化工进展 ›› 2021, Vol. 40 ›› Issue (1): 151-163.DOI: 10.16085/j.issn.1000-6613.2020-0564
王治斌1(), 孙来芝1,2(), 陈雷1,2, 杨双霞1,2, 谢新苹1,2, 赵保峰1,2, 司洪宇1,2, 华栋梁1,2()
收稿日期:
2020-04-09
出版日期:
2021-01-05
发布日期:
2021-01-12
通讯作者:
孙来芝,华栋梁
作者简介:
王治斌(1997—),男,硕士研究生,研究方向为生物油水蒸气催化重整制氢。E-mail:基金资助:
Zhibin WANG1(), Laizhi SUN1,2(), Lei CHEN1,2, Shuangxia YANG1,2, Xinping XIE1,2, Baofeng ZHAO1,2, Hongyu SI1,2, Dongliang HUA1,2()
Received:
2020-04-09
Online:
2021-01-05
Published:
2021-01-12
Contact:
Laizhi SUN,Dongliang HUA
摘要:
氢气作为重要的清洁能源和化工原料,目前主要来源于化石燃料,而生物质经快速热解制得生物油用于水蒸气催化重整制氢被认为是一种高效、环保、经济的可再生能源制氢途径。本文首先综述了近年来生物油水蒸气催化重整制氢相关反应原料;然后重点讨论了生物油水蒸气催化重整反应催化剂研究近况;总结了生物油水蒸气重整反应机理与动力学分析;最后列举了重整反应器等方面的研究进展。相比于生物油,生物油模型化合物因结构简单、转化率与氢气收率高,得到广泛研究;以Ni为代表的活性金属组分催化活性高,金属间协同作用强;不同类型的载体可增强催化剂的稳定性,碱性载体还可吸收CO2、提高催化剂抗积炭、防烧结等方面的性能;不同结构的反应器在性能方面表现各异,主要以固定床反应器为主。研制高活性、稳定性强的催化剂,提高重整反应的循环稳定性,并总结最符合动力学规律的反应机理,以及研发高效的反应器是今后生物油水蒸气催化重整制氢研究的重点。
中图分类号:
王治斌, 孙来芝, 陈雷, 杨双霞, 谢新苹, 赵保峰, 司洪宇, 华栋梁. 生物油水蒸气催化重整制氢研究进展[J]. 化工进展, 2021, 40(1): 151-163.
Zhibin WANG, Laizhi SUN, Lei CHEN, Shuangxia YANG, Xinping XIE, Baofeng ZHAO, Hongyu SI, Dongliang HUA. Progress in hydrogen production by steam catalytic reforming of bio-oil[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 151-163.
1 | 蓝平, 许庆利, 吴层, 等.生物质快速裂解油水蒸气催化重整制氢研究进展[J]. 化工进展, 2009, 28(10): 1719-1727,1737. |
LAN P, XU Q L, WU C, et al. Research progress of hydrogen production by steam reforming of biomass pyrolysis oil[J]. Chemical Industry and Engineering Progress, 2009, 28(10): 1719-1727, 1737. | |
2 | SCHULLER G, VÁZQUEZ F V, WAIBLINGER W, et al. Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer[J]. J. Power Sources, 2017, 347: 47-56. |
3 | BIČÁKOVÁ O, STRAKA P. Production of hydrogen from renewable resources and its effectiveness[J]. Int. J. Hydrogen Energy, 2012, 37(16): 11563-11578. |
4 | PARTHASARATHY P, NARAYANAN K S. Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield: a review[J]. Renewable Energy, 2014, 66: 570-579. |
5 | 罗俊,邵敬爱,杨海平, 等. 生物质催化热解制备低碳烯烃的研究进展[J]. 化工进展, 2017, 36(5): 1555-1564. |
LUO J, SHAO J A, YANG H P, et al. Advances in the preparation of low carbon olefin by catalytic pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1555-1564. | |
6 | LI S, ZHENG H S, ZHENG Y J, et al. Recent advances in hydrogen production by thermo-catalytic conversion of biomass[J]. Int. J. Hydrogen Energy, 2019, 44(28): 14266-14278. |
7 | NABGAN W, TUAN ABDULLAH T A, MAT R, et al. Renewable hydrogen production from bio-oil derivative via catalytic steam reforming: an overview[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 347-357. |
8 | SETIABUDI H D, AZIZ M A A, ABDULLAH S, et al. Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: a review[J]. Int. J. Hydrogen Energy, 2020, 45(36): 18376-18397. |
9 | 谢建军, 阴秀丽, 黄艳琴, 等. 生物油水溶性组分重整制氢研究进展及关键问题分析[J]. 石油学报(石油加工), 2011, 27(5): 829-838. |
XIE J J, YIN X L, HUANG Y Q, et al. Overview on hydrogen production by upgrading of water soluble fractions in bio-oil[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2011, 27(5): 829-838. | |
10 | CHEN T J, WU C, LIU R H. Steam reforming of bio-oil from rice husks fast pyrolysis for hydrogen production[J]. Bioresour. Technol., 2011, 102(19): 9236-9240. |
11 | XIE H Q, YU Q B, ZUO Z L, et al. Hydrogen production via sorption-enhanced catalytic steam reforming of bio-oil[J]. Int. J. Hydrogen Energy, 2016, 41(4): 2345-2353. |
12 | FU P, YI W M, LI Z H, et al. Investigation on hydrogen production by catalytic steam reforming of maize stalk fast pyrolysis bio-oil[J]. Int. J. Hydrogen Energy, 2014, 39(26): 13962-13971. |
13 | GAO N B, HAN Y, QUAN C, et al. Promoting hydrogen-rich syngas production from catalytic reforming of biomass pyrolysis oil on nanosized nickel-ceramic catalysts[J]. Appl. Therm. Eng., 2017, 125: 297-305. |
14 | SORIA M A, BARROS D, MADEIRA L M. Hydrogen production through steam reforming of bio-oils derived from biomass pyrolysis: thermodynamic analysis including in situ CO2 and/or H2 separation[J]. Fuel, 2019, 244: 184-195. |
15 | ÖZKAN G, ŞAHBUDAK B, ÖZKAN G. Effect of molar ratio of water/ ethanol on hydrogen selectivity in catalytic production of hydrogen using steam reforming of ethanol[J]. Int. J. Hydrogen Energy, 2019, 44(20): 9823-9829. |
16 | WANG Y S, WANG C S, CHEN M Q, et al. Hydrogen production from steam reforming ethanol over Ni/attapulgite catalysts—Part Ⅰ: Effect of nickel content[J]. Fuel Process Technol., 2019, 192: 227-238. |
17 | WANG S R, CAI Q J, ZHANG F, et al. Hydrogen production via catalytic reforming of the bio-oil model compounds: acetic acid, phenol and hydroxyacetone[J]. Int. J. Hydrogen Energy, 2014, 39(32): 18675-18687. |
18 | ESTEBAN-DÍEZ G, GIL M V, PEVIDA C, et al. Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds[J]. Applied Energy, 2016, 177: 579-590. |
19 | CHEN M Q, WANG C S, WANG Y S, et al. Hydrogen production from ethanol steam reforming: effect of Ce content on catalytic performance of Co/Sepiolite catalyst[J]. Fuel, 2019, 247: 344-355. |
20 | CHEN G Y, TAO J Y, LIU C X, et al. Hydrogen production via acetic acid steam reforming: a critical review on catalysts[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1091-1098. |
21 | 张方柏. 生物质油催化重整制氢用镍基催化剂研究[D]. 成都: 成都理工大学, 2014. |
ZHANG F B. Catalytic reforming of bio-oil for hydrogen production over Ni-based catalysts[D]. Chengdu: Chengdu University of Technology, 2014. | |
22 | ZHANG L J, HU X, HU K, et al. Progress in the reforming of bio-oil derived carboxylic acids for hydrogen generation[J]. J. Power Sources, 2018, 403: 137-156. |
23 | HOU T F, ZHANG S Y, CHEN Y D, et al. Hydrogen production from ethanol reforming: catalysts and reaction mechanism[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 132-148. |
24 | XING R, DAGLE V L, FLAKE M, et al. Steam reforming of fast pyrolysis-derived aqueous phase oxygenates over Co, Ni, and Rh metals supported on MgAl2O4[J]. Catal. Today, 2016, 269: 166-174. |
25 | GIL M V, FERMOSO J, PEVIDA C, et al. Production of fuel-cell grade H2 by sorption enhanced steam reforming of acetic acid as a model compound of biomass-derived bio-oil[J]. Applied Catalysis B: Environmental, 2016, 184: 64-76. |
26 | TIWARI R, SARKAR B, TIWARI R, et al. Pt nanoparticles with tuneable size supported on nanocrystalline ceria for the low temperature water-gas-shift (WGS) reaction[J]. J. Mol. Catal A: Chem., 2014, 395: 117-123. |
27 | TAKANABE K, K-I AIKA, SESHAN K, et al. Sustainable hydrogen from bio-oil: steam reforming of acetic acid as a model oxygenate[J]. J. Catal., 2004, 227(1): 101-108. |
28 | RUOCCO C, PALMA V, RICCA A. Hydrogen production by oxidative reforming of ethanol in a fluidized bed reactor using a PtNi/CeO2SiO2 catalyst[J]. Int. J. Hydrogen Energy, 2019, 44(25): 12661-12670. |
29 | PASTOR-PEREZ L, RAMIREZ REINA T, IVANOVA S, et al. Ni-CeO2/C catalysts with enhanced OSC for the WGS reaction[J]. Catalysts, 2015, 5(1): 298-309. |
30 | HU X, LU G X. Comparative study of alumina-supported transition metal catalysts for hydrogen generation by steam reforming of acetic acid[J]. Applied Catalysis B: Environmental, 2010, 99(1): 289-297. |
31 | MEI Y F, WU C, LIU R. Hydrogen production from steam reforming of bio-oil model compound and byproducts elimination[J]. Int. J. Hydrogen Energy, 2016, 41(21): 9145-9152. |
32 | XIE H Q, YU Q B, YAO X, et al. Hydrogen production via steam reforming of bio-oil model compounds over supported nickel catalysts[J]. J. Energy Chem., 2015, 24(3): 299-308. |
33 | 刘启聪, 何立模, 邓增通, 等. Fe/生物质焦预重整在Ni基催化重整生物油中的作用[J]. 化工进展, 2018, 37(11): 4273-4279. |
LIU Q C, HE L M, DENG Z T, et al. Effect of Fe/bio-char pre-reforming on Ni-based catalytic reforming of bio-oil[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4273-4279. | |
34 | 杨泽, 李挺, 王美君, 等. Ni基生物质焦油重整催化剂的研究进展[J].化工进展, 2016, 35(10): 3155-3163. |
YANG Z, LI T, WANG M J, et al. Research progress on Ni-based catalyst for tar reforming in biomass gasification[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3155-3163. | |
35 | LIU C L, LI S, CHEN D, et al. Hydrogen-rich syngas production by chemical looping steam reforming of acetic acid as bio-oil model compound over Fe-doped LaNiO3 oxygen carriers[J]. Int. J. Hydrogen Energy, 2019, 44(33): 17732-17741. |
36 | WANG S R, ZHANG F, CAI Q J, et al. Steam reforming of acetic acid over coal ash supported Fe and Ni catalysts[J]. Int. J. Hydrogen Energy, 2015, 40(35): 11406-11413. |
37 | ZHANG C T, HU X, ZHANG Z M, et al. Steam reforming of acetic acid over Ni/Al2O3 catalyst: correlation of calcination temperature with the interaction of nickel and alumina[J]. Fuel, 2018, 227: 307-324. |
38 | ITALIANO C, BIZKARRA K, BARRIO V L, et al. Renewable hydrogen production via steam reforming of simulated bio-oil over Ni-based catalysts[J]. Int. J. Hydrogen Energy, 2019, 44(29): 14671-14682. |
39 | ZHANG F B, WANG N, YANG L, et al. Ni-Co bimetallic MgO-based catalysts for hydrogen production via steam reforming of acetic acid from bio-oil[J]. Int. J. Hydrogen Energy, 2014, 39(32): 18688-18694. |
40 | SEO J G, YOUN M H, SONG I K. Hydrogen production by steam reforming of LNG over Ni/Al2O3-ZrO2 catalysts: effect of Al2O3-ZrO2 supports prepared by a grafting method[J]. J. Mol. Catal. A: Chem., 2007, 268(1): 9-14. |
41 | SANTAMARIA L, ARREGI A, ALVAREZ J, et al. Performance of a Ni/ZrO2 catalyst in the steam reforming of the volatiles derived from biomass pyrolysis[J]. J. Anal. Appl. Pyrolysis, 2018, 136: 222-231. |
42 | ZHENG X X, YAN C F, HU R R, et al. Hydrogen from acetic acid as the model compound of biomass fast-pyralysis oil over Ni catalyst supported on ceria-zirconia[J]. Int. J. Hydrogen Energy, 2012, 37(17): 12987-12993. |
43 | LI Z K, HU X, ZHANG L J, et al. Renewable hydrogen production by a mild-temperature steam reforming of the model compound acetic acid derived from bio-oil[J]. J. Mol. Catal. A: Chem., 2012, 355: 123-133. |
44 | NABGAN W, ABDULLAH T A T, MAT R, et al. Production of hydrogen via steam reforming of acetic acid over Ni and Co supported on La2O3 catalyst[J]. Int. J. Hydrogen Energy, 2017, 42(14): 8975-8985. |
45 | CHEN M Q, LI X J, WANG Y S, et al. Hydrogen generation by steam reforming of tar model compounds using lanthanum modified Ni/sepiolite catalysts[J]. Energy Convers Manage, 2019, 184: 315-326. |
46 | XU T T, XIAO B, GLADSON MOYO G, et al. Syngas production via chemical looping reforming biomass pyrolysis oil using NiO/dolomite as oxygen carrier, catalyst or sorbent[J]. Energy Convers Manage, 2019, 198: 111835. |
47 | CHEN M Q, WANG C S, WANG Y S, et al. Hydrogen production from ethanol steam reforming: effect of Ce content on catalytic performance of Co/Sepiolite catalyst[J]. Fuel, 2019, 247: 344-355. |
48 | BASU S, PRADHAN N C. Steam reforming of acetone over NiCoMgAl mixed oxide catalysts obtained from hydrotalcite precursors[J]. Int. J. Hydrogen Energy, 2020, 45(36): 18133-18143. |
49 | QUAN C, XU S P, ZHOU C C. Steam reforming of bio-oil from coconut shell pyrolysis over Fe/olivine catalyst[J]. Energy Convers Manage, 2017, 141: 40-47. |
50 | 翁洪康, 闫常峰, 胡蓉蓉, 等. 生物油制氢中CO2吸收剂改性研究[J]. 太阳能学报, 2011, 32(11): 1692-1697. |
WENG H K, YAN C F, HU R R, et al. The modifying of carbon dioxide sorbents in hydrogen production from bio-oil[J]. Acta Energiae Solaris Sinica, 2011, 32(11): 1692-1697. | |
51 | COMAS J, LABORDE M, AMADEO N. Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent[J]. J. Power Sources, 2004, 138(1): 61-67. |
52 | VALLE B, GARCíA-GóMEZ N, REMIRO A, et al. Dual catalyst-sorbent role of dolomite in the steam reforming of raw bio-oil for producing H2-rich syngas[J]. Fuel Process Technol., 2020, 200: 106316. |
53 | NICHELE V, SIGNORETTO M, PINNA F, et al. Ni/ZrO2 catalysts in ethanol steam reforming: inhibition of coke formation by CaO-doping[J]. Applied Catalysis B: Environmental, 2014, 150/151: 12-20. |
54 | XIE H Q, YU Q B, ZUO Z L, et al. Hydrogen production via sorption-enhanced catalytic steam reforming of bio-oil[J]. Int. J. Hydrogen Energy, 2016, 41(4): 2345-2353. |
55 | ESTEBAN-DÍEZ G, GIL M V, PEVIDA C, et al. Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds[J]. Appl. Energ., 2016, 177: 579-590. |
56 | HARRISON D P. Calcium enhanced hydrogen production with CO2 capture[J]. Energy Procedia, 2009, 1(1): 675-681. |
57 | DANG C X, WU S J, YANG G X, et al. Hydrogen production from sorption-enhanced steam reforming of phenol over a Ni-Ca-Al-O bifunctional catalyst[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7111-7120. |
58 | ZHAO X Y, XUE Y P, YAN C F, et al. Sorbent assisted catalyst of Ni-CaO-La2O3 for sorption enhanced steam reforming of bio-oil with acetic acid as the model compound[J]. Chemical Engineering and Processing: Process Intensification, 2017, 119: 106-112. |
59 | VAZQUEZ THYSSEN V, MOREIRA ASSAF E. Ni/CaO-SiO2 catalysts for assessment in steam reforming reaction of acetol[J]. Fuel, 2019, 254: 115592. |
60 | HU R R, LI D P, XUE H Y, et al. Hydrogen production by sorption-enhanced steam reforming of acetic acid over Ni/CexZr1-xO2-CaO catalysts[J]. Int. J. Hydrogen Energy, 2017, 42(12): 7786-7797. |
61 | VALLE B, ARAMBURU B, OLAZAR M, et al. Steam reforming of raw bio-oil over Ni/La2O3-αAl2O3: influence of temperature on product yields and catalyst deactivation[J]. Fuel, 2018, 216: 463-474. |
62 | QUAN C, GAO N B, WANG H H, et al. Ethanol steam reforming on Ni/CaO catalysts for coproduction of hydrogen and carbon nanotubes[J]. Int. J. Energy Res., 2019, 43(3): 1255-1271. |
63 | IWASA N, YAMANE T, TAKEI M, et al. Hydrogen production by steam reforming of acetic acid: comparison of conventional supported metal catalysts and metal-incorporated mesoporous smectite-like catalysts[J]. Int. J. Hydrogen Energy, 2010, 35(1): 110-117. |
64 | AN L, DONG C Q, YANG Y P, et al. The influence of Ni loading on coke formation in steam reforming of acetic acid[J]. Renewable Energy, 2011, 36(3): 930-935. |
65 | SEHESTED J, LARSEN N W, FALSIG H, et al. Sintering of nickel steam reforming catalysts: effective mass diffusion constant for Ni-OH at nickel surfaces[J]. Catal. Today, 2014, 228: 22-31. |
66 | ARGYLE M D, BARTHOLOMEW C H. Heterogeneous catalyst deactivation and regeneration: a review[J]. Catalysts, 2015, 5(1): 145-269. |
67 | SEHESTED J, GELTEN J A P, HELVEG S. Sintering of nickel catalysts: effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants[J]. Applied Catalysis A: General, 2006, 309(2): 237-246. |
68 | OCHOA A, ARREGI A, AMUTIO M, et al. Coking and sintering progress of a Ni supported catalyst in the steam reforming of biomass pyrolysis volatiles[J]. Applied Catalysis B: Environmental, 2018, 233: 289-300. |
69 | ZHANG Z M, WANG Y R, SUN K, et al. Steam reforming of acetic acid over Ni-Ba/Al2O3 catalysts: impacts of barium addition on coking behaviors and formation of reaction intermediates[J]. J. Energy Chem., 2020, 43: 208-219. |
70 | WANG F G, LI Y, CAI W J, et al. Ethanol steam reforming over Ni and Ni-Cu catalysts[J]. Catal. Today, 2009, 146(1): 31-36. |
71 | MORALES-CANO F, LUNDEGAARD L F, TIRUVALAM R R, et al. Improving the sintering resistance of Ni/Al2O3 steam-reforming catalysts by promotion with noble metals[J]. Applied Catalysis A: General, 2015, 498: 117-125. |
72 | XIE J X, GALVIS H M T, KOEKEN A C J, et al. Size and promoter effects on stability of carbon-nanofiber-supported iron-based Fischer-Tropsch catalysts[J]. ACS Catalysis, 2016, 6(6): 4017-4024. |
73 | LI X B, XUE L J, ZHU Y Y, et al. Mechanistic study of bio-oil catalytic steam reforming for hydrogen production: acetic acid decomposition[J]. Int. J. Hydrogen Energy, 2018, 43(29): 13212-13224. |
74 | RAN Y X, DU Z Y, GUO Y P, et al. Density functional theory study of acetic acid steam reforming on Ni(111)[J]. Appl. Surf. Sci., 2017, 400: 97-109. |
75 | BOSSOLA F, RECCHIA S, SANTO V D. Catalytic steam reforming of acetic acid: latest advances in catalysts development and mechanism elucidation[J]. Current Catalysis, 2018, 7(2): 89-98. |
76 | WANG S R, GUO W W, GUO L, et al. Experimental and subsequent mechanism research on the steam reforming of ethanol over a Ni/CeO2 catalyst[J]. International Journal of Green Energy, 2015, 12(7): 694-701. |
77 | WANG M J, ZHANG F, WANG S R. Effect of La2O3 replacement on γ-Al2O3 supported nickel catalysts for acetic acid steam reforming[J]. Int. J. Hydrogen Energy, 2017, 42(32): 20540-20548. |
78 | MEDRANO J A, OLIVA M, RUIZ J, et al. Catalytic steam reforming of model compounds of biomass pyrolysis liquids in fluidized bed reactor with modified Ni/Al catalysts[J]. J. Anal. Appl. Pyrolysis., 2009, 85(1): 214-225. |
79 | LATIFI M, BERRUTI F, BRIENS C. Non-catalytic and catalytic steam reforming of a bio-oil model compound in a novel “Jiggle Bed” reactor[J]. Fuel, 2014, 129: 278-291. |
80 | BASILE A, GALLUCCI F, IULIANELLI A, et al. Acetic acid steam reforming in a Pd-Ag membrane reactor: the effect of the catalytic bed pattern[J]. J. Membr. Sci., 2008, 311(1): 46-52. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[8] | 汪鹏, 张洋, 范兵强, 何登波, 申长帅, 张贺东, 郑诗礼, 邹兴. 高碳铬铁盐酸浸出过程工艺及动力学[J]. 化工进展, 2023, 42(S1): 510-517. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 刘阳, 王云刚, 修浩然, 邹立, 白彦渊. 基于动力学分析的核桃壳最佳炭化工艺[J]. 化工进展, 2023, 42(S1): 94-103. |
[11] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[12] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[13] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[14] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[15] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |