化工进展 ›› 2021, Vol. 40 ›› Issue (4): 1928-1947.DOI: 10.16085/j.issn.1000-6613.2020-2153
杨杰(), 常辉, 隋志军, 朱卡克, 朱贻安(), 周兴贵
收稿日期:
2020-10-27
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
朱贻安
作者简介:
杨杰(1995—),男,硕士研究生,研究方向为甲烷部分氧化反应中钙钛矿催化剂的理性设计。E-mail:基金资助:
YANG Jie(), CHANG Hui, SUI Zhijun, ZHU Kake, ZHU Yi’an(), ZHOU Xinggui
Received:
2020-10-27
Online:
2021-04-05
Published:
2021-04-14
Contact:
ZHU Yi’an
摘要:
甲烷作为天然气的主要组成成分,其有效利用具有重要的现实意义。本文首先介绍了甲烷转化工艺,系统地比较了传统甲烷氧化与化学链催化甲烷氧化工艺,提出化学链重整技术作为一种应用于甲烷氧化反应的新技术,提供了一个多功能平台,以清洁及有效的方式转换燃料。然后,介绍了应用于此技术的催化剂研究现状,重点关注具有高储氧性能、催化性能以及低合成成本特点的钙钛矿复合氧化物,特别综述了利用机器学习方法高通量筛选钙钛矿氧化物催化剂的理论计算工作。最后,系统讨论了钙钛矿氧化物对化学链催化甲烷氧化反应性能的影响规律,依据实验和密度泛函理论计算研究结果,对催化剂颗粒尺寸、金属离子价态、氧空穴形成能以及氧浓度同催化性能之间的关系进行了分析,提出钙钛矿氧化物催化甲烷氧化反应的关键影响因素,为钙钛矿氧化物催化剂的筛选提供理论支撑。
中图分类号:
杨杰, 常辉, 隋志军, 朱卡克, 朱贻安, 周兴贵. 化学链催化甲烷氧化反应研究进展[J]. 化工进展, 2021, 40(4): 1928-1947.
YANG Jie, CHANG Hui, SUI Zhijun, ZHU Kake, ZHU Yi’an, ZHOU Xinggui. Advances in chemical looping methane oxidation[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1928-1947.
12 | FERREIRA-APARICIO P, BENITO M J, SANZ J L. New trends in reforming technologies: from hydrogen industrial plants to multifuel microreformers[J]. Catalysis Reviews, 2005, 47(4): 491-588. |
13 | ADANEZ Juan, ABAD Alberto, Francisco GARCIA-LABIANO, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2): 215-282. |
14 | 王辅臣, 李伟锋, 代正华, 等. 天然气非催化部分氧化制合成气过程的研究[J]. 石油化工, 2006(1): 47-51. |
WANG Fuchen, LI Weifeng, DAI Zhenghua, et al. Preparation of syngas from natural gas by non-catalytic partial oxidation[J]. Petrochemical Technology, 2006 (1): 47-51. | |
15 | LI Chao'en, KUAN Benny, Woo Jin LEE, et al. The non-catalytic partial oxidation of methane in a flow tube reactor using indirect induction heating: an experimental and kinetic modelling study[J]. Chemical Engineering Science, 2018, 187: 189-199. |
16 | MA Ruoshui, XU Bang, ZHANG Xiao. Catalytic partial oxidation (CPOX) of natural gas and renewable hydrocarbons/oxygenated hydrocarbons: a review[J]. Catalysis Today, 2019, 338: 18-30. |
17 | ZENG Liang, CHENG Zhuo, FAN Jonathan A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364. |
18 | TANG Mingchen, XU Long, FAN Maohong. Progress in oxygen carrier development of methane-based chemical-looping reforming: a review[J]. Applied Energy, 2015, 151: 143-156. |
19 | ZHU Xing, IMTIAZ Qasim, DONAT Felix, et al. Chemical looping beyond combustion: a perspective[J]. Energy & Environmental Science, 2020, 13(3): 772-804. |
20 | MISHRA Amit, LI Fanxing. Chemical looping at the nanoscale—Challenges and opportunities[J]. Current Opinion in Chemical Engineering, 2018, 20: 143-150. |
21 | ZHU Xing, LI Kongzhai, NEAL Luke, et al. perovskites as geo-inspired oxygen storage materials for chemical looping and three-way catalysis: a perspective[J]. ACS Catalysis, 2018, 8(9): 8213-8236. |
22 | LEWIS W K, GILLILAND Edwin R. Production of pure carbon dioxide: US2665972[P]. 1954-01-12. |
23 | RICHTER Horst J, KNOCHE Karl F. Reversibility of combustion processes[M]//ACS Symposium Serie. Washington DC: America Chemical Society, 1983. |
1 | 部婕, 杨建红, 谢俊. 世界天然气发展六大趋势[J]. 中国石化, 2017(9): 34-37. |
BU Jie, YANG Jianhong, XIE Jun. Six major trends in the development of natural gas[J]. Sinopec Monthly, 2017(9): 34-37. | |
24 | Magnus RYDéN, LYNGFELT Anders, MATTISSON Tobias, et al. Novel oxygen-carrier materials for chemical-looping combustion and chemical-looping reforming; LaxSr1-xFeyCo1-yO3-δ perovskites and mixed-metal oxides of NiO, Fe2O3 and Mn3O4[J]. International Journal of Greenhouse Gas Control, 2008, 2(1): 21-36. |
25 | 段一菲, 陈存壮, 张军社, 等. 化学链小分子转化研究进展[J]. 中国科学: 化学, 2020, 50(3): 337-365. |
DUAN Yifei, CHEN Cunzhuang, ZHANG Junshe, et al. Progress in chemical looping-based transformations of small molecules[J]. Scientia Sinica Chimica, 2020, 50(3): 337-365. | |
26 | ABAD A, MATTISSON T, LYNGFELT A, et al. The use of iron oxide as oxygen carrier in a chemical-looping reactor[J]. Fuel, 2007, 86(7): 1021-1035. |
27 | JERNDAL E, MATTISSON T, LYNGFELT A. Thermal analysis of chemical-looping combustion[J]. Chemical Engineering Research and Design, 2006, 84(9): 795-806. |
28 | HUANG Liang, TANG Mingchen, FAN Maohong, et al. Density functional theory study on the reaction between hematite and methane during chemical looping process[J]. Applied Energy, 2015, 159: 132-144. |
29 | HE Fang, WEI Yonggang, LI Haibin, et al. Synthesis gas generation by chemical-looping reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn oxides[J]. Energy & Fuels, 2009, 23(4): 2095-2102. |
30 | TSANG S C, CLARIDGE J B, GREEN M L H. Recent advances in the conversion of methane to synthesis gas[J]. Catalysis Today, 1995, 23(1): 3-15. |
31 | YAN Qiangu, YU Zuolong, LI Jitao, et al. Synergism in Pt enhanced Ni catalysts for oxidation of methane to syngas[J]. Journal of Natural Gas Chemistry, 2000, 9(1): 18-31, 87. |
32 | 丁石, 胡蓉蓉, 阳宜洋, 等. Rh负载的整体型催化剂甲烷催化部分氧化过程[J]. 化工学报, 2007, 58(9): 2255-2258. |
DING Shi, HU Rongrong, YANG Yiyang, et al. Catalytic partial oxidation of methane over rhodium coated foam monolith[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(9): 2255-2258. | |
33 | 李文琪. 甲烷催化部分氧化铑基催化剂的性能研究[D]. 重庆: 重庆大学, 2015. |
LI Wenqi. The performance researching of methane catalytic partial oxidation on Rhodium-based catalyst[D]. Chongqing: Chongqing University, 2015. | |
34 | HOU Zhiquan, LIU Yuxi, DENG Jiguang, et al. Highly active and stable Pd-GaOx/Al2O3 catalysts derived from intermetallic Pd5Ga3 nanocrystals for methane combustion[J]. ChemCatChem, 2018, 10(24): 5637-5648. |
35 | Mikkel JØRGENSEN, Henrik GRÖNBECK. First-principles microkinetic modeling of methane oxidation over Pd(100) and Pd(111)[J]. ACS Catalysis, 2016, 6(10): 6730-6738. |
36 | TRINCHERO Adriana, HELLMAN Anders, Henrik GRÖNBECK. Methane oxidation over Pd and Pt Studied by DFT and kinetic modeling[J]. Surface Science, 2013, 616: 206-213. |
37 | PSOFOGIANNAKIS George, Alain ST-AMANT, TERNAN Marten. Methane oxidation mechanism on Pt(111): a cluster model DFT study[J]. The Journal of Physical Chemistry B, 2006, 110(48): 24593-24605. |
38 | Jong Suk YOO, SCHUMANN Julia, STUDT Felix, et al. Theoretical investigation of methane oxidation on Pd(111) and other metallic surfaces[J]. The Journal of Physical Chemistry C, 2018, 122(28): 16023-16032. |
39 | LIU Huimin, HE Dehua. Recent progress on Ni-based catalysts in partial oxidation of methane to syngas[J]. Catalysis Surveys from Asia, 2012, 16(2): 53-61. |
40 | TU Weifeng, GHOUSSOUB Mireille, SINGH Chandra Veer, et al. Consequences of surface oxophilicity of Ni, Ni-Co, and Co clusters on methane activation[J]. Journal of the American Chemical Society, 2017, 139(20): 6928-6945. |
41 | HE Jiang, YANG Zhongqing, DING Chunling, et al. Methane dehydrogenation and oxidation process over Ni-based bimetallic catalysts[J]. Fuel, 2018, 226: 400-409. |
42 | NIU Tianchao, JIANG Zhao, ZHU Yaguang, et al. Oxygen-promoted methane activation on copper[J]. The Journal of Physical Chemistry B, 2018, 122(2): 855-863. |
43 | WANG Jie, WANG Gui-Chang. Promotion effect of methane activation on Cu(111) by the surface-active oxygen species: a combination of DFT and ReaxFF study[J]. The Journal of Physical Chemistry C, 2018, 122(30): 17338-17346. |
44 | MENG Yuanyuan, DING Chuanmin, XUE Yuyuan, et al. Theoretical research on a coke-resistant catalyst for the partial oxidation of methane: Pt/Cu single-atom alloys[J]. New Journal of Chemistry, 2020, 44(10): 3922-3929. |
45 | MENG Yuanyuan, DING Chuanmin, GAO Xiaofeng, et al. Adsorption of Pd on the Cu(111) surface and its catalysis of methane partial oxidation: a density functional theory study[J]. Applied Surface Science, 2020, 513: 145724. |
46 | ENGER BjØrn Christian, Rune LØDENG, HOLMEN Anders. Effects of noble metal promoters on in situ reduced low loading Ni catalysts for methane activation[J]. Catalysis Letters, 2010, 134(1): 13-23. |
47 | YAN Q, YU Z, LI J, et al. Synergism in platinum enhanced nickel catalysts for oxidation of methane to syngas[J]. Journal of Natural Gas Chemistry, 2000, 9(1): 18-30, 87. |
48 | ZHANG Minhua, YANG Kuiwei, ZHANG Xiaohang, et al. Effect of Ni(111) surface alloying by pt on partial oxidation of methane to syngas: a DFT study[J]. Surface Science, 2014, 630: 236-243. |
49 | 李基涛, 严前古, 陈明旦, 等. 甲烷部分氧化制合成气Ni/MgO和 Ni-MgO/MgO催化剂的研究[J]. 分子催化, 2000, 14(3): 232-234. |
LI Jitao, YAN Qiangu, CHEN Mingdan, et al. Partial oxidation of methane to synthesis gas over Ni/MgO and Ni-MgO/MgO catalysts[J]. Journal of Molecular Catalysis(China), 2000, 14(3): 232-234. | |
50 | EMAMDOUST A, PAROLA V LA, PANTALEO G, et al. Partial oxidation of methane over SiO2 supported Ni and NiCe catalysts[J]. Journal of Energy Chemistry, 2020, 47(8): 1-9. |
51 | PANTALEO G, PAROLA V LA, DEGANELLO F, et al. Ni/CeO2 catalysts for methane partial oxidation: synthesis driven structural and catalytic effects[J]. Applied Catalysis B: Environmental, 2016, 189: 233-241. |
52 | HOSSAIN Mohammad M, LOPEZ David, HERRERA Jose, et al. Nickel on lanthanum-modified γ-Al2O3 oxygen carrier for CLC: reactivity and stability[J]. Catalysis Today, 2009, 143(1/2): 179-186. |
53 | Magnus RYDÉN, LYNGFELT Anders, MATTISSON Tobias. Chemical-looping combustion and chemical-looping reforming in a circulating fluidized-bed reactor using Ni-based oxygen carriers[J]. Energy & Fuels, 2008, 22(4): 2585-2597. |
54 | ORTIZ María, DE DIEGO L F, ABAD Alberto, et al. Catalytic activity of Ni-based oxygen-carriers for steam methane reforming in chemical-looping processes[J]. Energy & Fuels, 2012, 26(2): 791-800. |
55 | DUESO Cristina, ORTIZ María, ABAD Alberto, et al. Reduction and oxidation kinetics of nickel-based oxygen-carriers for chemical-looping combustion and chemical-looping reforming[J]. Chemical Engineering Journal, 2012, 188: 142-154. |
56 | BASINI L, AASBERG-PETERSEN K, GUARINONI A, et al. Catalytic partial oxidation of natural gas at elevated pressure and low residence time[J]. Catalysis Today, 2001, 64(1/2): 9-20. |
57 | HICKMAN D A, SCHMIDT L D. Synthesis gas formation by direct oxidation of methane over Pt monoliths[J]. Journal of Catalysis, 1992, 138(1): 267-282. |
58 | LUO Siwei, ZENG Liang, FAN Liang-Shih. Chemical looping technology: oxygen carrier characteristics[J]. Annual Review of Chemical and Biomolecular Engineering, 2015, 6(1): 53-75. |
59 | XU Jiayan, CAO Xiaoming, HU P. Improved prediction for the methane activation mechanism on rutile metal oxides by a machine learning model with geometrical descriptors[J]. The Journal of Physical Chemistry C, 2019, 123(47): 28802-28810. |
60 | SINGHA Rajib Kumar, TSUJI Yuta, MAHYUDDIN Muhammad Haris, et al. Methane activation at the metal-support interface of Ni4-CeO2(111) catalyst: a theoretical study[J]. The Journal of Physical Chemistry C, 2019, 123(15): 9788-9798. |
61 | LATIMER Allegra A, ALJAMA Hassan, KAKEKHANI Arvin, et al. Mechanistic insights into heterogeneous methane activation[J]. Physical Chemistry Chemical Physics, 2017, 19(5): 3575-3581. |
62 | LATIMER Allegra A, KULKARNI Ambarish R, ALJAMA Hassan, et al. Understanding trends in C—H bond activation in heterogeneous catalysis[J]. Nature Materials, 2017, 16(2): 225-229. |
63 | VARGHESE Jithin John, MUSHRIF Samir H. Insights into the C—H bond activation on NiO surfaces: the role of nickel and oxygen vacancies and of low valent dopants on the reactivity and energetics[J]. The Journal of Physical Chemistry C, 2017, 121(33): 17969-17981. |
64 | MAYERNICK Adam D, JANIK Michael J. Methane activation and oxygen vacancy formation over CeO2 and Zr, Pd substituted CeO2 surfaces[J]. The Journal of Physical Chemistry C, 2008, 112(38): 14955-14964. |
65 | MAYERNICK Adam D, JANIK Michael J. Methane oxidation on Pd-ceria: a DFT study of the mechanism over PdxCe1-xO2, Pd, and PdO[J]. Journal of Catalysis, 2011, 278(1): 16-25. |
66 | TANG Wei, HU Zhenpeng, WANG Miaojun, et al. Methane complete and partial oxidation catalyzed by Pt-doped CeO2[J]. Journal of Catalysis, 2010, 273(2): 125-137. |
67 | LIU Zhipan, HU P. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C—H and C—O bond breaking/making on flat, stepped, and kinked metal surfaces[J]. Journal of the American Chemical Society, 2003, 125(7): 1958-1967. |
68 | FATHI M, BJORGUM E, VIIG T, et al. Partial oxidation of methane to synthesis gas: elimination of gas phase oxygen[J]. Catalysis Today, 2000, 63(2/3/4): 489-497. |
69 | PANTU Piboon, GAVALAS George R. Methane partial oxidation on Pt/CeO2 and Pt/Al2O3 catalysts[J]. Applied Catalysis A: General, 2002, 223(1/2): 253-260. |
70 | JALIBERT J C, FATHI M, ROKSTAD O A, et al. Synthesis gas production by partial oxidation of methane from the cyclic gas-solid reaction using promoted cerlum oxide[M]//IGLESIA E, SPIVEY J J, FLEISCH T H. Studies in surface science and catalysis. Natural Gas Conversion Ⅵ, Volume136. |
Elsevier, 2001: 301-306. | |
71 | HU Wende, LAN Jinggang, GUO Yun, et al. Origin of efficient catalytic combustion of methane over Co3O4(110): active low-coordination lattice oxygen and cooperation of multiple active sites[J]. ACS Catalysis, 2016, 6(8): 5508-5519. |
72 | TIAN Dong, LI Kongzhai, WEI Yonggang, et al. DFT insights into oxygen vacancy formation and CH4 activation over CeO2 surfaces modified by transition metals (Fe, Co and Ni)[J]. Physical Chemistry Chemical Physics, 2018, 20(17): 11912-11929. |
73 | TANG Jiajun, LIU Bin. Reactivity of the Fe2O3(0001) surface for methane oxidation: a GGA+U study[J]. The Journal of Physical Chemistry C, 2016, 120(12): 6642-6650. |
74 | MARS P, KREVELEN Do W VAN. Oxidations carried out by means of vanadium oxide catalysts[J]. Chemical Engineering Science, 1954, 3: 41-59. |
75 | CHENG Zhuo, QIN Lang, GUO Mengqing, et al. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process[J]. Physical Chemistry Chemical Physics, 2016, 18(47): 32418-32428. |
76 | CHENG Zhuo, QIN Lang, GUO Mengqing, et al. Methane adsorption and dissociation on iron oxide oxygen carriers: the role of oxygen vacancies[J]. Physical Chemistry Chemical Physics, 2016, 18(24): 16423-16435. |
77 | KANG Yu, TIAN Ming, HUANG Chuande, et al. Improving syngas selectivity of Fe2O3/Al2O3 with yttrium modification in chemical looping methane conversion[J]. ACS Catalysis, 2019, 9(9): 8373-8382. |
78 | QIN Lang, GUO Mengqing, LIU Yan, et al. Enhanced methane conversion in chemical looping partial oxidation systems using a copper doping modification[J]. Applied Catalysis B: Environmental, 2018, 235: 143-149. |
79 | LIU Yan, QIN Lang, CHENG Zhuo, et al. Near 100% CO selectivity in nanoscaled iron-based oxygen carriers for chemical looping methane partial oxidation[J]. Nature Communications, 2019, 10: 5503. |
80 | CHENG Xianming, LI Kongzhai, ZHU Xing, et al. Enhanced performance of chemical looping combustion of methane by combining oxygen carriers via optimizing the stacking sequences[J]. Applied Energy, 2018, 230: 696-711. |
81 | PEñA M A, FIERRO J L G. Chemical structures and performance of perovskite oxides[J]. Chemical Reviews, 2001, 101(7): 1981-2018. |
82 | ROYER Sébastien, DUPREZ Daniel, Fabien CAN, et al. Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality[J]. Chemical Reviews, 2014, 114(20): 10292-10368. |
83 | BARTEL Christopher J, SUTTON Christopher, GOLDSMITH Bryan R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances, 2019, 5(2): eaav0693. |
84 | LU Shuaihua, ZHOU Qionghua, OUYANG Yixin, et al. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning[J]. Nature Communications, 2018, 9(1): 3405. |
85 | Weeraphat PON-ON, MEEJOO Siwaporn, MEHTAR Asiya, et al. Influence of manganese substitution into the A-site of perovskite type Ca1-xMnxTiO3 ceramic[J]. Ceramics International, 2011, 37(7): 2075-2079. |
86 | LI Wei, JACOBS Ryan, MORGAN Dane. Predicting the thermodynamic stability of perovskite oxides using machine learning models[J]. Computational Materials Science, 2018, 150: 454-463. |
87 | XU Qichen, LI Zhenzhu, LIU Miao, et al. Rationalizing perovskite data for machine learning and materials design[J]. The Journal of Physical Chemistry Letters, 2018, 9(24): 6948-6954. |
88 | Åse SLAGTERN, OLSBYE Unni. Partial oxidation of methane to synthesis gas using La-M-O catalysts[J]. Applied Catalysis A: General, 1994, 110(1): 99-108. |
89 | MIHAI Oana, CHEN De, HOLMEN Anders. Chemical looping methane partial oxidation: the effect of the crystal size and O content of LaFeO3[J]. Journal of Catalysis, 2012, 293: 175-185. |
90 | MIHAI Oana, CHEN De, HOLMEN Anders. Catalytic consequence of oxygen of lanthanum ferrite perovskite in chemical looping reforming of methane[J]. Industrial & Engineering Chemistry Research, 2011, 50(5): 2613-2621. |
91 | DAI Xiaoping, YU Changchun, WU Qiong. Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9Co0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane[J]. Journal of Natural Gas Chemistry, 2008, 17(4): 415-418. |
92 | HE Fang, LI Xinai, ZHAO Kun, et al. The use of La1-xSrxFeO3 perovskite-type oxides as oxygen carriers in chemical-looping reforming of methane[J]. Fuel, 2013, 108: 465-473. |
93 | DONAT Felix, MÜLLER Christoph R. CO2-free conversion of CH4 to syngas using chemical looping[J]. Applied Catalysis B: Environmental, 2020, 278: 119328. |
94 | 崔梅生, 李明来, 张顺利, 等. 钙钛矿催化材料La1-xCexCoO3+δ的制备、表征及甲烷燃烧催化性质[J]. 中国有色金属学报, 2004(9): 1580-1584. |
CUI Meisheng, LI Minglai, ZHANG Shunli, et al. Preparation and physico-chemical characterisation of La1-xCexCoO3+δperovskite catalyst and its methane catalytic combustion[J]. The Chinese Journal of Nonferrous Metals, 2004(9): 1580-1584. | |
95 | ALIFANTI M, KIRCHNEROVA J, DELMON B, et al. Methane and propane combustion over lanthanum transition-metal perovskites: role of oxygen mobility[J]. Applied Catalysis A: General, 2004, 262(2): 167-176. |
96 | YANG Xinwei, GAO Qin, ZHAO Zhenyang, et al. Surface tuning of noble metal doped perovskite oxide by synergistic effect of thermal treatment and acid etching: a new path to high-performance catalysts for methane combustion[J]. Applied Catalysis B: Environmental, 2018, 239: 373-382. |
97 | MISHRA Amit, GALINSKY Nathan, HE Feng, et al. Perovskite-structured AMnxB1-xO3 (A = Ca or Ba; B = Fe or Ni) redox catalysts for partial oxidation of methane[J]. Catalysis Science & Technology, 2016, 6(12): 4535-4544. |
98 | SHEN Qianqian, HUANG Fei, TIAN Ming, et al. Effect of regeneration period on the selectivity of synthesis gas of Ba-hexaaluminates in chemical looping partial oxidation of methane[J]. ACS Catalysis, 2019, 9(1): 722-731. |
99 | ZHENG Yane, LI Kongzhai, WANG Hua, et al. Designed oxygen carriers from macroporous LaFeo3 supported CeO2 for chemical-looping reforming of methane[J]. Applied Catalysis B: Environmental, 2017, 202: 51-63. |
100 | DONAT Felix, XU Yongqing, MÜLLER Christoph R. Combined partial oxidation of methane to synthesis gas and production of hydrogen or carbon monoxide in a fluidized bed using lattice oxygen[J]. Energy Technology, 2020, 8(8): 1900655. |
101 | LI Ming, ZHAO Kun, ZHAO Zengli, et al. Enhanced hydrogen-rich syngas generation in chemical looping methane reforming using an interstitial doped La1.6Sr0.4FeCoO6[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10250-10264. |
102 | MUDU Federica, OLSBYE Unni, ARSTAD Bjørnar, et al. Aluminium substituted lanthanum based perovskite type oxides, non-stoichiometry and performance in methane partial oxidation by framework oxygen[J]. Applied Catalysis A: General, 2016, 523: 171-181. |
103 | Hyun Suk LIM, KANG Dohyung, Jae W LEE. Phase transition of Fe2O3-NiO to NiFe2O4 in perovskite catalytic particles for enhanced methane chemical looping reforming-decomposition with CO2 conversion[J]. Applied Catalysis B: Environmental, 2017, 202: 175-183. |
104 | TONIOLO Fabio Souza, MAGALHãES Robert Newton S H, PEREZ Carlos André C, et al. Structural investigation of LaCoO3 and LaCoCuO3 perovskite-type oxides and the effect of cu on coke deposition in the partial oxidation of methane[J]. Applied Catalysis B: Environmental, 2012, 117/118: 156-166. |
105 | ZHANG Xiaojing, LI Huaju, LI Yong, et al. Structural properties and catalytic activity of Sr-substituted LaFeO3 perovskite[J]. Chinese Journal of Catalysis, 2012, 33(7): 1109-1114. |
106 | LI Yang, ZHENG Yashan, ZHU Yi'an, et al. BEEF-Vdw+U method applied to perovskites: thermodynamic, structural, electronic, and magnetic properties[J]. Journal of Physics: Condensed Matter, 2019, 31(14): 145901. |
107 | ULLAH Hayat, KAYANI Farzana, KHENATA Rabah. Insight into the mechanical, thermal, electronic and magnetic properties of cubic lanthanide built perovskites oxides PrXO3 (X=Al, Ga)[J]. Materials Research Express, 2019, 6(12): 126105. |
108 | FUNG Victor, Felipe POLO-GARZON, WU Zili, et al. Exploring perovskites for methane activation from first principles[J]. Catalysis Science & Technology, 2018, 8(3): 702-709. |
109 | LI Yang, CHENG Wei, Zhijun SUI, et al. Origin of chemisorption energy scaling relations over perovskite surfaces[J]. The Journal of Physical Chemistry C, 2019, 123(46): 28275-28283. |
110 | LI Yang, YANG Jie, ZHU Yi'an, et al. Surface phase diagrams of La-based perovskites towards the O-rich limit from first principles[J]. Physical Chemistry Chemical Physics, 2019, 21(24): 12859-12871. |
111 | LI Qian, DENG Yunxiang, ZHU Yi'an, et al. Structural stability of lanthanum-based oxygen-deficient perovskites in redox catalysis: a density functional theory study[J]. Catalysis Today, 2020, 347: 142-149. |
112 | ZHENG Yashan, ZHANG Min, LI Qian, et al. Electronic origin of oxygen transport behavior in La-based perovskites: a density functional theory study[J]. The Journal of Physical Chemistry C, 2019, 123(1): 275-290. |
113 | Yueh-Lin LEE, KLEIS Jesper, ROSSMEISL Jan, et al. Ab initio energetics of LaBO3(001)(B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes[J]. Physical Review B, 2009, 80(22): 224101. |
114 | Yueh-Lin LEE, MORGAN Dane. Ab initio and empirical defect modeling of LaMnO3±δ for solid oxide fuel cell cathodes[J]. Physical Chemistry Chemical Physics, 2012, 14(1): 290-302. |
115 | Yueh-Lin LEE, MORGAN Dane. Ab initio defect energetics of perovskite (001) surfaces for solid oxide fuel cells: a comparative study of LaMnO3versus SrTiO3 and LaAlO3[J]. Physical Review B, 2015, 91(19): 195430. |
116 | Yueh-Lin LEE, DUAN Yuhua, MORGAN Dane, et al. Density-functional-theory modeling of cation diffusion in bulk La1-xSrxMnO3±δ (x=0.0~0.25) for solid-oxide fuel-cell cathodes[J]. Physical Review Applied, 2017, 8(4): 044001. |
117 | XIE Wei, Yueh-Lin LEE, SHAO-HORN Yang, et al. Oxygen point defect chemistry in ruddlesden-popper oxides (La1–xSrx)2MO4±δ(M= Co, Ni, Cu)[J]. The Journal of Physical Chemistry Letters, 2016, 7(10): 1939-1944. |
118 | TAGUCHI Hideki, NAKADE Katsuyuki, YOSINAGA Masashi, et al. Methane oxidation on perovskite-type CaMn1-xTixO3-δ[J]. Journal of the American Ceramic Society, 2008, 91(1): 308-310. |
119 | CHANG Hui, Erlend BJØRGUM, MIHAI Oana, et al. Effects of oxygen mobility in La-Fe-based perovskites on the catalytic activity and selectivity of methane oxidation[J]. ACS Catalysis, 2020, 10(6): 3707-3719. |
120 | ZHANG Xianhua, PEI Chunlei, CHANG Xin, et al. FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting[J]. Journal of the American Chemical Society, 2020, 142(26): 11540-11549. |
121 | MUÑOZ-GARCíA Ana B, RITZMANN Andrew M, PAVONE Michele, et al. Oxygen transport in perovskite-type solid oxide fuel cell materials: Insights from quantum mechanics[J]. Accounts of Chemical Research, 2014, 47(11): 3340-3348. |
122 | PAVONE Michele, MUÑOZ-GARCÍA Ana B, RITZMANN Andrew M, et al. First-principles study of lanthanum strontium manganite: insights into electronic structure and oxygen vacancy formation[J]. The Journal of Physical Chemistry C, 2014, 118(25): 13346-13356. |
123 | RITZMANN Andrew M, PAVONE Michele, MUñOZ-GARCíA Ana B, et al. Ab initio DFT+U analysis of oxygen transport in LaCoO3: the effect of Co3+ magnetic states[J]. Journal of Materials Chemistry A, 2014, 2(21): 8060-8074. |
124 | RITZMANN Andrew M, DIETERICH Johannes M, CARTER Emily A. Density functional theory + U analysis of the electronic structure and defect chemistry of LSCF (La0.5Sr0.5Co0.25Fe0.75O3-δ)[J]. Physical Chemistry Chemical Physics, 2016, 18(17): 12260-12269. |
125 | PAVONE Michele, RITZMANN Andrew M, CARTER Emily A. Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials[J]. Energy & Environmental Science, 2011, 4(12): 4933-4937. |
126 | Yueh-Lin LEE, KLEIS Jesper, ROSSMEISL Jan, et al. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors[J]. Energy & Environmental Science, 2011, 4(10): 3966-3970. |
127 | CHEN Chi, CIUCCI Francesco. Designing Fe-based oxygen catalysts by density functional theory calculations[J]. Chemistry of Materials, 2016, 28(19): 7058-7065. |
128 | KILNER J A, BROOK R J. A study of oxygen ion conductivity in doped non-stoichiometric oxides[J]. Solid State Ionics, 1982, 6(3): 237-252. |
129 | SAMMELLS Anthony F, COOK Ronald L, WHITE James H, et al. Rational selection of advanced solid electrolytes for intermediate temperature fuel cells[J]. Solid State Ionics, 1992, 52(1): 111-123. |
130 | MOGENSEN M, LYBYE D, BONANOS N, et al. Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides[J]. Solid State Ionics, 2004, 174(1): 279-286. |
131 | MAYESHIBA Tam T, MORGAN Dane D. Factors controlling oxygen migration barriers in perovskites[J]. Solid State Ionics, 2016, 296: 71-77. |
132 | MASTRIKOV Yuri A, MERKLE Rotraut, KOTOMIN Eugene A, et al. Formation and migration of oxygen vacancies in La1-xSrxCo1-yFeyO3-δ perovskites: insight from ab initio calculations and comparison with Ba1-xSrxCo1-yFeyO3-δ[J]. Physical Chemistry Chemical Physics, 2013, 15(3): 911-918. |
133 | RITZMANN Andrew M, MUÑOZ-GARCíA Ana B, PAVONE Michele, et al. Ab initio DFT+U analysis of oxygen vacancy formation and migration in La1-xSrxFeO3-δ (x=0,0.25,0.50)[J]. Chemistry of Materials, 2013, 25(15): 3011-3019. |
134 | Hyun Suk LIM, Minbeom LEE, KANG Dohyung, et al. Role of transition metal in perovskites for enhancing selectivity of methane to syngas[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20580-20590. |
135 | KHINE Ma Su Su, CHEN Luwei, ZHANG Sam, et al. Syngas production by catalytic partial oxidation of methane over (La0.7A0.3)BO3 (A=Ba, Ca, Mg, Sr, and B=Cr or Fe) perovskite oxides for portable fuel cell applications[J]. International Journal of Hydrogen Energy, 2013, 38(30): 13300-13308. |
136 | MORALES M, ESPIELL F, SEGARRA M. Performance and stability of La0.5Sr0.5CoO3-δperovskite as catalyst precursor for syngas production by partial oxidation of methane[J]. International Journal of Hydrogen Energy, 2014, 39(12): 6454-6461. |
137 | CHOI YongMan, LYNCH Matthew E, LIN M C, et al. Prediction of O2 dissociation kinetics on LaMnO3-based cathode materials for solid oxide fuel cells[J]. The Journal of Physical Chemistry C, 2009, 113(17): 7290-7297. |
138 | CHEN Hsin-Tsung, RAGHUNATH P, LIN M C. Computational investigation of O2 reduction and diffusion on 25% Sr-doped LaMnO3 cathodes in solid oxide fuel cells[J]. Langmuir, 2011, 27(11): 6787-6793. |
139 | MASTRIKOV Yuri A, MERKLE Rotraut, HEIFETS Eugene, et al. Pathways for oxygen incorporation in mixed conducting perovskites: a DFT-based mechanistic analysis for (La, Sr)MnO3-δ[J]. The Journal of Physical Chemistry C, 2010, 114(7): 3017-3027. |
140 | CHOI YongMan, LIN M C, LIU Meilin. Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations[J]. Journal of Power Sources, 2010, 195(5): 1441-1445. |
141 | Rosa PEREñíGUEZ, FERRI Davide. Structural reversibility of LaCo1-xCuxO3 followed by in situ X-ray diffraction and absorption spectroscopy[J]. ChemPhysChem, 2018, 19(15): 1876-1885. |
142 | LI F, ZENG L, RAMKUMAR S, et al. Chemical looping gasification using gaseous fuels[M]//FAN Liang-shin. Chemical Looping Systems for Fossil Energy Conversions, 2010: 215-300. |
143 | IMTIAZ Qasim, HOSSEINI Davood, MÜLLER Christoph Rüdiger. Review of oxygen carriers for chemical looping with oxygen uncoupling (CLOU): thermodynamics, material development, and synthesis[J]. Energy Technology, 2013, 1(11): 633-647. |
144 | LI Fanxing, FAN Liang-Shih. Clean coal conversion processes-progress and challenges[J]. Energy & Environmental Science, 2008, 1(2): 248-267. |
145 | 陈艳鹏. 化学链部分氧化甲烷并分解水和二氧化碳制合成气技术研究[D]. 昆明: 昆明理工大学, 2019. |
CHEN Yanpeng. Chemical looping methane partial oxidation and H2O-CO2co splitting to syngas[D]. Kunming: Kunming University of Science and Technology, 2019. | |
146 | HU J W, GALVITA V V, POELMAN H, et al. Advanced chemical looping materials for CO2 utilization: a review[J]. Materials (Basel), 2018, 11(7): E1187. |
147 | SHAFIEFARHOOD Arya, GALINSKY Nathan, HUANG Yan, et al. Fe2O3@LaxSr1-xFeO3 core-shell redox catalyst for methane partial oxidation[J]. ChemCatChem, 2014, 6(3): 790-799. |
148 | HU Jiawei, GALVITA Vladimir V, POELMAN Hilde, et al. A core-shell structured Fe2O3/ZrO2@ZrO2 nanomaterial with enhanced redox activity and stability for CO2 conversion[J]. Journal of CO2 Utilization, 2017, 17: 20-31. |
149 | ZHANG Rongjiang, CAO Yan, LI Haibin, et al. The role of CuO modified La0.7Sr0.3FeO3 perovskite on intermediate-temperature partial oxidation of methane via chemical looping scheme[J]. International Journal of Hydrogen Energy, 2020, 45(7): 4073-4083. |
2 | 饶宏, 李立浧, 郭晓斌, 等. 我国能源技术革命形势及方向分析[J]. 中国工程科学, 2018, 20(3): 9-16. |
RAO Hong, LI Licheng, GUO Xiaobin, et al. Study on situation and direction of China energy technology revolution[J]. Engineering Science, 2018, 20(3): 9-16 | |
3 | KARAKAYA Canan, Robert J KEE. Progress in the direct catalytic conversion of methane to fuels and chemicals[J]. Progress in Energy and Combustion Science, 2016, 55: 60-97. |
4 | RAVI Manoj, RANOCCHIARI Marco, VAN BOKHOVEN Jeroen A. The direct catalytic oxidation of methane to methanol:a critical assessment[J]. Angewandte Chemie International Edition, 2017, 56(52): 16464-16483. |
5 | KNORPP Amy J, PINAR Ana B, NEWTON Mark A, et al. Copper-exchanged omega (MAZ) zeolite: copper-concentration dependent active sites and its unprecedented methane to methanol conversion[J]. ChemCatChem, 2018, 10(24): 5593-5596. |
6 | JIN Zhu, WANG Liang, ZUIDEMA Erik, et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol[J]. Science, 2020, 367(6474): 193. |
7 | CHOUDHARY T V, CHOUDHARY V R. Energy-efficient syngas production through catalytic oxy-methane reforming reactions[J]. Angew Chem. Int. Ed. Engl., 2008, 47(10): 1828-1847. |
8 | BARELLI L, BIDINI G, GALLORINI F, et al. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review[J]. Energy, 2008, 33(4): 554-570. |
9 | 厉勇, 张英, 王元华. 甲烷水蒸气重整技术研究现状及进展[J]. 炼油技术与工程, 2019, 49(7): 1-7. |
LI Yong, ZHANG Ying, WANG Yuanhua. Research status and progress of methane steam reforming technology[J]. Petroleum Refinery Engineering, 2019, 49(7): 1-7. | |
10 | ROGERS Jessica L, MANGARELLA Michael C, D’AMICO Andrew D, et al. Differences in the nature of active sites for methane dry reforming and methane steam reforming over nickel aluminate catalysts[J]. ACS Catalysis, 2016, 6(9): 5873-5886. |
11 | ROSTRUP-NIELSEN Jens R. New aspects of syngas production and use[J]. Catalysis Today, 2000, 63(2): 159-164. |
[1] | 闫青, 张云峰, 赵敏伟, 宋宁, 高辉, 周静. LNG接收站大跨距补偿平台的可行性分析[J]. 化工进展, 2023, 42(S1): 158-165. |
[2] | 杨玉地, 李文韬, 钱永康, 惠军红. 工业燃烧室天然气湍流扩散火焰长度影响因素分析[J]. 化工进展, 2023, 42(S1): 267-275. |
[3] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[4] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[5] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[6] | 王保文, 刘同庆, 张港, 李炜光, 林德顺, 王梦家, 马晶晶. CuFe2O4改性脱硫渣氧载体与褐煤的反应特性[J]. 化工进展, 2023, 42(6): 2884-2894. |
[7] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
[8] | 龚陈俊, 梅道锋. 钨修饰对镍载氧体的沼气化学链重整制氢性能影响[J]. 化工进展, 2023, 42(4): 2130-2141. |
[9] | 梁贻景, 马岩, 卢展烽, 秦福生, 万骏杰, 王志远. La1-x Sr x MnO3钙钛矿涂层的抗结焦性能[J]. 化工进展, 2023, 42(4): 1769-1778. |
[10] | 范昀培, 金晶, 刘敦禹, 王静杰, 刘秋祺, 许开龙. CaSO4载氧体在煤气化化学链燃烧中的脱汞[J]. 化工进展, 2023, 42(3): 1638-1648. |
[11] | 韩丽, 李望良, 李艳香, 安高军, 鲁长波. 纤维状钙钛矿太阳能电池研究进展[J]. 化工进展, 2023, 42(10): 5135-5146. |
[12] | 张潇, 王占一, 吴峙颖, 刘玉婷, 刘子龙, 刘欣佳, 张遂安. 压裂支撑剂的覆膜改性技术[J]. 化工进展, 2023, 42(1): 386-400. |
[13] | 王璐, 张磊, 都健. 机器学习高效筛选用于CO2/N2选择性吸附分离的沸石材料[J]. 化工进展, 2023, 42(1): 148-158. |
[14] | 沈天绪, 沈来宏. 基于3kW塔式串行流化床差异燃料的化学链燃烧解析[J]. 化工进展, 2023, 42(1): 138-147. |
[15] | 贾文龙, 孙溢彬, 汤丁, 陈家文, 雷思罗, 李长俊. 基于支持向量机的输气管道泄漏压降信号智能识别方法[J]. 化工进展, 2022, 41(9): 4713-4722. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |