Au-Fe3O4 nanoparticles for N2 fixation[J]. Advanced Functional Materials, 2019, 30(4): 1906579. |
68 | LIN Yunxiao, ZHANG Shinan, XUE Zhonghua, et al. Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles[J]. Nature Communications, 2019, 10(1): 4380. |
69 | LIU Yitao, CHEN Xingxing, YU Jianyong, et al. Carbon-nanoplated CoS@TiO2 nanofibrous membrane: an interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction[J]. Angewandte Chemie: International Edition, 2019, 58(52): 18903-18907. |
70 | LUO Shijian, LI Xiaoman, GAO Wanguo, et al. An MOF-derived C@NiO@Ni electrocatalyst for N2 conversion to NH3 in alkaline electrolytes[J]. Sustainable Energy & Fuels, 2020, 4(1): 164-170. |
71 | CHEN Pengzuo, ZHANG Nan, WANG Sibo, et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6635-6640. |
72 | ZHOU Fengling, AZOFRA L M, ALI M, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids[J]. Energy & Environmental Science, 2017, 10(12): 2516-2520. |
73 | FURUYA N, YOSHIBA H. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by Fe-phthalocyanine[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 263(1): 171-174. |
74 | LIU Yitao, TANG Lu, DAI Jin, et al. Promoted electrocatalytic nitrogen fixation in Fe-Ni layered double hydroxide arrays coupled to carbon nanofibers: the role of phosphorus doping[J]. Angewandte Chemie: International Edition, 2020, 59(32): 13623-13627. |
75 | ZHOU Kebin, LI Yadong. Catalysis based on nanocrystals with well-defined facets[J]. Angewandte Chemie: International Edition, 2012, 51(3): 602-613. |
76 | WANG Juan, HUANG Bolong, JI Yujin, et al. A general strategy to glassy M-Te (M = Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation[J]. Advanced Materials, 2020, 32(11): 1907112. |
77 | ROBERTS F S, KUHL K P, NILSSON A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts[J]. Angewandte Chemie: International Edition, 2015, 54(17): 5179-5182. |
78 | WANG Tao, TIAN Xinxin, YANG Yong, et al. Coverage-dependent N2 adsorption and its modification of iron surfaces structures[J]. The Journal of Physical Chemistry C, 2016, 120(5): 2846-2854. |
79 | YANG Dashuai, CHEN Ting, WANG Zhijiang. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm[J]. Journal of Materials Chemistry A, 2017, 5(36): 18967-18971. |
80 | HAN Jingrui, LIU Zaichun, MA Yongjun, et al. Ambient N2 fixation to NH3 at ambient conditions: using Nb2O5 nanofiber as a high-performance electrocatalyst[J]. Nano Energy, 2018, 52: 264-270. |
81 | Chade LÜ, YAN Chunshuang, CHEN Gang, et al. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions[J]. Angewandte Chemie: International Edition, 2018, 57(21): 6073-6076. |
82 | SHI Miaomiao, BAO Di, LI Sijia, et al. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution[J]. Advanced Energy Materials, 2018, 8(21): 1800124. |
83 | XIE Chao, YAN Dafeng, LI Hao, et al. Defect chemistry in heterogeneous catalysis: recognition, understanding and utilization[J]. ACS Catalysis, 2020, 10(19): 11082-11098 |
84 | XUE Zhonghua, ZHANG Shinan, LIN Yunxiao, et al. Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% Faradaic efficiency[J]. Journal of the American Chemical Society, 2019, 141(38): 14976-14980. |
85 | XU Wence, FAN Guilan, CHEN Jialiang, et al. Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions[J]. Angewandte Chemie: International Edition, 2019, 59(9): 3511-3516. |
86 | LUO Yaru, CHEN Gaofeng, DING Li, et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions[J]. Joule, 2019, 3(1): 279-289. |
87 | ZHANG Jing, TIAN Xiaoyin, LIU Mingjie, et al. Cobalt-modulated molybdenum-dinitrogen interaction in MoS2 for catalyzing ammonia synthesis[J]. Journal of the American Chemical Society, 2019, 141(49): 19269-19275. |
88 | WANG Jun, YU Liang, HU Lin, et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential[J]. Nature Communications, 2018, 9(1): 1795. |
89 | PANG Fangjie, WANG Zhifeng, ZHANG Kai, et al. Bimodal nanoporous Pd3Cu1 alloy with restrained hydrogen evolution for stable and high yield electrochemical nitrogen reduction[J]. Nano Energy, 2019, 58: 834-841. |
90 | TONG Yueyu, GUO Haipeng, LIU Daolan, et al. Vacancy engineering of Fe-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction[J]. Angewandte Chemie: International Edition, 2020, 59(19): 7356-7361. |
91 | GUO Chengying, LIU Xuejing, GAO Lingfeng, et al. Fe-doped Ni2P nanosheets with porous structure for electroreduction of nitrogen to ammonia under ambient conditions[J]. Applied Catalysis B: Environmental, 2019, 263: 118296. |
92 | CHU Ke, CHENG Yonghua, LI Qingqing, et al. Fe-doping induced morphological changes, oxygen vacancies and Ce3+-Ce3+ pairs in CeO2 for promoting electrocatalytic nitrogen fixation[J]. Journal of Materials Chemistry A, 2020, 8(12): 5865-5873 |
93 | WU Tongwei, ZHU Xiaojuan, XING Zhe, et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticle by iron doping[J]. Angewandte Chemie: International Edition, 2019, 58(51): 18449-18453. |
94 | WU Tongwei, KONG Wenhan, ZHANG Ya, et al. Greatly enhanced electrocatalytic N2 reduction on TiO2via V doping[J]. Small Methods, 2019, 3(11): 1900356. |
95 | WANG Yuan, JIA Kun, PAN Qi, et al. Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 117-122. |
96 | JIA Kun, WANG Yuan, PAN Qi, et al. Enabling the electrocatalytic fixation of N2 to NH3 by C-doped TiO2 nanoparticles under ambient conditions[J]. Nanoscale Advances, 2019, 1(3): 961-964. |
97 | QIN Qing, ZHAO Yun, SCHMALLEGGER M, et al. Enhanced electrocatalytic N2 reduction via partial anion substitution in titanium oxide-carbon composites[J]. Angewandte Chemie: International Edition, 2019, 58(37): 13101-13106. |
98 | SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137. |
99 | ZHAO Jinxiu, ZHANG Lei, XIE Xiaoying, et al. Ti3C2Tx (T= F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3[J]. Journal of Materials Chemistry A, 2018, 6(47): 24031-24035. |
100 | FANG Yanfeng, LIU Zaichun, HAN Jingrui, et al. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2in situ grown on Ti3C2Tx MXene[J]. Advanced Energy Materials, 2019, 9(16): 1803406. |
101 | CHEN Xinrui, GUO Yitian, DU Xinchuan, et al. Atomic structure modification for electrochemical nitrogen reduction to ammonia[J]. Advanced Energy Materials, 2019, 10(3): 1903172. |
102 | LUO Shijian, LI Xiaoman, ZHANG Baohai, et al. MOF-derived Co3O4@NC with core-shell structures for N2 electrochemical reduction under ambient conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26891-26897. |
103 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
104 | ZHANG Rong, REN Xiang, SHI Xifeng, et al. Enabling effective electrocatalytic N2 conversion to NH3 by the TiO2 nanosheets array under ambient conditions[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28251-28255. |
105 | HAN Zishan, CHOI Changhyeok, HONG Song, et al. Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction[J]. Applied Catalysis B: Environmental, 2019, 257: 117896. |
106 | YANG Li, WU Tongwei, ZHANG Rong, et al. Insights into defective TiO2 in electrocatalytic N2 reduction: combining theoretical and experimental studies[J]. Nanoscale, 2019, 11(4): 1555-1562. |
107 | LI Bingyue, ZHU Xiaojuan, WANG Jianwei, et al. Ti3+ self-doped TiO2-x nanowires for efficient electrocatalytic N2 reduction to NH3[J]. Chemical Communications, 2019, 56(7): 1074-1077. |
108 | FANG Caihong, BI Ting, XU Xiaoxiao, et al. Oxygen vacancy-enhanced electrocatalytic performances of TiO2 nanosheets toward N2 reduction reaction[J]. Advanced Materials Interfaces, 2019, 6(21): 1901034. |
109 | ZHANG Jianfang, TIAN Yujing, ZHANG Tianyu, et al. Confinement of intermediates in blue TiO2 nanotube arrays boosts reaction rate of nitrogen electrocatalysis[J]. ChemCatChem, 2020, 12(10): 2760-2767. |
110 | GAO Minrui, CHAN M K Y, SUN Yugang. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production[J]. Nature Communications, 2015, 6(1): 7493. |
111 | LI Xianghong, LI Tingshuai, MA Yongjun, et al. Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower[J]. Advanced Energy Materials, 2018, 8(30): 1801357. |
112 | ZHANG Rong, ZHANG Ya, REN Xiang, et al. High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9545-9549. |
113 | JIN Huanyu, LI Laiquan, LIU Xin, et al. Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction[J]. Advanced Materials, 2019, 31(32): 1902709. |
114 | YANG Xiaohui, LING Faling, SU Jinfeng, et al. Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction[J]. Applied Catalysis B: Environmental, 2019, 264: 118477. |
115 | HU Bo, HU Maowei, SEEFELDT L, et al. Electrochemical dinitrogen reduction to ammonia by Mo2N: catalysis or decomposition?[J]. ACS Energy Letters, 2019, 4(5): 1053-1054. |
116 | XIONG Wei, GUO Zheng, ZHAO Shijun, et al. Facile, cost-effective plasma synthesis of self-supportive FeSx on Fe foam for efficient electrochemical reduction of N2 under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7(34): 19977-19983. |
117 | SINGH A R, ROHR B A, SCHWALBE J A, et al. Electrochemical ammonia synthesis——The selectivity challenge[J]. ACS Catalysis, 2017, 7(1): 706-709. |
118 | MACLEOD K C, HOLLAND P L. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron[J]. Nature Chemistry, 2013, 5(7): 559-565. |
119 | WANG Haibin, WANG Jiaqi, ZHANG Rui, et al. Bionic design of a Mo(Ⅳ)-doped FeS2 catalyst for electroreduction of dinitrogen to ammonia[J]. ACS Catalysis, 2020, 10(9): 4914-4921. |
120 | QIN Binhao, LI Yuhang, ZHANG Qiao, et al. Understanding of nitrogen fixation electro catalyzed by molybdenum-iron carbide through the experiment and theory[J]. Nano Energy, 2020, 68: 104374. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[6] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[7] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[8] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[9] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[10] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[11] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[12] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[13] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[14] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[15] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |