1 |
DESHMUKH N A, PATILS S, JOSHI J B. Gas induction characteristics of hollow self-inducing impeller[J]. Chemical Engineering Research and Design, 2006, 84(2):124-132.
|
2 |
CHEN J H, HSU Y C, CHEN Y F, et al. Application of gas-inducing reactor to obtain high oxygen dissolution in aeration process[J]. Water Research, 2003, 37: 2919-2928.
|
3 |
WU H, LI Q, LI Z M, et al. Succinic acid production and CO2 fixation using a metabolically engineered Escherichia coli in a bioreactor equipped with a self-inducing agitator[J]. Bioresource Technology, 2012, 107: 376-384.
|
4 |
RODOLPHE S, CATHERINE X, MARTINE P. Improvement of the performances of a gas-inducing system for application in wastewater treatment[J]. International Journal of Chemical Reactor Engineering, 2011, 4(1): A30.
|
5 |
韩愈, 包雨云, 马鑫, 等. 具有双层桨结构的自吸式搅拌反应器的流体力学性能[J]. 过程工程学报, 2019, 19(6): 1066-1074.
|
|
HAN Y, BAO Y Y, MA X, et al. Hydrodynamics performance of self-inducing stirred tank equipped with double impellers[J]. The Chinese Journal of Process Engineering, 2019, 19(6): 1066-1074.
|
6 |
ZHANG Y H, ZHANG Z W, WEI C, et al. Critical impeller speeds for a gas-inducing stirring tank loaded with solid particles[J].Chinese Journal of Chemical Engineering, 2018, 26(6): 1423-1429.
|
7 |
JOSHI J B, SHARMA M M. Mass transfer and hydrodynamic characteristics of gas inducing type of agitated contactors[J]. The Canadian Journal of Chemical Engineering, 1977, 55: 683-695.
|
8 |
HEIM A, KRASLAWSKI A, RZYSKI E, et al. Aeration of bioreactors by self-aspirating impellers[J]. Chemical Engineering Journal, 1995, 58: 59-63.
|
9 |
KASUNDRA R B, KULKARNI A V, JOSHI J B. Hydrodynamic and mass transfer characteristics of single and multiple impeller hollow self-inducing reactors[J]. Industrial & Engineering Chemistry Research, 2008, 47(8): 2829-2841.
|
10 |
CLAUDIO P F, BRUNO S P, VANIA S M, et al. Prediction of the induced gas flow rate from a self-inducing impeller with CFD[J]. Chemical Engineering Technology, 2014, 37(4): 571-579.
|
11 |
FISHCHER H B. The mechanics of dispersion in natural streams[J]. Journal of the Hydraulics Division, 1967, 93(6): 187-216.
|
12 |
FISHCHER H B, LIST E J, KOH R C Y. Mixing in inland and coastal water[M]. New York: Academic Press, 1979: 110-130.
|
13 |
OTOMO N, BUJALSKI W, NIENOW A W, et al. A novel measurement technique for mixing time in an aerated stirred vessel[J]. Journal of Chemical Engineering of Japan, 2003, 36(1): 66-74.
|
14 |
CRAVOTTO G, CINTAS P. Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications[J]. Chemical Society Reviews, 2006, 35(2):180-196.
|
15 |
LI P, SONG Y, YU S L. Removal of microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms[J]. Water Research, 2014, 62: 241-248.
|
16 |
ZHANG Y N, QIAN Z D, WU D Z, et al. Fundamentals of cavitation and bubble dynamics with engineering applications[J]. Advances in Mechanical Engineering, 2017, 9(3): 1-7.
|
17 |
高勇, 胡军, 严彪, 等. 新型双层桨气液搅拌釜内功耗性能的实验研究[J]. 化工机械, 2018, 45(3): 292-296, 304.
|
|
GAO Y, HU J, YAN B, et al. Experimental study of power consumption performance in a new gas-liquid stirred tank with dual lmpellers[J]. Chemical Engineering & Machinery, 2018, 45(3): 292-296, 304.
|
18 |
张庆华, 毛在砂, 杨超, 等. 搅拌反应器中液相混合时间研究进展[J]. 化工进展, 2008, 27(10): 1544-1550.
|
|
ZHANG Q H, MAO Z S, YANG C, et al. Research progress of liquid-phase mixing time in stirred tanks[J]. Chemical Industry and Engineering Progress, 2008, 27(10): 1544-1550.
|
19 |
ROWLEY D A, HALLIWELL B. Superoxide-dependent formation of hydroxyl radicals from NADH and NADPH in the presence of iron salts[J]. FEBS Letters, 1982, 142(1): 39-41.
|
20 |
ALIR T, FRANK S A. LC/MS analysis of hydroxylation products of salicylate as an indicator of indicator of in vivo oxidative stress[J]. Free Radical Biology & Medicine, 1999, 26: 1054-1058.
|