化工进展 ›› 2021, Vol. 40 ›› Issue (4): 1966-1982.DOI: 10.16085/j.issn.1000-6613.2020-1881
李庆林1,2(), 宋涛1,3,4(), 杨勇1,3,4()
收稿日期:
2020-09-16
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
杨勇
作者简介:
李庆林(1993—),男,博士研究生,研究方向为光电催化转化。E-mail:基金资助:
LI Qinglin1,2(), SONG Tao1,3,4(), YANG Yong1,3,4()
Received:
2020-09-16
Online:
2021-04-05
Published:
2021-04-14
Contact:
YANG Yong
摘要:
近年来,生物质因具有富碳可再生、储量丰富、环境友好、价格低廉等特点被作为原料广泛应用于制备生物质炭基材料。本文综述了以生物质为原料衍生炭基材料作为催化剂在有机转化反应中的相关研究进展,重点介绍了杂原子掺杂、金属杂化策略所制备炭基催化材料在液相催化加氢、氧化、偶联等有机转化反应中的催化性能,进而阐明了炭基催化剂与催化活性之间的构效关系。最后,本文总结了生物质炭基催化剂在有机催化反应中的优势,指出了目前生物质衍生炭基催化剂材料合成和有机转化研究领域面临的挑战,并对此领域的未来发展趋势进行了分析与展望。
中图分类号:
李庆林, 宋涛, 杨勇. 生物质炭基材料在有机催化转化中的应用[J]. 化工进展, 2021, 40(4): 1966-1982.
LI Qinglin, SONG Tao, YANG Yong. Biomass-derived carbon materials for organic transformations[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1966-1982.
1 | YURUM Y, TARALP A, VEZIROGLU T N, et al. Storage of hydrogen in nanostructured carbon materials[J]. International Journal of Hydrogen Energy, 2009, 34(9): 3784-3798. |
2 | WHITE R J, BUDARIN V, LUQUE R, et al. Tuneable porous carbonaceous materials from renewable resources[J]. Chemical Society Reviews, 2009, 38(12): 3401-3418. |
3 | CANDELARIA S L, SHAO Y, ZHOU W, et al. Nanostructured carbon for energy storage and conversion[J]. Nano Energy, 2012, 1(2): 195-220. |
4 | GUO D, SHIBUYA R, AKIBA C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365. |
5 | DAS R, VECITIS C D, SCHULZE A, et al. Recent advances in nanomaterials for water protection and monitoring[J]. Chemical Society Reviews, 2017, 46(22): 6946-7020. |
6 | HUANG Y, LIANG J, WANG X, et al. Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions[J]. Chemical Society Reviews, 2017, 46(1): 126-157. |
7 | GEORGAKILAS V, TIWARI J N, KEMP K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116(9): 5464-5519. |
8 | YANG Z, TIAN J, YIN Z, et al. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review[J]. Carbon, 2019, 141: 467-480. |
9 | VOLOTSKOVA O, LEVCHENKO I, SHASHURIN A, et al. Single-step synthesis and magnetic separation of graphene and carbon nanotubes in arc discharge plasmas[J]. Nanoscale, 2010, 2(10): 2281-2285. |
10 | YANG Z, SHEN J, JAYAPRAKASH N, et al. Synthesis of organic-inorganic hybrids by miniemulsion polymerization and their application for electrochemical energy storage[J]. Energy Environmental Science, 2012, 5(5): 7025-7032. |
11 | LI X, CAI W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314. |
12 | HUBER G W, IBORRA S, CORMA A, et al. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4098. |
13 | ZHANG Z, ZHU Z, SHEN B, et al. Insights into biochar and hydrochar production and applications: a review[J]. Energy, 2019, 171: 581-598. |
14 | 孔丝纺, 姚兴成, 张江勇, 等. 生物质炭的特性及其应用的研究进展[J].生态环境学报, 2015,24(4): 716-723. |
KONG Sifang, YAO Xingcheng, ZHANG Jiangyong, et al. Review of characteristics of biochar and research progress of its applications[J]. Ecology and Environmental Sciences, 2015, 24(4): 716-723. | |
15 | 李湘萍, 张建光. 生物质热解制备多孔炭材料的研究进展[J].石油学报(石油加工), 2020, 35(5): 1101-1110. |
LI Xiangping, ZHANG Jianguang. Progress on biochar preparation through pyrolysis process[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 35(5): 1101-1110. | |
16 | GONG Y N, LI D L, LUO C Z, et al. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chemistry, 2017, 19(17): 4132-4140. |
17 | FANG W, YANG S, WANG X, et al. Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs)[J]. Green Chemistry, 2017, 19(8): 1794-1827. |
18 | DENG S, ZHANG Y, XIE D, et al. Oxygen vacancy modulated Ti2Nb10O29-xembedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage[J]. Nano Energy, 2019, 58: 355-364. |
19 | HAO R, YANG Y, WANG H, et al. Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries[J]. Nano Energy, 2018, 45: 220-228. |
20 | ZHANG D, PAPAIOANNOU N, DAVID N M, et al. Photoelectrochemical response of carbon dots (CDs) derived from chitosan and their use in electrochemical imaging[J]. Materials Horizons, 2018, 5(3): 423-428. |
21 | BEDIN K C, MARTINS A C, CAZETTA A L, et al. KOH-activated carbon prepared from sucrose spherical carbon: adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal[J]. Chemical Engineering Journal, 2016, 286(15): 476-484. |
22 | CAO J, ZHU C, AOKI Y, et al. Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors[J]. ACS Sustainable Chemistry Engineering, 2018, 6(6): 7292-7303. |
23 | GONCALVES G D, PEREIRA N C, VEIT M T, et al. Production of bio-oil and activated carbon from sugarcane bagasse and molasses[J]. Biomass Bioenergy, 2016, 85: 178-186. |
24 | LIU B, SHIOYAMA H, AKITA T, et al. Metal-organic framework as a template for porous carbon synthesis[J]. Journal of the American Chemical Society, 2008, 130(16): 5390-5391. |
25 | YANG D, LI Z, LIU M, et al. Biomass-derived carbonaceous materials: recent progress in synthetic approaches, advantages, and applications[J]. ACS Sustainable Chemistry Engineering, 2019, 7(5): 4564-4585. |
26 | CAO Y, MAO S, LI M, et al. Metal/porous carbon composites for heterogeneous catalysis: old catalysts with improved performance promoted by N-doping[J]. ACS Catalysis, 2017, 7(12): 8090-8112. |
27 | TITIRICI M M, WHITE R J, BRUN N, et al. Sustainable carbon materials[J]. Chemical Society Reviews, 2015, 44(1): 250-290. |
28 | TANG W, ZHANG Y, ZHONG Y, et al. Natural biomass-derived carbons for electrochemical energy storage[J]. Materials Research Bulletin, 2017, 88: 234-241. |
29 | XIONG X, YU I K, CAO L, et al. A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control[J]. Bioresource Technollogy, 2017, 246: 254-270. |
30 | WANG J, NIE P, DING B, et al. Biomass derived carbon for energy storage devices[J]. Journal of Materials Chemistry A, 2017, 5(6): 2411-2428. |
31 | ZHANG L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531. |
32 | ZHU Y, LI Z, CHEN J, et al. Applications of lignin-derived catalysts for green synthesis[J]. Green Energy & Environment, 2019, 4(3): 210-244. |
33 | SONG T, YANG Y. Metal nanoparticles supported on biomass-derived hierarchical porous heteroatom-doped carbon from bamboo shoots: design, synthesis and applications[J]. Chemical Record, 2019, 19(7): 1283-1301. |
34 | DE VOS D E, DAMS M, SELS B F, et al. Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations[J]. Chemical Reviews, 2002, 102(10): 3615-3640. |
35 | TODA M, TAKAGAKi A, OKAMURA M, et al. Green chemistry: biodiesel made with sugar catalyst[J]. Nature, 2005, 438(7065): 178-178. |
36 | KOBAYASHI H, KAIKI H, SHROTRI A, et al. Hydrolysis of woody biomass by a biomass-derived reusable heterogeneous catalyst[J]. Chemical Science, 2016, 7(1): 692-696. |
37 | CHEN Y, WANG Z, MAO S, et al. Rational design of hydrogenation catalysts using nitrogen-doped porous carbon[J]. Chinese Journal of Catalysis, 2019, 40(7):971-979. |
38 | LIU J, XIE L, WANG Z, et al. Biomass-derived ordered mesoporous carbon nano-ellipsoid encapsulated metal nanoparticles inside: ideal nanoreactors for shape-selective catalysis[J]. Chemical Communication, 2020, 56(2): 229-232. |
39 | VILE G, ALBANI D, ALMORABARRIOS N, et al. Advances in the design of nanostructured catalysts for selective hydrogenation[J]. ChemCatChem, 2016, 8(1): 21-33. |
40 | LAWRENCE S A. Amines: synthesis, properties and applications[M]. Cambridge: Cambridge University Press, 2004. |
41 | DOWNING R S, KUNKELER P J, BEKKUM H VAN, et al. Catalytic syntheses of aromatic amines[J]. Catalysis Today, 1997, 37(2): 121-136. |
42 | ONO N. The nitro group in organic synthesis[M]. Wiley-VCH, 2001. |
43 | LU Y-M, ZHU H-Z, LI W-G, et al. Size-controllable palladium nanoparticles immobilized on carbon nanospheres for nitroaromatic hydrogenation[J]. Journal of Materials Chemistry A, 2013, 1(11): 3783-3788. |
44 | LIU W, TIAN K, JIANG H. One-pot synthesis of Ni-NiFe2O4/carbon nanofibers composites from biomass for selective hydrogenation of aromatic nitro compounds[J]. Green Chemistry, 2015, 17(2): 821-826. |
45 | TANG Q, YUAN Z, JIN S, et al. Biomass-derived carbon-supported Ni catalyst: an effective heterogeneous non-noble metal catalyst for the hydrogenation of nitro compounds[J]. Reaction Chemistry & Engineering, 2020, 5: 58-66. |
46 | WEI Z, WANG J, MAO S, et al. In situ-generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes[J]. ACS Catalysis, 2015, 5(8): 4783-4789. |
47 | ShI J J, WANG Y Y, DU W C, et al. Synthesis of graphene encapsulated Fe3C in carbon nanotubes from biomass and its catalysis application[J]. Carbon, 2016, 99: 330-337. |
48 | YUAN M, LONG Y, YANG J, et al. Biomass sucrose-derived cobalt@nitrogen-doped carbon for catalytic transfer hydrogenation of nitroarenes with formic acid[J]. ChemSusChem, 2018, 11(23): 4156-4165. |
49 | XU S, YU D, LIAO S, et al. Nitrogen-doped carbon supported iron oxide as efficient catalysts for chemoselective hydrogenation of nitroarenes[J]. RSC Advance, 2016, 6(98): 96431-96435. |
50 | VEERAKUMAR P, MUTHUSELVAM I P, HUNG C, et al. Biomass-derived activated carbon supported Fe3O4 nanoparticles as recyclable catalysts for reduction of nitroarenes[J]. ACS Sustainable Chemistry Engineering, 2016, 4(12): 6772-6782. |
51 | LIU L, WANG B, GAO R, et al. Biomass-derived Fe-NC hybrid for hydrogenation with formic acid: control of Fe-based nanoparticle distribution[J]. RSC Advance, 2020, 10(18): 10689-10694. |
52 | SONG T, REN P, DUAN Y, et al. Cobalt nanocomposites on N-doped hierarchical porous carbon for highly selective formation of anilines and imines from nitroarenes[J]. Green Chemistry, 2018, 20(20): 4629-4637. |
53 | SONG T, DUAN Y, CHEN X, et al. Switchable access to amines and imines from reductive coupling of nitroarenes with alcohols catalyzed by biomass-derived cobalt nanoparticles[J]. Catalysts, 2019, 9(2): 116-126. |
54 | WANG Z, SONG T, YANG Y, et al. Additive- and oxidant-free expedient synthesis of benzimidazoles catalyzed by cobalt nanocomposites on N-doped carbon[J]. Synlett, 2019, 30(3): 319-324. |
55 | DUAN Y, SONG T, DONG X, et al. Enhanced catalytic performance of cobalt nanoparticles coated with a N, P-codoped carbon shell derived from biomass for transfer hydrogenation of functionalized nitroarenes[J]. Green Chemistry, 2018, 20(12): 2821-2828. |
56 | DONG X, WANG Z, DUAN Y, et al. One-pot selective N-formylation of nitroarenes to formamides catalyzed by core-shell structured cobalt nanoparticles[J]. Chemical Communication, 2018, 54(64): 8913-8916. |
57 | DUAN Y, DONG X, Song T, et al. Hydrogenation of functionalized nitroarenes catalyzed by single-phase pyrite FeS2 nanoparticles on N,S-codoped porous carbon[J]. ChemSusChem, 2019, 12(20): 4636-4644. |
58 | ZHANG P, SONG X, YU C, et al. Biomass-derived carbon nanospheres with turbostratic structure as metal-free catalysts for selective hydrogenation of o-chloronitrobenzene[J]. ACS Sustainable Chemistry Engineering, 2017, 5(9): 7481-7485. |
59 | LI K, KHAN R, ZHANG X, et al. Cobalt catalyzed stereodivergent semi-hydrogenation of alkynes using H2O as the hydrogen source[J]. Chemical Communications, 2019, 55(39): 5663-5666. |
60 | THOMAS S P, GREENHALGH M D. Heterogeneous hydrogenation of C=C and C≡C bonds. in comprehensive organic synthesis[M]// Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Volume8, 2014: 564-604. |
61 | OGER C, BALAS L, DURAND T, et al. Are alkyne reductions chemo-, regio-, and stereoselective enough to provide pure (Z)-olefins in polyfunctionalized bioactive molecules? [J]. Chemical Reviews, 2013, 113(3): 1313-1350. |
62 | FURUKAWA S, KOMATSU T. Selective hydrogenation of functionalized alkynes to (E)-alkenes, using ordered alloys as catalysts[J]. ACS Catalysis, 2016, 6(3): 2121-2125. |
63 | WAGH Y S, ASAO N. Selective transfer semihydrogenation of alkynes with nanoporous gold catalysts[J]. The Journal of Organic Chemistry, 2015, 80(2): 847-851. |
64 | GUTHERTZ A, LEUTZSCH M, WOLF L M, et al. Half-sandwich ruthenium carbene complexes link trans-hydrogenation and gem-hydrogenation of internal alkynes[J]. Journal of the American Chemical Society, 2018, 140(8): 3156-3169. |
65 | KAEFFER N, LIU H J, LO H K, et al. An N-heterocyclic carbene ligand promotes highly selective alkyne semihydrogenation with copper nanoparticles supported on passivated silica[J]. Chemical Science, 2018, 9(24): 5366-5371. |
66 | KONNERTH H, PRECHTL M H. Selective partial hydrogenation of alkynes to (Z)-alkenes with ionic liquid-doped nickel nanocatalysts at near ambient conditions[J]. Chemical Communication, 2016, 52(58): 9129-9132. |
67 | ILIES L, YOSHIDA T, NAKAMURA E, et al. Iron-catalyzed chemo- and stereoselective hydromagnesiation of diarylalkynes and diynes[J]. Journal of the American Chemical Society, 2012, 134(41): 16951-16954. |
68 | CHEN F, KREYENSCHULTE C, RADNIK J, et al. Selective semihydrogenation of alkynes with N-graphitic-modified cobalt nanoparticles supported on silica[J]. ACS Catalysis, 2017, 7(3): 1526-1532. |
69 | JI G, DUAN Y, ZHANG S, et al. Efficient and chemoselective semihydrogenation of alkynes catalyzed by Pd nanoparticles immobilized on heteroatom doped hierarchical porous carbon derived from bamboo shoots[J]. ChemSusChem, 2017, 10: 3427-3434. |
70 | DUAN Y, JI G, ZHANG S, et al. Additive-modulated switchable reaction pathway in the addition of alkynes with organosilanes catalyzed by a supported Pd nanoparticles: hydrosilylation versus semihydrogenation[J]. Catalysis Science & Technology, 2018, 8(4): 1039-1050. |
71 | MURUGESAN K, ALSHAMMARI A S, SOHAIL M, et al. Monodisperse nickel-nanoparticles for stereo- and chemoselective hydrogenation of alkynes to alkenes[J]. Journal of Catalysis, 2019, 370: 372-377. |
72 | WEI Z, GONG Y, XIONG T, et al. Highly efficient and chemoselective hydrogenation of α, β-unsaturated carbonyls over Pd/N-doped hierarchically porous carbon[J]. Catalysis Science & Technology, 2015, 5(1): 397-404. |
73 | SONG T, DUAN Y, YANG Y. Chemoselective transfer hydrogenation of α,β-unsaturated carbonyls catalyzed by a reusable supported Pd nanoparticles on biomass-derived carbon[J]. Catalysis Communication, 2019, 120: 80-85. |
74 | SONG T, MA Z, YANG Y. Chemoselective hydrogenation of α,β-unsaturated carbonyls catalyzed by biomass-derived cobalt nanoparticles in water[J]. ChemCatChem, 2019, 11(4): 1313-1319. |
75 | MAO H, CHEN C, LIAO X P, et al. Catalytic hydrogenation of quinoline over recyclable palladium nanoparticles supported on tannin grafted collagen fibers[J]. Journal of Molecular Catalysis A: Chemical, 2011, 341(1/2): 51-56. |
76 | ZHU D, JIANG H, ZHANG L, et al. Aqueous phase hydrogenation of quinoline to decahydroquinoline catalyzed by ruthenium nanoparticles supported on glucose-derived carbon spheres[J]. ChemCatChem, 2014, 6(10): 2954-2960. |
77 | TANG M, DENG J, LI M, et al. 3D-interconnected hierarchical porous N-doped carbon supported ruthenium nanoparticles as an efficient catalyst for toluene and quinoline hydrogenation[J]. Green Chemistry, 2016, 18(22): 6082-6090. |
78 | ZHANG F, MA C, CHEN S, et al. N-doped hierarchical porous carbon anchored tiny Pd NPs: a mild and efficient quinolines selective hydrogenation catalyst[J]. Molecular Catalysis, 2018, 452: 145-153. |
79 | MAO H, PENG S, YU H, et al. Facile synthesis of highly stable heterogeneous catalysts by entrapping metal nanoparticles within mesoporous carbon[J]. Journal of Materials Chemistry A, 2014, 2(16): 5847-5851. |
80 | WEI Z, CHEN Y, WANG J, et al. Cobalt encapsulated in N-doped graphene layers: an efficient and stable catalyst for hydrogenation of quinoline compounds[J]. ACS Catalysis, 2016, 6(9): 5816-5822. |
81 | SiNGH A, PANT D, KORRES N E, et al. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives[J]. Bioresource Technology, 2010, 101(13): 5003-5012. |
82 | NIE R, PENG X, ZHANG H, et al. Transfer hydrogenation of bio-fuel with formic acid over biomassderived N-doped carbon supported acid-resistant Pd catalyst[J]. Catalysis Science & Technology, 2017, 7(3): 627-634. |
83 | ZHANG P, CHEN N, CHEN D, et al. Ultra-stable and high-cobalt-loaded cobalt@ordered mesoporous carbon catalysts: all-in-one deoxygenation of ketone into alkylbenzene[J]. ChemCatChem, 2018, 10: 3299-3304. |
84 | MING J, LIU R, LIANG G, et al. Knitting an oxygenated network-coat on carbon nanotubes from biomass and their applications in catalysis[J]. Journal of Materials Chemistry. 2011, 21(29): 10929-10934. |
85 | LIU X, ZHANG B, FEI B, et al. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon[J]. Faraday Discussions, 2017, 202: 79-98. |
86 | ZHANG F, LI G, CHEN J. Effects of raw material texture and activation manner on surface area of porous carbons derived from biomass resources[J]. Journal of Colloid and Interface Science, 2018, 327(1): 108-114. |
87 | KONG X, FANG Z, BAO X, et al. Efficient hydrogenation of stearic acid over carbon coated Ni-Fe catalyst[J]. Journal of Catalysis, 2018, 367: 139-149. |
88 | SAHOO B, SURKUS A E, Pohl M M, et al. A biomass-derived non-noble cobalt catalyst for selective hydrodehalogenation of alkyl and (hetero)aryl halides[J]. Angewandte Chemie International Edition, 2017, 56(37): 11242-11247. |
89 | FERRACCIOLI R, BOROVIKA D, SURKUS A E, et al. Synthesis of cobalt nanoparticles by pyrolysis of vitamin B12: a non-noble catalyst for efficient hydrogenation of nitriles[J]. Catalysis Science & Technology, 2018, 8(2): 499-507. |
90 | CAO Y, ZHAO B, BAO X, et al. Fabricating metal@N-doped carbon catalysts via a thermal method[J]. ACS Catalysis, 2018, 8(8):7077-7085. |
91 | ZHANG P, GONG Y, LI H, et al. Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose[J]. Nature Communication, 2013, 4(1): 1593-1604. |
92 | LONG Z, ZHANG Y, CHEN G, et al. Nitrogen-doped biomass carbons meet with polyoxometalates: synergistic catalytic reductant-free aerobic hydroxylation of benzene to phenol[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4230-4238. |
93 | CHEN B, SHANG S, WANG L, et al. Mesoporous carbon derived from vitamin B12: a high performance bifunctional catalyst for imine formation[J]. Chemical Communication, 2016, 52(3): 481-484. |
94 | HU X, FAN M, ZHU Y, et al. Biomass-derived phosphorus-doped carbon materials as efficient metal-free catalysts for selective aerobic oxidation of alcohols[J]. Green Chemistry, 2019, 21(19): 5274-5283. |
95 | ZHU Q, WANG F, ZHANG F, et al. Renewable chitosan-derived cobalt@N-doped porous carbon for efficient aerobic esterification of alcohols under air[J]. Nanoscale, 2019, 11(38): 17736-17745. |
96 | SONG T, REN P, MA Z, et al. Highly dispersed single phase Ni2P nanoparticles on N,P-codoped porous carbon for efficient synthesis of N-heterocycles[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 267-277. |
97 | ZHOU H, HONG S, ZHANG H, et al. Toward biomass-based single-atom catalysts and plastics: highly active single-atom Co on N-doped carbon for oxidative esterification of primary alcohols[J]. Applied Catalysis B: Environmental, 2019, 256: 117767-117777. |
98 | MA Z, SONG T, YUAN Y, et al. Synergistic catalysis on Fe-Nx sites and Fe nanoparticles for efficient synthesis of quinolines and quinazolinones via oxidative coupling of amines and aldehydes[J]. Chemical Science, 2019, 10(44): 10283-10289. |
99 | LANE B S, BURGESS K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide[J]. Chem. Rev., 2003, 103(7): 2457-2474. |
100 | GAO Y, CHEN X, ZHANG J, et al. Chitin-derived mesoporous, nitrogen-containing carbon for heavy-metal removal and styrene epoxidation[J]. ChemPlusChem, 2015, 80(10): 1556-1564. |
101 | WEN G, GU Q, LIU Y, et al. Biomass-derived graphene-like carbon: efficient metal-free carbocatalysts for epoxidation[J]. Angewandte Chemie International Edition, 2018, 57(51): 16898-16902. |
102 | ZHANG Y, NIU H, ZHANG X, et al. Magnetic N-containing carbon spheres derived from sustainable chitin for the selective oxidation of C—H bonds[J]. RSC Advance, 2017, 7(82): 51831-51837. |
103 | YANG Y, FAN X, CAO H, et al. Fabrication of Se/C using carbohydrates as biomass starting materials: an efficient catalyst for regiospecific epoxidation of β-ionone with ultrahigh turnover numbers[J]. Catalysis Science & Technology, 2018, 8(19): 5017-5023. |
104 | SONG T, MA Z, REN P, et al. A bifunctional iron nanocomposite catalyst for efficient oxidation of alkenes to ketones and 1,2-diketones[J]. ACS Catalysis, 2020, 10(8): 4617-4629. |
105 | VITALIY L B, PETER S S, CLARK J H, et al. Industrial applications of C—C coupling reactions[J]. Current Organic Synthesis, 2010, 7(6): 614-627. |
106 | REN P, LI Q, SONG T, et al. Facile fabrication of Cu-N-C catalyst with atomically dispersed unsaturated Cu-N2 active sites for highly efficient and selective glaser-hay coupling[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27210-27218. |
107 | BIAJOLI A F P, SCHWALM C S, LIMBERGER J, et al. Recent progress in the use of Pd-catalyzed C—C cross-coupling reactions in the synthesis of pharmaceutical compounds[J]. Journal of the Brazilian Chemical Society, 2014, 25(12): 2186-2214. |
108 | BUDARIN V L, CLARK J H, LUQUE R, et al. Palladium nanoparticles on polysaccharide-derived mesoporous materials and their catalytic performance in C-C coupling reactions[J]. Green Chemistry, 2008, 10(4): 382-387. |
109 | GRONNOW M J, LUQUE R, MACQUARRIEA M J, et al. A novel highly active biomaterial supported palladium catalyst[J]. Green Chemistry, 2005, 7(7): 552-557. |
110 | JI G, DUAN Y, ZHANG S, et al. Synthesis of benzofurans from terminal alkynes and iodophenols catalyzed by recyclable palladium nanoparticles supported on N,O-dual doped hierarchical porous carbon under copper- and ligand-free conditions[J]. Catalysis Today, 2019, 330: 101-108. |
111 | PALASHUDDIN S M, JANA C K, CHATTOPADHYAY A. A gold-carbon nanoparticle composite as an efficient catalyst for homocoupling reaction[J]. Chemical Communication, 2013, 49(74): 8235-8238. |
112 | PRIMO A, QUIGNARD F. Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: design of hybrid catalyst for carbon-carbon bond formation[J]. Chemical Communication, 2010, 46(30): 5593-5595. |
113 | SONG T, REN P, XIAO J, et al. Highly dispersed Ni2P nanoparticles on N, P-codoped carbon for efficient cross-dehydrogenative coupling to access alkynyl thioethers[J]. Green Chemistry, 2020, 22(3): 651-656. |
[1] | 薛怡凡, 宋云彩, 冯杰, 李文英. 煤基液体燃料加氢脱氮催化剂的研究动态[J]. 化工进展, 2021, 40(S2): 176-184. |
[2] | 刘银领, 范兵强, 张喆, 郑诗礼, 张洋. 涡轮自吸桨强化气液混合及氧化反应速率[J]. 化工进展, 2021, 40(12): 6620-6628. |
[3] | 李小娟, 叶兰妹, 廖凤珍, 叶梓瑜, 叶礼志. 杂原子掺杂碳材料活化过硫酸盐技术的研究进展[J]. 化工进展, 2021, 40(1): 273-281. |
[4] | 刘建武, 严生虎, 张跃, 沈介发. 苯甲醇液相氧化合成苯甲醛的连续流工艺[J]. 化工进展, 2021, 40(1): 394-400. |
[5] | 朱永红,霍鹏举,杨天华,李伟,韩磊,杨程. 蜡油加氢脱硫集总动力学模型研究[J]. 化工进展, 2020, 39(4): 1339-1347. |
[6] | 龙丹, 周俊伶, 时洪民, 王冠然, 李红双, 赵苾艺, 李贞玉. 氧化亚铜光催化剂性能提升及增强机制的研究进展[J]. 化工进展, 2019, 38(06): 2756-2767. |
[7] | 丁巍, 郝元川, 孙宇, 沈健. Co/Cu-USY分子筛制备及催化乙苯氧化性能[J]. 化工进展, 2018, 37(06): 2249-2255. |
[8] | 周人杰, 陈瑜, 张玉飞, 安静雯, 姜珊, 黄璐, 李鹤. 二茂铁硼酸在合成反应中的研究进展[J]. 化工进展, 2017, 36(S1): 388-393. |
[9] | 熊阳, 覃益民, 唐爱星, 韦荟琳, 刘幽燕. 在α-蒎烯生物环氧化反应过程中酯对反应的影响及机理探讨[J]. 化工进展, 2016, 35(01): 220-226. |
[10] | 韩莉, 陆强, 罗金岳, 柳华锋, 刘祖广. 6-(4-甲基-3-戊烯基)-2,3-环氧基-2,3-二氢萘-1,4-二醌的合成[J]. 化工进展, 2015, 34(08): 3113-3117. |
[11] | 刘承先. 3,4,5-三氟-2'-硝基联苯的工艺合成[J]. 化工进展, 2015, 34(04): 1122-1125. |
[12] | 余文翟,华敏,潘旭海,陈发明,蒋军成. 本质安全化设计在硝酸氧化醇工艺中的应用[J]. 化工进展, 2014, 33(04): 1054-1059. |
[13] | 阚文涛,胡 睿,钟正坤. Sonogashira偶联反应的过渡金属催化剂研究进展[J]. 化工进展, 2013, 32(04): 804-808. |
[14] | 宋国强,沈 力,王 钒,黄险峰,何其隆,陈 昕. 强酸型离子交换树脂催化氧化硫醚选择性合成亚砜的清洁工艺[J]. 化工进展, 2013, 32(01): 188-192. |
[15] | 连建伟1,夏建陵1,2,黄 坤1,杨小华1,汪 梅1. β-月桂烯在有机反应中的应用研究进展 [J]. 化工进展, 2011, 30(8): 1826-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |