[1] WANG Y,CHEN S L,JIANG Y J,et al. Influence of template content on selective synthesis of SAPO-18,SAPO-18/34 intergrowth and SAPO-34 molecular sieves used for methanol-to-olefins process[J]. RSC Advances,2016,6(107):104985-104994.
[2] GAYUBO A G,AGUAYO A T,AlONSO A,et al. Kinetic modeling of the methanol-to-olefins process on a silicoaluminophosphate (SAPO-18) catalyst by considering deactivation and the formation of individual olefins[J]. Industrial & Engineering Chemistry Research,2007,46(7):1981-1989.
[3] ZHAO D,ZHANG Y,LI Z,et al. Synthesis of SAPO-18/34 intergrowth zeolites and their enhanced stability for dimethyl ether to olefins[J]. RSC Advances,2017,7(2):939-946.
[4] 赵飞,李渊,张岩,等. 对比SSZ-13和 SAPO-34分子筛在甲醇制烯烃中的研究进展[J]. 化工进展,2017,36(1):166-173. ZHAO F,LI Y,ZHANG Y,et al. Research progress of SSZ-13 and SAPO-34 zeolites for methanol to olefins[J]. Chemical Industry and Engineering Progress,2017,36(1):166-173.
[5] 代跃利,王磊,刘德阳. 用于催化甲醇制烯烃的SAPO-34分子筛合成的研究进展[J]. 化工进展,2015,34(3):731-737. DAI Y L,WANG L,LIU D Y. Progress in the synthesis of SAPO-34 molecular sieve for the conversion of methanol to olefins[J]. Chemical Industry and Engineering Progress,2015,34(3):731-737.
[6] XIAO Y,LASAGA A C. Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution:OH-,catalysis[J]. Geochimica Et Cosmochimica Acta,1996,60(13):2283-2295.
[7] KONECNY R. Reactivity of hydroxyl radicals on hydroxylated quartz surface. 1. Cluster model calculations[J]. Journal of Physical Chemistry B,2001,105(26):6221-6226.
[8] NARAYANASAMY J,KiUBICKI J D. Mechanism of hydroxyl radical generation from a silica surface:molecular orbital calculations[J]. The Journal of Physical Chemistry B,2005,109(46):21796-21807.
[9] FENG G D,CHENG P,YAN W,et al. Accelerated crystallization of zeolites via hydroxyl free radicals[J]. Science,2016,351(6278):1188-1191.
[10] 冯国栋. 自由基加速沸石分子筛晶化的机制研究[D]. 长春:吉林大学,2016. FENG G D. Mechanism of free radicals on accelerating the crystallization of zeolites[D]. Changchun:Jilin University,2016.
[11] 程鹏. 通过不同方法产生羟基自由基加速沸石分子筛合成的研究[D]. 长春:吉林大学,2016. CHENG P. Accelerated synthesis of zeolites via hydroxyl radicals generated by different methods[D]. Changchun:Jilin University,2016.
[12] JIAN L W,LE J X. Advanced oxidation processes for wastewater treatment:formation of hydroxyl radical and application[J]. Critical Reviews in Environmental Science and Technology,2012,42(3):251-325.
[13] SNOOK M E,HAMILTON G A. Oxidation and fragmentation of some phenyl-substituted alcohols and ethers by peroxydisulfate and Fenton's reagent[J]. Journal of the American Chemical Society,1974,96(3):860-869.
[14] CARR S A,BLITZ M A,SEAKINS P W. Site-specific rate coefficients for reaction of OH with ethanol from 298 to 900K[J]. Journal of Physical Chemistry A,2011,115(15):3335-3345.
[15] NAZARI M,MORADI G,BEHBAHANI R M,et al. Preparation and evaluation of the modified nanoparticle SAPO-18 for catalytic conversion of methanol to light olefins[J]. Catalysis Letters,2015,145(10):1893-1903.
[16] HIROTA Y,YAMADA M,UCHIDA Y,et al. Synthesis of SAPO-18 with low acidic strength and its application in conversion of dimethylether to olefins[J]. Microporous & Mesoporous Materials,2016,232:65-69.
[17] ZHAO D,ZHANG Y,PENG Y,et al. A novel preparation of SAPO-18 molecular sieve with enhanced stability for dimethyl ether to olefins[J]. Catalysis Letters,2016,146(11):1-7.
[18] PAZ-SIMON H D,CHEMTOB A,CROUTXE-BARGHORN C,et al. Periodic mesostructured silica films made simple using UV light[J]. The Journal of Physical Chemistry C,2014,118(9):4959- 4966.
[19] 王兴旺,李世洪,孙岩,等. Mn改性SAPO-34分子筛及其MTO催化性能研究[J]. 现代化工,2015,35(5):85-87. WANG X W,LI S H,SUN Y,et al. Mn modified molecular sieve SAPO-34 and its catalytic performance[J]. Modern Chemical Industry,2015,35(5):85-87.
[20] LEE K Y,CHAE H J,JEONG S Y,et al. Effect of crystallite size of SAPO-34 catalysts on their induction period and deactivation in methanol-to-olefin reactions[J]. Applied Catalysis A:General,2009,369(1):60-66.
[21] SEDIGHI M,GHASEMI M,SADEQZADEH M,et al. Thorough study of the effect of metal-incorporated SAPO-34 molecular sieves on catalytic performances in MTO process[J]. Powder Technology,2016,291:131-139.
[22] JANG H G,MIN H K,LEE J K,et al. SAPO-34 and ZSM-5 nanocrystals' size effects on their catalysis of methanol-to-olefin reactions[J]. Applied Catalysis A:General,2012,437:120- 130. |