化工进展 ›› 2021, Vol. 40 ›› Issue (S2): 176-184.DOI: 10.16085/j.issn.1000-6613.2021-1118
收稿日期:
2021-05-26
修回日期:
2021-07-05
出版日期:
2021-11-12
发布日期:
2021-11-12
通讯作者:
冯杰
作者简介:
薛怡凡(1996—),女,博士研究生,研究方向为工业催化。E-mail:基金资助:
XUE Yifan(), SONG Yuncai, FENG Jie(), LI Wenying
Received:
2021-05-26
Revised:
2021-07-05
Online:
2021-11-12
Published:
2021-11-12
Contact:
FENG Jie
摘要:
煤基粗油中氮含量高达4500mg/L左右,采用石油系的NiMoS催化剂很难实现含氮芳香族化合物的脱除。为开发针对性更强、更高效的加氢脱氮催化剂,本文对煤基粗油加氢脱氮的催化剂研究动态进行了综述。首先介绍了煤基粗油中含氮芳香族化合物的组成及特点,接着围绕传统硫化物催化剂和脱氮性能较高的贵金属催化剂,从活性相的构筑与调控、载体在催化剂中的作用等方面进行了分析,最后比较了上述两种催化剂的催化性能。结果表明:贵金属催化剂活性高于传统硫化物催化剂;添加助金属形成合金可提高贵金属耐硫性与稳定性;采用具有一定酸性、与活性中心相互作用适中的载体的催化剂脱氮性能更佳。在综合分析已有文献和工作基础上,得出只有依据反应体系、特定反应过程来设计专一的加氢脱氮催化剂,才能从根本上提高含氮化合物的脱除率。
中图分类号:
薛怡凡, 宋云彩, 冯杰, 李文英. 煤基液体燃料加氢脱氮催化剂的研究动态[J]. 化工进展, 2021, 40(S2): 176-184.
XUE Yifan, SONG Yuncai, FENG Jie, LI Wenying. Research and development on coal-based liquid oil hydrodenitrogenation catalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 176-184.
1 | OHTSUKA Tadao. Catalyst for hydrodesulfurization of petroleum residua[J]. Catalysis Reviews, 1977, 16(1): 291-325. |
2 | KATZER J R, SIVASUBRAMANIAN R. Process and catalyst needs for hydrodenitrogenation[J]. Catalysis Reviews, 1979, 20(2): 155-208. |
3 | 李军芳, 李文博, 史士东, 等. 石油系加氢精制剂用于煤直接液化油的研究[J]. 煤炭转化, 2013, 36(2): 36-39. |
LI Junfang, LI Wenbo, SHI Shidong, et al. Study on petroleum hydrofining catalysts for coal direct liquefaction oil[J]. Coal Conversion, 2013, 36(2): 36-39. | |
4 | 尚慧芸, 徐卫民. “句容坳陷海相原油的地球化学特征”概要[J]. 石油勘探与开发, 1983(6): 68. |
SHANG Huiyun, XU Weimin. Summary of “The geochemical characteristics of marine crude oil in Jurong depression”[J]. Petroleum Expoloration and Development, 1983(6): 68. | |
5 | 黄澎, 张晓静, 毛学锋, 等. 神府煤液化油加氢精制过程中硫氮化合物分布的变化[J]. 燃料化学学报, 2016, 44(1): 37-43. |
HUANG Peng, ZHANG Xiaojing, MAO Xuefeng, et al. Change of sulfur and nitrogen compounds in the direct liquefaction oil from Shenfu coal upon the hydrofining process[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 37-43. | |
6 | 付殿岭. Mo2C和Rh催化剂表面含硫含氮化合物反应机理的研究[D]. 青岛: 中国石油大学(华东), 2016. |
FU Dianling. Study on the reaction mechanism of sulfur- and nitrogen-containing compounds on Mo2C and Rh Catalysts[D]. Qingdao: China University of Petroleum (East China), 2016. | |
7 | WANG Wei, LI Huifeng, HAN Wei, et al. A DFT study of the adsorption behavior of sulfur and nitrogen compounds on the NiMoS phase[J]. China Petroleum Processing and Petrochemical Technology, 2020, 22(1): 40-48. |
8 | 梁文杰. 石油化学[M]. 青岛: 中国石油大学出版社, 2009. |
LIANG Wenjie. Petroleum chemistry[M]. Qingdao: China University of Petroleum Press, 2009. | |
9 | 李伟林, 石智杰, 张晓静, 等. 煤直接液化油中硫氮化合物的类型分布[J]. 洁净煤技术, 2015, 21(4): 55-57. |
LI Weilin, SHI Zhijie, ZHANG Xiaojing, et al. Structures and composition of S and N compounds in direct coal liquefaction oil[J]. Clean Coal Technology, 2015, 21(4): 55-57. | |
10 | 李延红. 煤液化油中含氮化合物存在形式及分布的研究[D]. 上海: 华东理工大学, 2014. |
LI Yanhong. Study on the existence form and distribution of nitrogen compounds in coal liquefaction oil[D]. Shanghai: East China University of Science and Technology, 2014. | |
11 | 刘敏,陈贵锋,王永刚,等. 白石湖煤液化粗油加氢精制过程硫、氮化合物转化规律[J]. 燃料化学学报, 2019, 47(7): 870-875. |
LIU Min, CHEN Guifeng, WANG Yonggang, et al. Conversion of sulphur and nitrogen compounds in hydrofining process of Baishihu coal liquefaction oil[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 870-875. | |
12 | NØRSKOV J K. Electronic factors in catalysis[J]. Progress in Surface Science, 1991, 38(2): 103-144. |
13 | LIU Huan, LIU Chenguang, YIN Changlong, et al. Low temperature catalytic hydrogenation naphthalene to decalin over highly-loaded NiMo, NiW and NiMoW catalysts[J]. Catalysis Today, 2016, 276: 46-54. |
14 | ABSI-HALABI M, STANISLAUS A, AL-DOLAMA K. Performance comparison of alumina-supported Ni-Mo, Ni-W and Ni-Mo-W catalysis in hydrotreating vacuum residue[J]. Fuel, 1998, 77(7): 787-790. |
15 | HAANDEL Lennart van, BREMMER Marien, KOOYMAN Patricia J, et al. Structure-activity correlations in hydrodesulfurization reactions over Ni-promoted MoxW(1-x)S2/Al2O3 catalysts[J]. ACS Catalysis, 2015, 5(12): 7276-7287. |
16 | CUI Wengang, ZHENG Huaan, NIU Menglong, et al. Product compositions from catalytic hydroprocessing of low temperature coal tar distillate over three commercial catalysts[J]. Reaction Kinetics Mechanisms & Catalysis, 2016, 119(2): 491-509. |
17 | Henrik TOPSØE, CLAUSEN Bjerne S, CANDIA Roberto, et al. In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts: evidence for and nature of a Co-Mo-S phase[J]. Journal of Catalysis, 1981, 68(2): 433-452. |
18 | WIVEL Carsten, CANDIA Roberto, CLAUSEN Bjerne S, et al. On the catalytic significance of a Co-Mo-S phase in Co-Mo/Al2O3 hydrodesulfurization catalysts: combined in situ Mössbauer emission spectroscopy and activity studies[J]. Journal of Catalysis, 1981, 68(2): 453-463. |
19 | TOPSØE Nan Yu, Henrik TOPSØE. Characterization of the structures and active sites in sulfided Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts by NO chemisorption[J]. Journal of Catalysis, 1983, 84(2): 386-401. |
20 | Henrik TOPSØE, CLAUSEN Bjerne S. Importance of Co-Mo-S type structures in hydrodesulfurization[J]. Catalysis Reviews, 1984, 26(3/4): 395-420. |
21 | DAAGE M, CHIANELLI R. Structure-function relations in molybdenum sulfide catalysts: the “rim-edge” model[J]. Journal of Catalysis, 1994, 149(2): 414-427. |
22 | 王广建, 赵强, 陈国良, 等. 柠檬酸引入方式对CoMo/TiO2-Al2O3催化剂加氢脱硫性能的影响[J]. 工业催化, 2019, 27(7): 54-60. |
WANG Guangjian, ZHAO Qiang, CHEN Guoliang, et al. Effect of citric acid introduction methods on hydrodesulfurization performance of CoMo/TiO2-Al2O3 catalysts[J]. Industrial Catalysis, 2019, 27(7): 54-60. | |
23 | CHEN Jianjun, MI Jinxing, LI Kezhi, et al. The role of citric acid in preparing highly active CoMo/Al2O3 catalyst: from aqueous impregnation solution to active site formation[J]. Industrial & Engineering Chemistry Research, 2017, 56(48): 14172-14181. |
24 | BRAGGIO Flávia A, MELLO Matheus D, MAGALHÃES Bruno C, et al. Effect of pH on activity of NiMo/Al2O3 catalysts prepared with citric acid in simultaneous hydrodesulfurization and hydrodenitrogenation reactions[J]. Catalysis Letters, 2017, 147(5): 1104-1113. |
25 | BADOGA Sandeep, DALAI Ajay K, ADJAYE John, et al. Insights into individual and combined effects of phosphorus and EDTA on performance of NiMo/MesoAl2O3 catalyst for hydrotreating of heavy gas oil[J]. Fuel Processing Technology, 2017, 159: 232-246. |
26 | 武瑞明, 张少华, 王晓蔷, 等. Ni-Mo-W非负载型催化剂加氢脱硫性能的改进[J]. 石油化工, 2018, 47(4): 17-23. |
WU Ruiming, ZHANG Shaohua, WANG Xiaoqiang, et al. Improvement of hydrodesulfurization performance of Ni-Mo-W unsupported catalyst[J]. Petrochemical Technology, 2018, 47(04): 17-23. | |
27 | YI Xiaodong, GUO Dongyun, LI Pengyun, et al. One pot synthesis of NiMo-Al2O3 catalysts by solvent-free solid-state method for hydrodesulfurization[J]. RSC Advances, 2017, 7: 54468-54474. |
28 | ZHAO Ruiyu, LU Pingjuan, ZHAO Yuansheng, et al. Effect of phosphorus modification on the acidity, nanostructure of the active phase, and catalytic performance of residue hydrodenitrogenation catalysts[J]. ACS Omega, 2020, 5: 19111-19119. |
29 | KLIMOV O V, NADEINA K A, VATUTINA Yu V, et al. CoMo/Al2O3 hydrotreating catalysts of diesel fuel with improved hydrodenitrogenation activity[J]. Catalysis Today, 2018, 307: 73-83. |
30 | SOLTANALI Saeed, MASHAYEKHI Maryam, MOHADDECY Seyed Reza Seif. Comprehensive investigation of the effect of adding phosphorus and/or boron to NiMo/γ-Al2O3 catalyst in diesel fuel hydrotreating[J]. Process Safety and Environmental Protection, 2020, 137: 273-281. |
31 | HAN Wei, NIE Hong, LONG Xiangyun, et al. Preparation of F-doped MoS2/Al2O3 catalysts as a way to understand the electronic effects of the support Brønsted acidity on HDN activity[J]. Journal of Catalysis, 2016, 339: 135-142. |
32 | YAO Songdong, ZHENG Ying, DING Lianhui, et al. Co-promotion of fluorine and boron on NiMo/Al2O3 for hydrotreating light cycle oil[J]. Catalysis Science & Technology Cambridge, 2012, 2: 1925-1932. |
33 | CUI Wengang, LI Wenhong, GAO Rong, et al. Hydroprocessing of low-temperature coal tar for the production of clean fuel over fluorinated NiW/Al2O3-SiO2 catalyst[J]. Energy & Fuels, 2017, 31(4): 3768-3783. |
34 | 张轩, 牛梦龙, 潘柳依, 等. F改性NiW/Al2O3-SiO2催化剂煤焦油加氢性能研究[J]. 石油化工, 2018, 47(9): 936-942. |
ZHANG Xuan, NIU Menglong, PAN Liuyi, et al. Hydroprocessing of coal tar on fluorine modification NiW/Al2O3-SiO2 catalysts[J]. Petrochemical Technology, 2018, 47(9): 936-942. | |
35 | DING Lianhui, ZHANG Zisheng, ZHENG Ying, et al. Effect of fluorine and boron modification on the HDS, HDN and HDA activity of hydrotreating catalysts[J]. Applied Catalysis A: General, 2006, 301: 241-250. |
36 | JOO H S, GUIN James A. Activity of noble metal-promoted hydroprocessing catalysts for pyridine HDN and naphthalene hydrogenation[J]. Fuel Processing Technology, 1996, 49(1): 137-155. |
37 | INFANTES-MOLINA A, ROMERO-PÉREZ A, FINOCCHIO E, et al. HDS and HDN on SBA-supported RuS2 catalysts promoted by Pt and Ir[J]. Journal of Catalysis, 2013, 305: 101-117. |
38 | 李矗, 王安杰, 鲁墨弘, 等. 加氢脱氮反应与加氢脱氮催化剂的研究进展[J]. 化工进展, 2003, 22(6): 583. |
LI Chu, WANG Anjie, LU Mohong, et al. Advance in research on hydrodenitrogenation and its catalysts[J]. Chemical Industry and Engineering Progress, 2003, 22(6): 583. | |
39 | CINIBULK J, Vı́T Z. Selective Mo-Ir/Al2O3 sulfide catalysts for hydrodenitrogenation[J]. Applied Catalysis A: General, 2000, 204(1): 107-116. |
40 | EIJSBOUTS Sonja, SUDHAKAR Christopher, BEER de V H J, et al. Hydrodenitrogenation of decahydroquinoline, cyclohexylamine and O-propylaniline over carbon-supported transition metal sulfide catalysts[J]. Journal of Catalysis, 1991, 127(2): 605-618. |
41 | LEDOUX Marc J, DJELLOULI Brahim. Hydrodenitrogenation activity and selectivity of well-dispersed transition metal sulfides of the second row on activated carbon[J]. Journal of Catalysis, 1989, 115(2): 580-590. |
42 | SANTEN Rutger A van, NEUROCK Matthew, SHETTY Sharan G. Reactivity theory of transition-metal surfaces: a Brønsted-Evans-Polanyi linear activation energy-free-energy analysis[J]. Chemical Reviews, 2010, 110: 2005-2048. |
43 | GUO Yang, HE Hao Ran, LIU Xu, et al. Ring-opening and hydrodenitrogenation of indole under hydrothermal conditions over Ni, Pt, Ru, and Ni-Ru bimetallic catalysts[J]. Chemical Engineering Journal, 2021, 406: 126853. |
44 | LEDESMA Brenda C, ANUNZIATA Oscar A, BELTRAMONE Andrea R. HDN of indole over Ir-modified Ti-SBA-15[J]. Applied Catalysis B: Environmental, 2016, 192(5): 220-233. |
45 | GUTTIERI Mary J, MAIER Wilhelm F. Selective cleavage of carbon-nitrogen bonds with platinum[J]. The Journal of Organic Chemistry, 1984, 49(16): 2875-2880. |
46 | PEETERS Elisabeth, CATTENOT Martine, GEANTET Christophe, et al. Hydrodenitrogenation on Pt/silica-alumina catalysts in the presence of H2S: role of acidity[J]. Catalysis Today, 2008, 133-135: 299-304. |
47 | JI Yongjun, WU Yuen, ZHAO Guofeng, et al. Porous bimetallic Pt-Fe nanocatalysts for highly efficient hydrogenation of acetone[J]. Nano Research, 2015, 8(8): 2706-2713. |
48 | ZDENĔK V T, Daniela GULKOVÁ, Luděk KALUŽA, et al. Pd-Pt catalysts on mesoporous SiO2-Al2O3 with superior activity for HDS of 4,6-dimethyldibenzothiophene: effect of metal loading and support composition[J]. Applied Catalysis B: Environmental, 2015, 179: 44-53. |
49 | 焦金庆. 介孔SiO2负载型催化剂合成及其HDS 催化性能研究[D]. 北京: 中国石油大学, 2018. |
JIAO Jinqing. Synthesis of mesoporous silica-supported catalysts and their HDS catalytic performances[D]. Beijing: China University of Petroleum, 2018. | |
50 | LIU Juan, LI Wenying, FENG Jie, et al. Promotional effect of TiO2 on quinoline hydrodenitrogenation activity over Pt/γ-Al2O3 catalysts[J]. Chemical Engineering Science, 2019, 207: 1085-1095. |
51 | LIU Juan, LI Wenying, FENG Jie, et al. Molecular insights into the hydrodenitrogenation mechanism of pyridine over Pt/γ-Al2O3 catalysts[J]. Molecular Catalysis, 2020, 495: 111148. |
52 | LIU Juan, LI Wenying, FENG Jie, et al. Effects of Fe species on promoting the dibenzothiophene hydrodesulfurization over the Pt/γ-Al2O3 catalysts[J]. Catalysis Today, 2020, 371: 247-257. |
53 | OLIVIERO Laetitia, TRAVERT Arnaud, GARCIA Dominguez Elizabeth, et al. Catalysis by sulfides: advanced IR/CO spectroscopy for the identification of the most active sites in hydrodesulfurization reactions[J]. Journal of Catalysis, 2021. . |
54 | TANABE K, SASAKI H, HATTORI H, et al. Activity tests of various catalysts for hydrocracking of coal by means of high-pressure differential thermal analysis[J]. Fuel Processing Technology, 1979, 2(4): 253-259. |
55 | RALSTON D, GOVEK M, GRAF C, et al. Catalytic activities and selectivities of MoO3-NiSO4 supported on various oxides for hydrocracking of solvent refined lignite: novel low surface area active catalysts[J]. Fuel Processing Technology, 1978, 1(2): 143-150. |
56 | MOCHIDA Isao, OISHI Taiji, KORAI Yozo, et al. Roles of catalyst support in the selective hydrotreatment of a solvent-refined coal[J]. Industrial & Engineering Chemistry Product Research and Development, 1984, 23(2): 203-205. |
57 | BREYSSE M, PORTEFAIX J L, VRINAT M. Support effects on hydrotreating catalysts[J]. Catalysis Today, 1991, 10(4): 489-505. |
58 | TANIMU Abdulkadir, ALHOOSHANI Khalid. Advanced hydrodesulfurization catalysts: a review of design and synthesis[J]. Energy & Fuels, 2019, 33(4): 2810-2838. |
59 | 董昆明. 碳纳米管负载/促进Co-Mo-S基HDS/HDN催化剂研究[D]. 厦门: 厦门大学, 2005. |
DONG Kunming. Co-Mo-S catalysts supported/promoted by CNIs for HDS/HDN[D]. Xiamen: Xiamen University, 2005. | |
60 | GUTI RREZ-ALEJANDRE Aída, Jorge RAMÍREZ, Ioscani Jiménez-del VAL, et al. Activity of NiW catalysts supported on TiO2-Al2O3 mixed oxides: effect of Ti incorporation method on the HDS of 4,6-DMDBT[J]. Catalysis Today, 2005, 107/108: 879-884. |
61 | ZHOU Wenwu, YANG Li, LIU Lang, et al. Synthesis of novel NiMo catalysts supported on highly ordered TiO2-Al2O3 composites and their superior catalytic performance for 4,6-dimethyldibenzothiophene hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2020, 268: 118428. |
62 | ZHANG Pengfei, MU Fujun, ZHOU Yasong, et al. Synthesis of highly ordered TiO2-Al2O3 and catalytic performance of its supported NiMo for HDS of 4, 6-dimethyldibenzothiophene[J]. Catalysis Today, 2020. . |
63 | NGUYEN Thanh Tung, IMAI Kazunari, PU Jianglong, et al. Effect of TiO2 coating on morphology of active phase on sulfided CoMo/Al2O3 hydrotreating catalysts[J]. Energy & Fuels, 2018, 32(2): 1665-1673. |
64 | Jorge RAMÍREZ, RAYO Patricia, Aída GUTIÉRREZ-ALEJANDRE, et al. Analysis of the hydrotreatment of Maya heavy crude with NiMo catalysts supported on TiO2-Al2O3 binary oxides: effect of the incorporation method of Ti[J]. Catalysis Today, 2005, 109(1/2/3/4): 54-60. |
65 | BORQUE M P, LÓPEZ-AGUDO A, OLGUı́N E, et al. Catalytic activities of Co(Ni)Mo/TiO2-Al2O3 catalysts in gasoil and thiophene HDS and pyridine HDN: effect of the TiO2-Al2O3 composition[J]. Applied Catalysis A: General, 1999, 180(1): 53-61. |
66 | RODSEANGLUNG Thirada, RATANA Tanakorn, PHONGAKSORN Monrudee, et al. Effect of TiO2 Incorporated with Al2O3 on the hydrodeoxygenation and hydrodenitrogenation CoMo sulfide catalysts[J]. Energy Procedia, 2015, 79: 378-384. |
67 | 黄文斌, 魏强, 周亚松. 均一介孔Al2O3劣质蜡油加氢脱氮催化剂研究进展[J]. 化工进展, 2020, 39(S2): 196-203. |
HUANG Wenbin, WEI Qiang, ZHOU Yasong. Research progress of homogeneous mesoporous Al2O3 of hydrodenitrogenation catalyst for inferior gas oil[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 196-203. | |
68 | 田静宇, 马时运, 付希, 等. TiSi复合氧化物性质对NiMo基催化剂加氢脱氧性能的影响[J]. 化学反应工程与工艺, 2017, 33(1): 8-14. |
TIAN Jingyu, MA Shiyun, FU Xi, et al. Effect of the properties of TiSi composite oxide on the hydrodeoxygenation performance of the NiMo based catalyst[J]. Chemical Reaction Engineering and Technology, 2017, 33(1): 8-14. | |
69 | 石冈, 蔡震, 鲍晓军, 等. Ti-Mg-Al复合氧化物催化材料的制备及其加氢脱硫性能[J]. 石油与天然气化工, 2013, 42(2): 112-118. |
SHI Gang, CAI Zhen, BAO Xiaojun, et al. Preparation and hydrodesulfurization performance of Ti-Mg-Al composite oxides[J]. Chemical Engineering of Oil and Gas, 2013, 42(2): 112-118. | |
70 | HIRSCHON A S, LAINE R M. Bulk ruthenium as an HDN catalyst[J]. Energy & Fuels, 1988, 2(3): 292-295. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[9] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[10] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[11] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[12] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[13] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[14] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[15] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |