化工进展 ›› 2020, Vol. 39 ›› Issue (2): 747-754.DOI: 10.16085/j.issn.1000-6613.2019-0825
收稿日期:
2019-05-20
出版日期:
2020-02-05
发布日期:
2020-03-12
通讯作者:
胡学伟
作者简介:
祝传静(1994—),女,硕士研究生,研究方向为水污染控制技术。E-mail:基金资助:
Chuanjing ZHU(),Senlin TIAN,Jianhong HUANG,Yingjie LI,Xuewei HU()
Received:
2019-05-20
Online:
2020-02-05
Published:
2020-03-12
Contact:
Xuewei HU
摘要:
研究氢气作为唯一电子供体的硫酸盐还原菌对酸性矿山废水的处理效果。本文对反应过程中pH和氧化还原电位(ORP),目标代谢产物H2S和∑S2-(HS-、S2-),出水中重金属及总有机碳进行分析。研究表明,生物反应器pH可迅速上升至8.75~8.80,ORP下降至-330~-420mV;在4865mg/L
中图分类号:
祝传静,田森林,黄建洪,李英杰,胡学伟. 以氢气为电子供体的硫酸盐还原菌处理酸性矿山废水[J]. 化工进展, 2020, 39(2): 747-754.
Chuanjing ZHU,Senlin TIAN,Jianhong HUANG,Yingjie LI,Xuewei HU. Treatment of acid mine wastewater treated by sulfate reducing bacteria with hydrogen as electron donor[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 747-754.
反应时间/h | 4865mg/L | 2650mg/L | 1432mg/L | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2S | ∑S2- | 总S | H2S | ∑S2- | 总S | H2S | ∑S2- | 总S | |||||||
3 | 97.64 | 0.08 | 0.09 | 0.90 | 98.71 | 95.47 | 0.16 | 0.12 | 1.35 | 97.1 | 95.74 | 0.17 | 0.15 | 2.33 | 98.39 |
12 | 93.13 | 0.42 | 0.74 | 1.69 | 95.98 | 88.68 | 0.58 | 1.44 | 2.42 | 93.12 | 76.26 | 1.39 | 2.39 | 6.56 | 86.6 |
18 | 94.04 | 0.53 | 0.84 | 1.32 | 96.73 | 87.55 | 0.83 | 1.85 | 3.18 | 93.41 | 79.05 | 1.73 | 2.98 | 5.28 | 89.04 |
24 | 91.37 | 0.77 | 0.90 | 2.10 | 95.14 | 83.40 | 1.45 | 1.93 | 3.51 | 90.29 | 73.46 | 2.60 | 3.22 | 5.94 | 85.22 |
30 | 87.67 | 1.13 | 1.05 | 2.37 | 92.22 | 73.96 | 2.00 | 2.09 | 2.79 | 80.84 | 62.99 | 3.21 | 4.43 | 6.35 | 76.98 |
36 | 88.28 | 1.44 | 1.42 | 2.68 | 93.82 | 75.09 | 3.28 | 2.82 | 5.47 | 86.66 | 65.78 | 4.61 | 4.96 | 8.04 | 83.39 |
48 | 83.97 | 1.85 | 1.81 | 3.53 | 91.16 | 68.68 | 4.53 | 3.50 | 6.15 | 82.86 | 58.80 | 4.94 | 5.59 | 8.60 | 77.93 |
表1 高、中、低SO42-浓度反应器中各涉硫组分所占比例
反应时间/h | 4865mg/L | 2650mg/L | 1432mg/L | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2S | ∑S2- | 总S | H2S | ∑S2- | 总S | H2S | ∑S2- | 总S | |||||||
3 | 97.64 | 0.08 | 0.09 | 0.90 | 98.71 | 95.47 | 0.16 | 0.12 | 1.35 | 97.1 | 95.74 | 0.17 | 0.15 | 2.33 | 98.39 |
12 | 93.13 | 0.42 | 0.74 | 1.69 | 95.98 | 88.68 | 0.58 | 1.44 | 2.42 | 93.12 | 76.26 | 1.39 | 2.39 | 6.56 | 86.6 |
18 | 94.04 | 0.53 | 0.84 | 1.32 | 96.73 | 87.55 | 0.83 | 1.85 | 3.18 | 93.41 | 79.05 | 1.73 | 2.98 | 5.28 | 89.04 |
24 | 91.37 | 0.77 | 0.90 | 2.10 | 95.14 | 83.40 | 1.45 | 1.93 | 3.51 | 90.29 | 73.46 | 2.60 | 3.22 | 5.94 | 85.22 |
30 | 87.67 | 1.13 | 1.05 | 2.37 | 92.22 | 73.96 | 2.00 | 2.09 | 2.79 | 80.84 | 62.99 | 3.21 | 4.43 | 6.35 | 76.98 |
36 | 88.28 | 1.44 | 1.42 | 2.68 | 93.82 | 75.09 | 3.28 | 2.82 | 5.47 | 86.66 | 65.78 | 4.61 | 4.96 | 8.04 | 83.39 |
48 | 83.97 | 1.85 | 1.81 | 3.53 | 91.16 | 68.68 | 4.53 | 3.50 | 6.15 | 82.86 | 58.80 | 4.94 | 5.59 | 8.60 | 77.93 |
1 | SÁNCHEZ-ANDREA I, SANZ J L, BIJMANS M F, et al. Sulfate reduction at low pH to remediate acid mine drainage[J]. Journal of Hazardous Materials, 2014, 269: 98-109. |
2 | 周跃飞, 谢越, 周立祥. 酸性矿山废水天然中和形成的富铁沉淀及其环境属性[J]. 环境科学, 2010, 31(6): 1581-1588. |
ZHOU Yuefei, XIE Yue, ZHOU Lixiang. Formation and environmental implication of iron-enriched precipitates derived from natural neutralization of acid mine drainage[J]. Environmental Science, 2010, 31(6): 1581-1588. | |
3 | LUÍS A T, TEIXEIRA P, ALMEIDA S F P, et al. Impact of acid mine drainage (AMD) on water quality, stream sediments and periphytic diatom communities in the surrounding streams of aljustrel mining area (Portugal)[J]. Water Air and Soil Pollution, 2009, 200(1/2/3/4): 147-167. |
4 | RODRIGUEZ R P, OLIVEIRA G H D, RAIMUNDI I M, et al. Assessment of a UASB reactor for the removal of sulfate from acid mine water[J]. International Biodeterioration & Biodegradation, 2012, 74(74): 48-53. |
5 | 张超, 俞力家, 王天贵. 硫酸盐还原菌的应用研究进展[J]. 化工进展, 2010, 29(s2): 288-292. |
ZHANG Chao,YU Lijia,WANG Tiangui. Advances in applications of sulfate-reducing bacteria[J]. Chemical Industry and Engineering Progress, 2010, 29(s2): 288-292. | |
6 | 何天容, 高钊, 罗光俊, 等. 贵阳市水库中硫酸盐还原菌及铁还原菌对甲基汞分布的影响[J]. 环境科学学报, 2016, 36(1): 84-91. |
HE T R, GAO Z, LUO G J, et al. The impact of SRB and DIRB on methylmercury distributions in the reservoirs in Guiyang city[J]. Acta Scientiae Circumstantiae, 2016, 36(1): 84-91. | |
7 | UTGIKAR V P, HARMON S M, CHAUDHARY N, et al. Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage[J]. Environmental Toxicology, 2010, 17(1): 40-48. |
8 | JIAN L, WU J, CHEN T, et al. Valuable metal recovery during the bioremediation of acidic mine drainage using sulfate reducing straw bioremediation system[J]. Water Air & Soil Pollution, 2012, 223(6): 3049-3055. |
9 | 苏宇, 王进, 彭书传, 等. 以稻草和污泥为碳源硫酸盐还原菌处理酸性矿山排水[J]. 环境科学, 2010, 31(8): 1858-1863. |
SU Yu, WANG Jin, PENG Shuchuan, et al. Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage[J]. Environmental Science, 2010, 31(8): 1858-1863. | |
10 | 姬玉欣, 马春, 金仁村,等. 硫酸盐生物还原中电子供体的选择[J]. 化工进展, 2011, 30(12): 2593-2600. |
JI Yuxin, MA Chun, JIN Rencun, et al. Selection of electron donors for biological sulfate reduction[J]. Chemical Industry and Engineering Progress, 2011, 30(12): 2593-2600. | |
11 | 肖利萍, 栾雪菲, 汪兵兵, 等. 新型碳源驯化SRB生长特性及处理酸性矿山废水研究[J]. 中国给水排水, 2017, 33(9): 40-44. |
XIAO Liping, LUAN Xuefei, WANG Bingbing, et al. Growth characteristics of SRB domesticated with new organic carbon sources and its application in AMD treatment[J]. China Water & Wastewater, 2017, 33(9): 40-44. | |
12 | BAYRAKDAR A, SAHINKAYA E, GUNGOR M, et al. Performance of sulfidogenic anaerobic baffled reactor (ABR) treating acidic and zinc-containing wastewater[J]. Bioresource Technology, 2009, 100(19): 4354-4360. |
13 | BEKMEZCI O K, UCAR D, KAKSONEN A H, et al. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor[J]. Journal of Hazardous Materials, 2011, 189(3): 670-676. |
14 | ZHANG Mingliang, WANG Haixia. Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis[J]. Minerals Engineering, 2016, 92: 63-71. |
15 | GOPI K M, PAKSHIRAJAN K, DAS G. A new application of anaerobic rotating biological contactor reactor for heavy metal removal under sulfate reducing condition[J]. Chemical Engineering Journal, 2017, 321: 67-75. |
16 | SAHINKAYA E, GUNGOR M. Comparison of sulfidogenic up-flow and down-flow fluidized-bed reactors for the biotreatment of acidic metal-containing wastewater[J]. Bioresource Technology, 2010, 101(24): 9508-9514. |
17 | SAHINKAYA E, DURSUN N, OZKAYA B, et al. Use of landfill leachate as a carbon source in a sulfidogenic fluidized-bed reactor for the treatment of synthetic acid mine drainage[J]. Minerals Engineering, 2013, 48(4): 56-60. |
18 | RODRIGUEZ R P, OLIVEIRA G H D, RAIMUNDI I M, et al. Assessment of a UASB reactor for the removal of sulfate from acid mine water[J]. International Biodeterioration & Biodegradation, 2012, 74: 48-53. |
19 | FOUCHER S, BATTAGLIA-BRUNET F, IGNATIADIS I, et al. Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery[J]. Chemical Engineering Science, 2001, 56(4): 1639-1645. |
20 | STAMS A J M. Enrichment of thermophilic propionate-oxidizing bacteria in syntrophy with methanobacterium thermoautotrophicum or methanobacterium thermoformicicum[J]. Applied and Environmental Microbiology, 1992, 58(1): 346-352. |
21 | HOUTEN R T VAN, YUN S Y, LETTINGA G. Thermophilic sulphate and sulphite reduction in lab-scale gas-lift reactors using H2 and CO2 as energy and carbon source[J]. Biotechnology and Bioengineering, 1997, 55(5): 807-814. |
22 | 周兴求, 伍健东, 阮君. SO42-对厌氧折流板反应器中颗粒污泥性能的影响[J]. 安全与环境学报, 2008, 8(3): 74-77. |
ZHOU Xingqiu, WU Jiandong, RUAN Jun. Effect of SO42- on the performance of granular sludge in anaerobic baffled reactor[J]. Journal of Safety and Environment, 2008, 8(3): 74-77. | |
23 | 徐慧纬, 张旭, 杨姗姗, 等. 电场条件下的硫酸盐还原效应及pH/ORP响应 [J]. 清华大学学报(自然科学版), 2009, 49(9): 1520-1523. |
XU Huiwei, ZHANG Xu, YANG Shanshan, et al. Sulfate reduction stimulated by an electric field and its correlation with pH and the ORP [J]. J. Tsinghua Univ. (Sci. & Tech.), 2009, 49(9: 1520-1523. | |
24 | CHANG Y J, CHANG Y T, HUNG C H, et al. Microbial community analysis of anaerobic bio-corrosion in different ORP profiles[J]. International Biodeterioration & Biodegradation, 2014, 95: 93-101. |
25 | 谢柄柯, 张玉, 王晓伟, 等. 菌株Desulfovibriosp. CMX的DNRA性能和影响因素[J]. 环境科学, 2016, 37(10): 3955-3962. |
XIE Bingke, ZHANG Yu, WANG Xiaowei, et al. Performance and influencing factors of dissimilatory nitrate reduction to ammonium process by the strain Desulfovibrio sp.CMX [J]. Environmental Science, 2016, 37(10): 3955-3962. | |
26 | 任南琪, 王爱杰, 甄卫东. 厌氧处理构筑物中SRB的生态学 [J]. 哈尔滨建筑大学学报, 2001, 34(1): 39-44. |
REN Nanqi, WANG Aijie, ZHEN Weidong. Ecology of SRB in anaerobic bio-treatment reactor[J]. Journal of Harbin University of Civil Engineering and Architecture, 2001, 34(1): 39-44. | |
27 | 徐鑫. 硫酸盐还原菌协同降解丙酸效果研究[D]. 上海: 华东理工大学, 2015. |
XU Xin. Synergistic degradation of propionic acid by sulfate-reducing bacteria in UASB[D]. Shanghai: East China University of Science and Technology, 2015. | |
28 | BLADES A T, KEBARLE P. Study of the stability and hydration of doubly charged ions in the gas phase: SO42-, S2O62-, S2O82-, and some related species[J]. Journal of the American Chemical Society, 1994, 116(23): 10761-10766. |
29 | 姚琪, 黄建洪, 杨磊, 等. 硫酸盐生物还原过程中涉硫组分代谢特性[J]. 环境工程学报, 2018, 12(10): 73-80. |
YAO Qi, HUANG Jianhong, YANG Lei, et al. Characteristic of metabolism for sulfur-containing components during sulfate bioreduction process[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2783-2790. | |
30 | SOUSA J A B, BIJMANS M F M, STAMS A J M, et al. Thiosulfate conversion to sulfide by a haloalkaliphilic microbial community in a bioreactor fed with H2 gas[J]. Environmental Science & Technology, 2017, 51(2): 914-923. |
31 | BOSCH P L F VAN DEN, SOROKIN D Y, BUISMAN C J N, et al. The effect of pH on thiosulfate formation in a biotechnological process for the removal of hydrogen sulfide from gas streams[J]. Environmental Science & Technology, 2008, 42(7): 2637-2642. |
32 | SOUSA J A B, PLUGGE C M, STAMS A J M, et al. Sulfate reduction in a hydrogen fed bioreactor operated at haloalkaline conditions[J]. Water Research, 2015, 68: 67-76. |
33 | HOUTEN R T VAN, SPOEL H VAN DER, AELST A C VAN, et al. Biological sulfate reduction using synthesis gas as energy and carbon source[J]. Biotechnology and Bioengineering, 1996, 50(2): 136-144. |
34 | AYALA-PARRA P, SIERRA-ALVAREZ R, FIELD J A. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron[J]. Journal of Hazardous Materials, 2016, 308(5/6): 97-105. |
35 | BARRERA C E. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction[J]. Journal of Hazardous Materials, 2012, 223/224(2): 1-12. |
36 | CHEN T, YAN B, LEI C, et al. Pollution control and metal resource recovery for acid mine drainage[J]. Hydrometallurgy, 2014, 147/148: 112-119. |
37 | SIMATE G S, NDLOVU S. Acid mine drainage: challenges and opportunities[J]. Journal of Environmental Chemical Engineering, 2014, 2(3): 1785-1803. |
38 | HOUTEN R T VAN, AELST A C V, LETTINGA G. Aggregation of sulphate-reducing bacteria and homo-acetogenic bacteria in a lab-scale gas-lift reactor[J]. Water Science & Technology, 1995, 32(8): 85-90. |
39 | BRIOUKHANOV A L, DURAND M C, DOLLA A, et al. Response of Desulfovibrio vulgaris hildenborough to hydrogen peroxide: enzymatic and transcriptional analyses[J]. Fems Microbiology Letters, 2010, 310(2): 175-181. |
40 | EVANS M C, BUHANAN B B, ARNON D I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium [J]. Proceedings of the National Academy of Sciences, 1966, 55(4): 928-934. |
41 | LJUNGDAHL L G. A life with acetogens, thermophiles, and cellulolytic aanaerobes[J]. Annual Review of Microbiology, 2009, 63(1): 1-25. |
42 | DRAKE H L, GÖSSNER A S, DANIEL S L. Old acetogens, new light[J]. Annals of the New York Academy of Sciences, 2010, 1125(1): 100-128. |
43 | ODOM J M, PECK H D. Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp[J]. FEMS Microbiology Letters, 2006, 12(1): 47-50. |
44 | 余琼. 一株产低温脂肪酶假单胞菌的筛选及产酶条件的优化[D]. 武汉: 华中农业大学, 2006. |
YU Qiong. Screening of a low-temperature lipase-producing pseudomonas sp. strain and culture condition optimization for producing the low-temperature lipase[D]. Wuhan: Huazhong Agricultural University, 2006. | |
45 | 裴振洪, 李昌涛, 王加宁, 等. 柠檬酸废水IC反应器厌氧颗粒污泥真细菌结构分析[J]. 生物技术, 2012, 22(6): 60-64. |
PEI Zhenhong, LI Changtao, WANG Jianing, et al. Eubacteria community analysis in anaerobic granular sludge from internal circulation anaerobic reactor of citric acid industrial wastewater[J]. Biotechnology, 2012, 22(6): 60-64. | |
46 | MEULEPAS R J W, STAMS A J M, LENS P N L. Biotechnological aspects of sulfate reduction with methane as electron donor[J]. Reviews in Environmental Science and Bio-Technology, 2010, 9(1): 59-78. |
[1] | 孙崇正, 樊欣, 李玉星, 许洁, 韩辉, 刘亮. 海上多孔介质通道内氢气换热与正仲氢转化的耦合特性[J]. 化工进展, 2023, 42(3): 1281-1290. |
[2] | 王大为, 毕春梦, 秦永丽, 蒋永荣, 谢华宾, 毛宇昆, 苗雪岩. 硫酸盐还原活性污泥矿化固定酸性矿山废水中的镉[J]. 化工进展, 2023, 42(10): 5509-5519. |
[3] | 陈波, 刘爱贤, 孙强, 王逸伟, 郭绪强, 杨庆伟, 龙有, 肖树萌, 马绍坤. 柴油加氢尾气中氢气的水合物法回收工业侧线试验[J]. 化工进展, 2022, 41(6): 2924-2930. |
[4] | 朱庆山. 超低碳炼铁技术路径分析[J]. 化工进展, 2022, 41(3): 1391-1398. |
[5] | 高逸飞, 易群, 齐凯, 高丽丽, 李雪莲. MOFs基膜材料的研究现状及其在H2/CH4分离中的应用[J]. 化工进展, 2022, 41(12): 6395-6407. |
[6] | 苏洋, 罗振敏, 王涛. CO2/海泡石抑爆剂对氢气/甲烷爆炸特性参数的影响[J]. 化工进展, 2022, 41(11): 5731-5736. |
[7] | 闻倩敏, 秦永丽, 郑君健, 韦巧艳, 张媛媛, 蒋永荣. 硫酸盐还原菌法固定酸性矿山废水中重金属的研究进展[J]. 化工进展, 2022, 41(10): 5578-5587. |
[8] | 陈露蕊, 曹利锋. 温度对厌氧耗氢产甲烷的影响研究进展[J]. 化工进展, 2021, 40(S1): 326-333. |
[9] | 何广利, 窦美玲. 氢气中杂质对车用燃料电池性能影响的研究进展[J]. 化工进展, 2021, 40(9): 4815-4822. |
[10] | 周宁, 徐莹莹, 陈兵, 李雪, 乔世伟, 袁雄军, 刘俊, 黄维秋, 赵会军. 泄爆条件对预混H2/空气燃爆特性影响的数值模拟[J]. 化工进展, 2021, 40(7): 3656-3663. |
[11] | 刘艳, 年佩, 张轩, 黄锐, 王政, 姜男哲. Langmuir-Blodgett法制备高H2选择性取向ZSM-5分子筛分离膜[J]. 化工进展, 2021, 40(4): 2243-2250. |
[12] | 徐聪, 徐广通, 宗保宁, 谢在库. 氢燃料电池汽车用氢气中痕量杂质分析技术进展[J]. 化工进展, 2021, 40(2): 688-702. |
[13] | 韩儒松, 蒋迎花, 康丽霞, 刘永忠. 风力发电制氢与氢气网络耦合系统的氢气波动平抑特性分析[J]. 化工进展, 2021, 40(11): 6071-6078. |
[14] | 王治斌, 孙来芝, 陈雷, 杨双霞, 谢新苹, 赵保峰, 司洪宇, 华栋梁. 生物油水蒸气催化重整制氢研究进展[J]. 化工进展, 2021, 40(1): 151-163. |
[15] | 王学科, 沈义伟, 赵洪滨, 曹岭, 陈山, 贾彩, 谢晓峰. 旋涡式氢气循环泵的设计及性能分析[J]. 化工进展, 2020, 39(S2): 89-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |