化工进展 ›› 2023, Vol. 42 ›› Issue (1): 386-400.DOI: 10.16085/j.issn.1000-6613.2022-0487
张潇1,2,3,4(), 王占一1,2,3,4, 吴峙颖5, 刘玉婷6, 刘子龙1,2,3,4, 刘欣佳7, 张遂安3()
收稿日期:
2022-03-25
修回日期:
2022-06-07
出版日期:
2023-01-25
发布日期:
2023-02-20
通讯作者:
张遂安
作者简介:
张潇(1984—),女,博士,副教授,研究方向为油气工程化学(水基和CO2压裂液、堵剂、覆膜支撑剂等)与煤层气等非常规油气开发工艺。E-mail:zhangxiao@cup.edu.cn。
基金资助:
ZHANG Xiao1,2,3,4(), WANG Zhanyi1,2,3,4, WU Zhiying5, LIU Yuting6, LIU Zilong1,2,3,4, LIU Xinjia7, ZHANG Sui’an3()
Received:
2022-03-25
Revised:
2022-06-07
Online:
2023-01-25
Published:
2023-02-20
Contact:
ZHANG Sui’an
摘要:
针对油气田开发对压裂支撑剂的性能要求愈来愈高的产业重大需求,油田化学领域运用现代化学理论与技术,开展了一系列卓有成效的压裂支撑剂化学覆膜改性研究和产品研发,为油气工业的快速发展做出了突出贡献。本文从化学和工程两个视角,系统阐述了压裂支撑剂化学覆膜改性的研究方向。化学角度,主要研究方向包括:在支撑剂表面涂层构成化学覆膜、通过化学手段科学改变支撑剂表面特性、化学涂层与改性并举。工程角度,大致分为三个重要研究方向:一是通过在石英砂、陶粒等支撑剂表面涂敷覆膜来提升支撑剂强度;二是通过在石英砂、陶粒等支撑剂表面涂敷覆膜来降低整个支撑剂的相对密度(如自悬浮涂层技术等);三是石英砂、陶粒等支撑剂表面涂敷覆膜实现堵水疏油的功能。本文还简要阐述了树脂覆膜支撑剂、疏水支撑剂、憎水憎油支撑剂、自悬浮支撑剂、自聚型支撑剂、无机聚合物涂覆支撑剂以及功能性支撑剂等主要产品的特性。展望支撑剂未来的发展趋势,提出支撑剂应向多功能、高性能、小尺寸和智能化方向发展以及开发出更加适合无水压裂的支撑剂和原位生成型自支撑压裂体系。
中图分类号:
张潇, 王占一, 吴峙颖, 刘玉婷, 刘子龙, 刘欣佳, 张遂安. 压裂支撑剂的覆膜改性技术[J]. 化工进展, 2023, 42(1): 386-400.
ZHANG Xiao, WANG Zhanyi, WU Zhiying, LIU Yuting, LIU Zilong, LIU Xinjia, ZHANG Sui’an. Coating modification technology of fracturing proppant[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 386-400.
被涂覆骨料 | 用于涂层的有机聚合物 | 添加剂 | 密度/g·cm-3 | 参考文献 |
---|---|---|---|---|
石英砂 | 不饱和聚酯树脂/松木粉(纤维)复合材料 | 固化剂 | 2.50 | [ |
石英砂、玻璃珠 | 酚醛树脂、无氟无硅环氧树脂、聚乙烯、聚丙烯等 | 玻璃纤维、石棉、云母、二氧化硅、氧化铝等增强剂。 | 2.50~2.60 | [ |
陶粒 | 环氧树脂 | 1.79 | [ | |
石英砂 | 环氧树脂 | 2.60 | [ | |
石英砂 | 热固性酚醛树脂 | 2.50 | [ | |
烧结铝土矿、铝和氧化锆、也可以使用其他陶瓷材料 | 酚醛树脂 | 偶联剂,用于防止烧结的硬脂酸钙,可用于防止粉尘问题的矿物油以及增强剂 | 2.50~3.50 | [ |
石英砂、轻质陶瓷、铝土矿、生物基材料(如不同类型的坚果壳、杏仁和橄榄) | 酚醛树脂、聚氨酯 | 偶联剂、纤维增强剂 | 1.25~3.65 | [ |
铝土矿、石英砂、陶粒、玻璃、核桃壳、聚合物颗粒等 | 酚醛树脂、聚酯树脂、脲醛树脂、呋喃树脂、聚氨酯树脂等 | 固化剂、硅烷偶联剂、增黏剂 | [ | |
石英砂 | 热固性酚醛树脂 | 2.56 | [ | |
石英砂,陶粒 | 水凝胶 | 2.60~3.50 | [ | |
黏土、石英砂、烧结陶瓷 | 无硅氟环氧树脂、酚醛树脂、呋喃树脂、脲醛树脂、聚氨酯等 | 2.50~3.65 | [ | |
炭/陶复合材料 | 热固性酚醛树脂 | [ | ||
石英砂、陶粒 | 热固性酚醛树脂 | 2.50~3.65 | [ |
表1 树脂覆膜支撑剂
被涂覆骨料 | 用于涂层的有机聚合物 | 添加剂 | 密度/g·cm-3 | 参考文献 |
---|---|---|---|---|
石英砂 | 不饱和聚酯树脂/松木粉(纤维)复合材料 | 固化剂 | 2.50 | [ |
石英砂、玻璃珠 | 酚醛树脂、无氟无硅环氧树脂、聚乙烯、聚丙烯等 | 玻璃纤维、石棉、云母、二氧化硅、氧化铝等增强剂。 | 2.50~2.60 | [ |
陶粒 | 环氧树脂 | 1.79 | [ | |
石英砂 | 环氧树脂 | 2.60 | [ | |
石英砂 | 热固性酚醛树脂 | 2.50 | [ | |
烧结铝土矿、铝和氧化锆、也可以使用其他陶瓷材料 | 酚醛树脂 | 偶联剂,用于防止烧结的硬脂酸钙,可用于防止粉尘问题的矿物油以及增强剂 | 2.50~3.50 | [ |
石英砂、轻质陶瓷、铝土矿、生物基材料(如不同类型的坚果壳、杏仁和橄榄) | 酚醛树脂、聚氨酯 | 偶联剂、纤维增强剂 | 1.25~3.65 | [ |
铝土矿、石英砂、陶粒、玻璃、核桃壳、聚合物颗粒等 | 酚醛树脂、聚酯树脂、脲醛树脂、呋喃树脂、聚氨酯树脂等 | 固化剂、硅烷偶联剂、增黏剂 | [ | |
石英砂 | 热固性酚醛树脂 | 2.56 | [ | |
石英砂,陶粒 | 水凝胶 | 2.60~3.50 | [ | |
黏土、石英砂、烧结陶瓷 | 无硅氟环氧树脂、酚醛树脂、呋喃树脂、脲醛树脂、聚氨酯等 | 2.50~3.65 | [ | |
炭/陶复合材料 | 热固性酚醛树脂 | [ | ||
石英砂、陶粒 | 热固性酚醛树脂 | 2.50~3.65 | [ |
1 | 王志英. 煤矸石粉煤灰烧结陶粒制备及物化性能研究[D]. 太原: 山西大学, 2021. |
WANG Zhiying. Preparation and physicochemical properties of sintered ceramsite produced from coal gangue and fly ash[D]. Taiyuan: Shanxi University, 2021. | |
2 | ARTHUR J D, BOHM B K, COUGHLIN B J, et al. Evaluating the environmental implications of hydraulic fracturing in shale gas reservoirs[C]//March 23-25, 2009. San Antonio, Texas. SPE, 2009: 1-15. |
3 | ZOVEIDAVIANPOOR Mansoor, GHARIBI Abdoullatif. Application of polymers for coating of proppant in hydraulic fracturing of subterraneous formations: a comprehensive review[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 197-209. |
4 | 方宇飞,丁东海,肖国庆,等. 陶粒支撑剂的研究及应用进展[J]. 化工进展,2022, 41(5): 2511-2525. |
FANG Yufei, DING Donghai, XIAO Guoqing, et al. Progress in acdemic and application researches on ceramic proppant[J].Chemical Industry and Engineering Progress, 2022, 41(5): 2511-2525. | |
5 | PRIBYTKOV Evgeny, PLINER Sergey, ROZHKOV Evgeny, et al. Method for making resin-coated proppants and a proppant: US2012020 5101[P]. 2012-08-16. |
6 | VREEBURG R J, ROODHART L P, DAVIES D R, et al. Proppant backproduction during hydraulic fracturing—A new failure mechanism for resin-coated proppants[J]. Journal of Petroleum Technology, 1994, 46(10): 884-889. |
7 | NGUYEN P D, BARTON J A. Methods and compositions for forming subterranean fractures containing resilient proppant packs: US20040 142826[P]. 2004-07-22. |
8 | PANGILINAN K D, LEON C C, ADVINCULA R C. Polymers for proppants used in hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2016, 145: 154-160. |
9 | GRAHAM J W, SINCLAIR R A. High strength particulates: US4732920[P]. 1988-03-22. |
10 | GRAHAM J W. Hydraulic fracturing using reinforced resin pellets: US3659651[P]. 1972-05-02. |
11 | GIBB J L, LAIRD J A, BERNTSON L G. Epoxy novolac coated ceramic particulate: US4869960[P]. 1989-09-26. |
12 | EVANS J A, SHARP J. Process for preparing pre-cured proppant charge: US4581253[P].1986-04-08. |
13 | JOHNSON C K, TSE, K T. Phenolic resin propellant: US5639806[P]. 1997-07-17. |
14 | SINCLAIR R A, JOHNSON R L. Composite and reinforced coatings on proppants and particles: US5597784[P]. 1997-01-28. |
15 | SINCLAIR A R, AKBAR S, OKELL P R. High strength proppant with multiple partial coats interleafed together into microlayers; high compressive strength, reduced fines production, bondability between proppant particles in the downhole environment, and improved flowback characteristics: US7135231[P]. 2006-11-14. |
16 | UNDERDOWN D R. Proppant charge and method: US04664819A[P]. 1987-05-12. |
17 | MAHONEY R P, SOANE D, KINCAID K P, et al. Self-suspending proppant[C]//February, 2013, The Woodlands, Texas, USA. SPE, 2013: 1-12. |
18 | GREEN J W, TERRACINA J M, BORGES J F, et al. Proppant materials and methods of tailoring proppant material surface wettability: US20130081812[P]. 2013-04-04 |
19 | 宋永忠, 邱海鹏, 翟更太, 等. 酚醛树脂浸渍炭/陶复合材料的研究[J]. 炭素技术, 2001, 20(5): 17-19. |
SONG Yongzhong, QIU Haipeng, ZHAI Gengtai, et al. Study on densification for carbon/ceramic composites with thermosetting phenolic resins[J]. Carbon Techniques, 2001, 20(5): 17-19. | |
20 | KUHLMANN Peter, WINTER Reinhardt, GREAEDTS Jan. Process for the production of coated proppants: US201400603[P]. 2014-03-06. |
21 | TANGUAY C M, GERSHANOVICH A. A proppant: US20160376496A1[P]. 2016-09-29 |
22 | BROWN D L, NGUYEN P D, WEAVER J D. Control of particulate flowback in subterranean wells: US5833000A[P]. 1998-08-04. |
23 | 李秀君, 惠致富, 严慧忠, 等. 水性环氧树脂改性乳化沥青黏结性能试验分析[J]. 建筑材料学报, 2019, 22(1): 160-166. |
LI Xiujun, HUI Zhifu, YAN Huizhong, et al. Experimental analysis of adhesive performance of waterborne epoxy modified emulsified asphalt[J]. Journal of Building Materials, 2019, 22(1): 160-166. | |
24 | 赵彤, 周恒. 高性能热固性树脂[M]. 北京: 中国铁道出版社, 2020: 18. |
ZHAO Tong, ZHOU Heng. High-performance thermosetry resin[M]. Beijing: China Railway Publishing House, 2020: 18. | |
25 | XIE Xiaokang, NIU Sanxin, MIAO Yang, et al. Preparation and properties of resin coated ceramic proppants with ultra light weight and high strength from coal-series Kaolin[J]. Applied Clay Science, 2019, 183: 105364. |
26 | 刘廷栋, 王乃昌, 许鑫平. 环氧树脂的固化机理[J]. 热固性树脂, 1989, 4(2): 38-48. |
LIU Tingdong, WANG Naichang, XU Xinping. Curing mechanism of epoxy resin[J]. Thermosetting Resin, 1989, 4(2): 38-48. | |
27 | 陈平,王德中. 环氧树脂及其应用[M]. 北京: 化学工业出版社, 2004. |
CHEN Ping, WANG Dezhong. Epoxy resin and its application[M]. Beijing: Chemical Industry Press, 2004. | |
28 | 张伟民, 陈丽, 任国平, 等. 预固化树脂覆膜砂的研究[J]. 石油学报(石油加工), 2006, 22(2):75-80. |
ZHANG Weimin, CHEN Li, REN Guoping, et al. Study on precured resin coated sands[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2006, 22(2): 75-80. | |
29 | 覃族. 杨梅栲胶改性酚醛树脂胶黏剂的制备及其性能研究[D]. 长沙: 中南林业科技大学, 2017. |
QIN Zu. Preparation of adhesive of phenolic resin modified by myrica esculenta extract and its performance[D]. Changsha: Central South University of Forestry & Technology, 2017. | |
30 | 黄普林. 增韧阻燃酚醛泡沫的制备及性能研究[D]. 武汉: 武汉工程大学, 2016. |
HUANG Pulin. Study on preparation and properties of toughened and flame retardant phenolic foam[D]. Wuhan: Wuhan Institute of Technology, 2016. | |
31 | 马世昌. 化学物质辞典[M]. 西安: 陕西科学技术出版社, 1999. |
MA Shichang. Dictionary of chemical substances[M]. Xi’an: Shaanxi Science & Technology Press, 1999. | |
32 | 张伟民, 李宗田, 李庆松, 等. 高强度低密度树脂覆膜陶粒研究[J].油田化学,2013,30(2):189-192, 220. |
ZHANG Weimin, LI Zongtian, LI Qingsong, et al. Study on high strength and low density resin coated ceramic proppants[J]. Oilfield Chemistry, 2013, 30(2): 189-192, 220. | |
33 | TANG Kaihong, ZHANG Ailing, GE Tiejun, et al. Research progress on modification of phenolic resin[J]. Materials Today Communications, 2021, 26: 101879. |
34 | KOBAYASHI K, SUGAWARA S, TOYODA S, et al. An X-ray diffraction study of phenol-formaldehyde resin carbons[J]. Carbon, 1968, 6(3): 359-363. |
35 | 杨珅. 一种页岩气田压裂用低密度支撑剂的研制[D]. 成都: 西南石油大学, 2017. |
YANG Shen. Development of a low-density proppant for fracturing in shale gas fields[D]. Chengdu: Southwest Petroleum University, 2017. | |
36 | 黄勇. 低密度支撑剂用酚醛/环氧树脂复合材料的制备及其固化反应机理的研究[D]. 成都: 四川大学, 2007. |
HUANG Yong. Preparation of phenolic resin/epoxy resin composite as low density proppant and mechanism of its thermal curing[D]. Chengdu: Sichuan University, 2007. | |
37 | 黄勇, 高书峰, 周涛, 等. 低密度支撑剂用酚醛/环氧树脂改性复合材料的研究[J]. 高分子材料科学与工程, 2007, 23(1): 199-203. |
HUANG Yong, GAO Shufeng, ZHOU Tao, et al. The study of phenolic resin/epoxy resin enwrapped and modified nutshell composite material[J]. Polymer Materials Science & Engineering, 2007, 23(1): 199-203. | |
38 | IIJIMA Sumio. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354 (6348): 56-58. |
39 | 夏冰冰. 改性碳纳米管增韧树脂覆膜砂支撑剂的制备与性能研究[D]. 西安: 西安理工大学, 2017. |
XIA Bingbing. Preparation and characterization of resin coated sand proppant tougheded by modified carbon nanotubes[D]. Xi’an: Xi’an University of Technology, 2017. | |
40 | 付继伟. 碳纳米管的表面修饰及环氧树脂复合材料性能研究[D]. 南昌: 南昌大学, 2007. |
FU Jiwei. Surface modification of carbon nanotubes and research of epoxy resin composites[D]. Nanchang: Nanchang University, 2007. | |
41 | ZHOU O, FLEMING R M, MURPHY D W, et al. Defects in carbon nanostructures[J]. Science, 1994, 263(5154): 1744-1747. |
42 | 汪华锋, 李振华, 王新庆, 等. 纳米碳管/环氧树脂复合材料的制备及力学性能[J]. 复合材料学报, 2004(5): 48-51. |
WANG Huafeng, LI Zhenhua, WANG Xinqing, et al. Preparation and mechanical properties of carbon nanotubes/resin epoxy composite[J]. Acta Materiae Compositae Sinica, 2004, 21(5): 48-51. | |
43 | 牟绍艳. 压裂用支撑剂相关改性技术研究[D]. 北京: 北京科技大学, 2017. |
MOU Shaoyan. Research on technologies of fracturing proppants[D]. Beijing: University of Science and Technology Beijing, 2017. | |
44 | 金智荣, 刘太平, 顾克忠, 等. 透油阻水支撑剂在近水层油层压裂中的应用[J]. 断块油气田, 2012, 19(S1): 93-95. |
JIN Zhirong, LIU Taiping, GU Kezhong, et al. Application of hydrophobic-lipophilic proppant in fracturing of oil layer nearby water layer[J]. Fault-Block Oil & Gas Field, 2012, 19(S1): 93-95. | |
45 | 文果, 蒋文学, 郑维师. 苏里格气田致密底水气藏堵水压裂技术[J]. 石油钻探技术, 2017, 45(4): 97-102. |
WEN Guo, JIANG Wenxue, ZHENG Weishi. Water plugging and fracturing technology for tight and bottom-water gas reservoir in the Sulige gas field[J]. Petroleum Drilling Techniques, 2017, 45(4): 97-102. | |
46 | 张锁兵, 赵梦云, 苏晓琳, 等. 地层流体对压裂用疏水支撑剂润湿性的影响[J]. 科学技术与工程, 2014, 14(11): 184-189, 193. |
ZHANG Suobing, ZHAO Mengyun, SU Xiaolin, et al. Study on the wettability of fracturing hydrophobic proppant soaked by simulated formation fluids[J]. Science Technology and Engineering, 2014, 14(11): 184-189, 193. | |
47 | 王琳琳, 李磊, 冯圣玉. 有机硅超分子材料研究进展[J]. 高等学校化学学报, 2021, 42(7): 2111-2122. |
WANG Linlin, LI Lei, FENG Shengyu. Research progress of silicone supramolecular materials[J]. Chemical Journal of Chinese Universities, 2021, 42(7): 2111-2122. | |
48 | 罗振寰. 有机硅改性聚氨酯涂层聚合物的合成及其表面性能[D]. 杭州: 浙江大学, 2010. |
LUO Zhenhuan. Synthesis and surface properties of polysiloxane modified polyurethane copolymers[D]. Hangzhou: Zhejiang University, 2010. | |
49 | JOVANOVIC J D, GOVEDARICA M N, DVORNIC P R, et al. The thermogravimetric analysis of some polysiloxanes[J]. Polymer Degradation and Stability, 1998, 61(1): 87-93. |
50 | BHATTACHARYA Shantanu, GAO Yuanfang, KORAMPALLY Venumadhav, et al. Mechanics of plasma exposed spin-on-glass (SOG) and polydimethyl siloxane (PDMS) surfaces and their impact on bond strength[J]. Applied Surface Science, 2007, 253(9): 4220-4225. |
51 | WEI Bigui, CHANG Qing, BAO Caixia, et al. Surface modification of filter medium particles with silane coupling agent KH550[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013, 434: 276-280. |
52 | 杨金明, 杨金丽. 压裂用VFM超疏水高分子覆膜砂的制备及其性能研究[J]. 青岛科技大学学报(自然科学版), 2011, 32(1): 67-71. |
YANG Jinming, YANG Jinli. Study on preparation and properties of reservoir fracturing sands coated with super hydrophobic VFM film[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2011, 32(1): 67-71. | |
53 | 鄢捷年, 王富华. 表面活性剂吸附引起的硅石润湿性改变[J]. 油田化学, 1993, 10(3): 195-200. |
YAN Jienian, WANG Fuhua. Wettability alteration of silica induced by surfactant adsorption[J]. Oilfield Chemistry, 1993, 10(3): 195-200. | |
54 | 曲岩涛, 李继山, 王宗礼. CTAB改变固体表面润湿性的机理探讨[J]. 大庆石油地质与开发, 2006, 25(2): 52-53. |
QU Yantao, LI Jishan, WANG Zongli. Mechanism of CTAB changing the wettability of solid surface[J]. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(2): 52-53. | |
55 | 高丽枝. 基于纳米二氧化硅改性蚕丝及制备功能蚕丝织物研究[D]. 重庆: 西南大学, 2020. |
GAO Lizhi. Research on modification of silk and preparation of functional silk fabric based on nano-SiO2 [D]. Chongqing: Southwest University, 2020. | |
56 | LIU Peisong, GUO Sai, LIAN Mingming, et al. Improving water-injection performance of quartz sand proppant by surface modification with surface-modified nanosilica[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470: 114-119. |
57 | 杨喆. 致密储层中纳米功能材料降压增注机理研究[D]. 东营: 中国石油大学(华东), 2017. |
YANG Zhe. The mechanism of pressure-decreasing of nanoparticles in tight reservoirs[D]. Dongying: China University of Petroleum (Huadong), 2017. | |
58 | FAN W W, SKILDUM J D. Particles comprising a fluorinated siloxane and methods of making and using the same: US8236737[P]. 2012-08-07. |
59 | 王建忠, 王锐, 李彦普. 憎水憎油型支撑剂研究[J]. 西南石油大学学报(自然科学版), 2010, 32(3): 159-161. |
WANG Jianzhong, WANG Rui, LI Yanpu. Research on hydrophobic-lipophobic proppant[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(3): 159-161, 200. | |
60 | ZENG Z W, GRIGG R. A criterion for non-darcy flow in porous media[J]. Transport in Porous Media, 2006, 63(1): 57-69. |
61 | 张鑫. 自悬浮支撑剂的制备及性能评价[D]. 青岛: 青岛科技大学, 2017. |
ZHANG Xin. Preparation and performance evaluation of self-suspending proppant[D]. Qingdao: Qingdao University of Science and Technology, 2017. | |
62 | 黄博, 熊炜, 马秀敏, 等. 新型自悬浮压裂支撑剂的应用[J]. 油气藏评价与开发, 2015, 5(1): 67-70. |
HUANG Bo, XIONG Wei, MA Xiumin, et al. Application of novel self suspending fracturing proppant[J]. Reservoir Evaluation and Development, 2015, 5(1): 67-70. | |
63 | BOYER Jeff, MALEY Darren, Bill O’NEIL. Chemically enhanced proppant transport[C]//October, 2014. Amsterdam, The Netherlands. SPE, 2014: 1-18. |
64 | AGGARWAL Avi, AGARWAL Soham, SHARMA Shubham. Viscoelastic surfactants based stimulation fluids with added nanocrystals and self-suspending proppants for HPHT applications[C]//November, 2014, 2014. Abu Dhabi, UAE. SPE, 2014: 1-9. |
65 | LIANG F, AL-MUNTASHERI G A, LI L, et al. Self-suspending modified proppant system for carbon dioxide based fracturing fluids: US10131833[P]. 2018-11-20. |
66 | ZHANG Jingchen, LIU Kaiyu, CAO Ming. Experimental study on modified polyacrylamide coated self-suspending proppant[J]. Fuel, 2017, 199: 185-190. |
67 | 张鑫, 王展旭, 汪庐山, 等. 膨胀型自悬浮支撑剂的制备及性能评价[J]. 油田化学, 2017, 34(3): 449-455. |
ZHANG Xin, WANG Zhanxu, WANG Lushan, et al. Preparation and performance evaluation of intumescent self-suspending proppant[J]. Oilfield Chemistry, 2017, 34(3): 449-455. | |
68 | GOL R, WANG C Z, GUPTA R B, et al. Synthesis of self-suspending silica proppants using photoactive hydrogels[J]. Journal of Petroleum Science and Engineering, 2017, 157: 651-656. |
69 | CAO Weijia, XIE Kun, LU Xiangguo, et al. Self-suspending proppant manufacturing method and its property evaluation[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107251. |
70 | KAKADJIAN S, ZAMORA F, VENDITTO J J. Zeta potential altering system for increased fluid recovery, production, and fines control[C]//February, 2007, Houston, Texas, USA. SPE, 2007: 1-10. |
71 | KAKADJIAN Sarkis, GARZA Jose, ZAMORA Frank. Enhancing gas production in coal bed methane formations with zeta potential altering system[C]//October, 2010, Brisbane, Queensland, Australia. SPE, 2010: 1-13. |
72 | SINGH Pratyush, LUDANOVA Nataliya, VAN PETEGEM Ron. Advancing chemical sand and fines control using zeta potential altering chemistry by using advanced fluid placement techniques[C]//February, 2014, Lafayette, Louisiana, USA. SPE, 2014: 1-13. |
73 | JOHNSON D, SCHOPPA D, GARZA J, et al. Enhancing gas and oil production with zeta potential altering system[C]//February, 2010, Lafayette, Louisiana, USA. SPE, 2010: 1-10. |
74 | PEPPAS N A, BURES P, LEOBANDUNG W, et al. Hydrogels in pharmaceutical formulations[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50(1): 27-46. |
75 | 马千里, 顾利霞. 复合微球的制备、性能及应用[J]. 离子交换与吸附, 2000, 16(1): 88-96. |
MA Qianli, GU Lixia. Recent progress on the preparation and properties of composite microspheres[J]. Ion Exchange and Adsorption, 2000, 16(1): 88-96. | |
76 | ZHANG R N, ZHAO Y C, SHI X U. An overview on treatment of municipal solid waste incineration fly ash[J]. Journal of University of Science and Technology of Suzhou(Engineering and Technology), 2003. |
77 | ZHAO B, PANTHI K, MOHANTY K K. Tracer eluting proppants for shale fracturing[C]//Proceedings of the 7th Unconventional Resources Technology Conference, July, 2019, Denver, Colorado, USA, 2019: 1-17. |
78 | 牟绍艳,姜勇. 压裂用支撑剂的现状与展望[J]. 工程科学学报, 2016, 38(12): 1659-1666. |
MOU Shaoyan, JIANG Yong. Overview of fracturing proppants[J]. Chinese Journal of Engineering, 2016, 38(12): 1659-1666. | |
79 | URBANEK Thomas. Alkali-activated coatings for proppants: US201302 74153[P]. 2013-10-17. |
80 | REDIGER R, ARON M J, WRIGHT J. Reducing flow-back in well treating materials: US7754659[P]. 2010-07-13. |
81 | PALISCH Terry, Wadhah AL-TAILJI, BARTEL Lew, et al. Recent advancements in far-field proppant detection[C]//February, 2016, The Woodlands, Texas, USA. SPE, 2016: 1-25. |
82 | COULTER G R, WELLS R D. The advantages of high proppant concentration in fracture stimulation[J]. Journal of Petroleum Technology, 1972, 24(6): 643-650. |
83 | LACY L, RICKARDS A, ALI S A. Embedment and fracture conductivity in soft formations associated with HEC, borate and water-based fracture designs[C]//The SPE Annual Technical Conference and Exhibition. San Antonio, Texas, 1997: 1-14. |
84 | Naima BESTAOUI-SPURR. Materials science improves silica sand strength[C]//The SPE International Symposium and Exhibition on Formation Damage Control. Lafayette, Louisiana, 2014: 1-14. |
85 | HANDKE W A. Method of logging a well using a non-radioactive material irradiated into an isotope exhibiting a detectable characteristic: US4731531[P]. 1988-03-15. |
86 | GADEKEN L, SMITH H, NGUYEN C. Tracerscan—A spectroscopy technique for determining the distribution of multiple radioactive tracers in downhole operations[J]. The Log Analyst, 1986, 28: 15-25. |
87 | TAYLOR J L, BRANDY T. Tracer technology finds expanding applications[J]. Petroleum Engineer International. 1989, 61(6): 31-36. |
88 | SALDUNGARAY Pedro, DUENCKEL Robert, PALISCH Terry. Reducing hydraulic fracturing HSE footprint through the application of a non-radioactive method for proppant placement and propped fracture height assessment[C]//The SPE Middle East Health, Safety, Environment and Sustainable Development Conference and Exhibition. Doha, Qatar. 2014: 1-20. |
89 | DUENCKEL R J, SMITH H D, CHAPMAN M A. A new nuclear logging method to locate proppant placement in induced fractures[J]. Petrophysics: The SPWLA Journal of Formation Evaluation and Reservoir Description, 2013, 54(5): 415-426. |
90 | LIANG Feng, SAYED Mohammed, AL-MUNTASHERI Ghaithan A, et al. A comprehensive review on proppant technologies[J]. Petroleum, 2016, 2(1): 26-39. |
91 | DUENCKEL R J, SMITH H D, WARREN W A, et al. Field application of a new proppant detection technology[C]//The SPE Annual Technical Conterence and Exhibition. Denver, Colorado, 2011: 1-15. |
92 | 李灿然, 李向辉, 遆永周, 等. 一种非放射性压裂效果评价用钐标记压裂支撑剂的研制[J]. 陶瓷学报, 2019, 40(1): 57-61. |
LI Canran, LI Xianghui, Yongzhou TI, et al. Preparation of an non-radioactive, samarium-tragged fracturing proppant for the evaluation of fracturing effect[J]. Journal of Ceramics, 2019, 40(1): 57-61. | |
93 | HEAGY Lindsey J, OLDENBURG Douglas W. Investigating the potential of using conductive or permeable proppant particles for hydraulic fracture characterization[C]//SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists, 2013: 576-580: |
94 | ALEXANDER S, DUNNILL C W, BARRON A R. Assembly of porous hierarchical copolymers/resin proppants: New approaches to smart proppant immobilization via molecular anchors[J]. Journal of Colloid and Interface Science, 2016, 466: 275-283. |
95 | KASSOTIS C D, BROMFIELD J J, KLEMP K C, et al. Adverse reproductive and developmental health outcomes following prenatal exposure to a hydraulic fracturing chemical mixture in female C57Bl/6 mice[J]. Endocrinology, 2016, 157(9): 3469-3481. |
96 | ROWAN E L, ENGLE M A, KIRBY C S, et al. Radium content of oil-and gas-field produced waters in the Northern Appalachian Basin (USA): Summary and discussion of data[J]. US Geological Survey Scientific Investigations Report, 2011, 5135: 31. |
97 | GUSA A V, VIDIC R D. Development of functionalized proppant for the control of NORM in Marcellus shale produced water[J]. Environmental Science & Technology, 2019, 53(1): 373-382. |
98 | GOYAL Sachit, RAGHURAMAN Arjun, Kaoru AOU, et al. Smart proppants with multiple down hole functionalities[C]//The SPE Hydraulic Fracturing Technology Conference and Exhibition. The Woodlands, Texas, 2017: 1-11. |
99 | DANSO D K, NEGASH B M, AHMED T Y, et al. Recent advances in multifunctional proppant technology and increased well output with micro and nano proppants[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108026. |
100 | AGUIRRE V F, RAGHURAMAN A, WILLIAMSON A, et al. Coating for capturing sulfides: US20180185815[P]. 2018-07-05. |
[1] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[2] | 闫青, 张云峰, 赵敏伟, 宋宁, 高辉, 周静. LNG接收站大跨距补偿平台的可行性分析[J]. 化工进展, 2023, 42(S1): 158-165. |
[3] | 杨玉地, 李文韬, 钱永康, 惠军红. 工业燃烧室天然气湍流扩散火焰长度影响因素分析[J]. 化工进展, 2023, 42(S1): 267-275. |
[4] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[5] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[6] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[7] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[8] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[9] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[10] | 索寒生, 贾梦达, 宋光, 刘东庆. 数字孪生技术助力石化智能工厂[J]. 化工进展, 2023, 42(7): 3365-3373. |
[11] | 余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599. |
[12] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[13] | 杨发容, 顾丽莉, 刘洋, 李伟雪, 蔡洁云, 王惠平. 计算机模拟辅助特丁津分子印迹聚合物的制备及应用[J]. 化工进展, 2023, 42(6): 3157-3166. |
[14] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[15] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |