化工进展 ›› 2020, Vol. 39 ›› Issue (2): 738-746.DOI: 10.16085/j.issn.1000-6613.2019-0726
王哲1(),骆逸飞1,郑春丽1(
),张雪峰2,王维大1,姜庆宏1
收稿日期:
2019-05-06
出版日期:
2020-02-05
发布日期:
2020-03-12
通讯作者:
郑春丽
作者简介:
王哲(1979—),女,博士,副教授,研究方向为矿区污染土壤修复。E-mail:基金资助:
Zhe WANG1(),Yifei LUO1,Chunli ZHENG1(
),Xuefeng ZHANG2,Weida WANG1,Qinghong JIANG1
Received:
2019-05-06
Online:
2020-02-05
Published:
2020-03-12
Contact:
Chunli ZHENG
摘要:
以玉米秸秆为原料在450℃下制备生物炭,将生物炭按5%的炭土比例施入矿区重金属污染土壤中。通过室内土柱淋溶试验,分析加入生物炭对土壤淋出液pH、重金属纵向迁移行为及重金属累积释放量的影响。结果表明:加入生物炭处理后土壤淋出液的pH显著高于对照处理,说明生物炭可以在一定程度上缓解土壤的酸性。与对照相比,添加生物炭降低了重金属向下层土壤迁移的风险,淋溶后土柱中Pb、Cu、Zn和Mn的纵向迁移量分别降低了65.93%、50.95%、49.29%和30.95%,生物炭对土壤中重金属纵向迁移抑制的顺序为Pb>Cu>Zn>Mn,生物炭对Pb的钝化效果最好。随着淋溶液体积的增加,Pb、Cu、Zn和Mn这4种重金属的淋溶累积释放量总体上呈现出前期快速溶出和后期缓慢溶出两个明显的阶段。4种重金属的累积释放量大小为Pb>Mn>Zn>Cu,添加生物炭后明显降低了重金属的累积释放量。对土壤中金属释放过程进行数学方程拟合后发现,应用Elovich方程能较好地描述重金属释放过程,说明这4种重金属元素在土壤中的淋溶和释放过程的机制不是单一反应过程,而是属于活化能变化较大的复杂反应过程。加入生物炭后各重金属的b值均低于对照组,重金属迁移速率随着生物炭的添加而降低,说明生物炭能提高土壤对重金属离子的吸附力,降低因土壤淋溶作用而引起的重金属迁移,可以实现对重金属复合污染矿区土壤的修复。
中图分类号:
王哲,骆逸飞,郑春丽,张雪峰,王维大,姜庆宏. 淋溶条件下生物炭对矿区土壤中重金属迁移的影响[J]. 化工进展, 2020, 39(2): 738-746.
Zhe WANG,Yifei LUO,Chunli ZHENG,Xuefeng ZHANG,Weida WANG,Qinghong JIANG. Effect of biochar on migration of heavy metals in mining soil under leaching conditions[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 738-746.
形态 | Cu元素各形态的质量分数/% | Zn元素各形态的质量分数/% | Pb元素各形态的质量分数/% | Mn元素各形态的质量分数/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rc=0 | rc=1 | rc=3 | rc=5 | rc=0 | rc=1 | rc=3 | rc=5 | rc=0 | rc=1 | rc=3 | rc=5 | rc=0 | rc=1 | rc=3 | rc=5 | |
酸可提取态 | 17.43 | 14.23 | 8.77 | 5.78 | 24.43 | 21.23 | 18.02 | 15.10 | 28.57 | 25.78 | 21.99 | 16.81 | 9.52 | 7.23 | 5.02 | 2.81 |
可还原态 | 13.08 | 13.95 | 14.83 | 16.71 | 27.00 | 20.13 | 25.45 | 31.68 | 37.14 | 28.78 | 24.32 | 18.08 | 54.20 | 52.13 | 48.45 | 45.68 |
可氧化态 | 49.32 | 47.91 | 45.62 | 43.69 | 10.61 | 17.17 | 10.38 | 6.14 | 26.43 | 27.54 | 28.16 | 28.74 | 1.27 | 2.52 | 3.80 | 7.67 |
残渣态 | 20.17 | 23.91 | 30.78 | 33.82 | 37.96 | 41.47 | 46.15 | 47.08 | 7.86 | 17.90 | 25.53 | 36.37 | 35.01 | 38.12 | 42.73 | 43.84 |
表1 土壤中重金属各形态含量
形态 | Cu元素各形态的质量分数/% | Zn元素各形态的质量分数/% | Pb元素各形态的质量分数/% | Mn元素各形态的质量分数/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rc=0 | rc=1 | rc=3 | rc=5 | rc=0 | rc=1 | rc=3 | rc=5 | rc=0 | rc=1 | rc=3 | rc=5 | rc=0 | rc=1 | rc=3 | rc=5 | |
酸可提取态 | 17.43 | 14.23 | 8.77 | 5.78 | 24.43 | 21.23 | 18.02 | 15.10 | 28.57 | 25.78 | 21.99 | 16.81 | 9.52 | 7.23 | 5.02 | 2.81 |
可还原态 | 13.08 | 13.95 | 14.83 | 16.71 | 27.00 | 20.13 | 25.45 | 31.68 | 37.14 | 28.78 | 24.32 | 18.08 | 54.20 | 52.13 | 48.45 | 45.68 |
可氧化态 | 49.32 | 47.91 | 45.62 | 43.69 | 10.61 | 17.17 | 10.38 | 6.14 | 26.43 | 27.54 | 28.16 | 28.74 | 1.27 | 2.52 | 3.80 | 7.67 |
残渣态 | 20.17 | 23.91 | 30.78 | 33.82 | 37.96 | 41.47 | 46.15 | 47.08 | 7.86 | 17.90 | 25.53 | 36.37 | 35.01 | 38.12 | 42.73 | 43.84 |
土壤层/cm | Pb/% | Cu/% | Zn/% | Mn/% | ||||
---|---|---|---|---|---|---|---|---|
CK | 5%生物炭 | CK | 5%生物炭 | CK | 5%生物炭 | CK | 5%生物炭 | |
0~5 | 42.40 | 48.49 | 46.66 | 48.79 | 44.46 | 46.38 | 48.81 | 49.65 |
5~10 | 42.14 | 46.23 | 45.97 | 47.59 | 42.78 | 47.13 | 46.97 | 47.43 |
10~15 | 8.89 | 3.37 | 5.31 | 2.64 | 7.53 | 4.38 | 2.37 | 1.89 |
15~20 | 6.55 | 1.89 | 2.05 | 0.97 | 5.21 | 2.08 | 1.83 | 1.01 |
表2 模拟降雨淋溶后各土层中重金属的分布
土壤层/cm | Pb/% | Cu/% | Zn/% | Mn/% | ||||
---|---|---|---|---|---|---|---|---|
CK | 5%生物炭 | CK | 5%生物炭 | CK | 5%生物炭 | CK | 5%生物炭 | |
0~5 | 42.40 | 48.49 | 46.66 | 48.79 | 44.46 | 46.38 | 48.81 | 49.65 |
5~10 | 42.14 | 46.23 | 45.97 | 47.59 | 42.78 | 47.13 | 46.97 | 47.43 |
10~15 | 8.89 | 3.37 | 5.31 | 2.64 | 7.53 | 4.38 | 2.37 | 1.89 |
15~20 | 6.55 | 1.89 | 2.05 | 0.97 | 5.21 | 2.08 | 1.83 | 1.01 |
重金属 | 土壤 | 一级动力学方程 | Elovich方程 | 双常数速率方程 | 抛物线扩散方程 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | a | b | R2 | a | b | R2 | ||
Pb | CK | 1.9949 | 0.0007 | 0.5770 | -13.0950 | 4.5055 | 0.9584 | -0.1395 | 0.4384 | 0.8875 | 3.8416 | 0.4209 | 0.8727 |
5%生物炭 | 0.8687 | 0.0003 | 0.4106 | -0.0322 | 0.5144 | 0.9619 | -0.1521 | 0.2047 | 0.7719 | 2.0064 | 0.0439 | 0.6164 | |
Cu | CK | 0.9154 | 0.0008 | 0.6603 | -6.8851 | 2.0499 | 0.9825 | -1.5290 | 0.5063 | 0.9552 | 0.7180 | 0.1956 | 0.9332 |
5%生物炭 | -0.2972 | 0.0005 | 0.5099 | -0.5501 | 0.2840 | 0.9510 | -1.8620 | 0.3201 | 0.8098 | 0.5259 | 0.0262 | 0.8440 | |
Zn | CK | 1.2705 | 0.0007 | 0.7125 | -6.6953 | 2.2190 | 0.9775 | -0.6922 | 0.4095 | 0.9714 | 1.5260 | 0.2121 | 0.9221 |
5%生物炭 | 0.0914 | 0.0004 | 0.3948 | -0.3527 | 0.3153 | 0.9545 | -1.2589 | 0.2705 | 0.7493 | 0.8895 | 0.0272 | 0.6626 | |
Mn | CK | 1.4150 | 0.0008 | 0.6734 | -10.3660 | 3.1600 | 0.9899 | -0.9105 | 0.4827 | 0.9544 | 1.3091 | 0.3033 | 0.9516 |
5%生物炭 | 0.5674 | 0.0003 | 0.6457 | -0.3448 | 0.4511 | 0.9835 | -0.4807 | 0.2170 | 0.9344 | 1.3592 | 0.0418 | 0.8814 |
表3 模拟降雨淋溶作用下土壤中金属释放动力学拟合结果
重金属 | 土壤 | 一级动力学方程 | Elovich方程 | 双常数速率方程 | 抛物线扩散方程 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | a | b | R2 | a | b | R2 | ||
Pb | CK | 1.9949 | 0.0007 | 0.5770 | -13.0950 | 4.5055 | 0.9584 | -0.1395 | 0.4384 | 0.8875 | 3.8416 | 0.4209 | 0.8727 |
5%生物炭 | 0.8687 | 0.0003 | 0.4106 | -0.0322 | 0.5144 | 0.9619 | -0.1521 | 0.2047 | 0.7719 | 2.0064 | 0.0439 | 0.6164 | |
Cu | CK | 0.9154 | 0.0008 | 0.6603 | -6.8851 | 2.0499 | 0.9825 | -1.5290 | 0.5063 | 0.9552 | 0.7180 | 0.1956 | 0.9332 |
5%生物炭 | -0.2972 | 0.0005 | 0.5099 | -0.5501 | 0.2840 | 0.9510 | -1.8620 | 0.3201 | 0.8098 | 0.5259 | 0.0262 | 0.8440 | |
Zn | CK | 1.2705 | 0.0007 | 0.7125 | -6.6953 | 2.2190 | 0.9775 | -0.6922 | 0.4095 | 0.9714 | 1.5260 | 0.2121 | 0.9221 |
5%生物炭 | 0.0914 | 0.0004 | 0.3948 | -0.3527 | 0.3153 | 0.9545 | -1.2589 | 0.2705 | 0.7493 | 0.8895 | 0.0272 | 0.6626 | |
Mn | CK | 1.4150 | 0.0008 | 0.6734 | -10.3660 | 3.1600 | 0.9899 | -0.9105 | 0.4827 | 0.9544 | 1.3091 | 0.3033 | 0.9516 |
5%生物炭 | 0.5674 | 0.0003 | 0.6457 | -0.3448 | 0.4511 | 0.9835 | -0.4807 | 0.2170 | 0.9344 | 1.3592 | 0.0418 | 0.8814 |
1 | DU Y, CHEN L, DING P, et al. Different exposure profile of heavy metal and health risk between residents near a Pb-Zn mine and a Mn mine in Huayuan county, South China[J]. Chemosphere, 2019, 216: 352-264. |
2 | CAI L M, XU Z C, QI J Y, et al. Assessment of exposure to heavy metals and health risks among residents near Tonglushan mine in Hubei, China[J]. Chemosphere, 2015, 127: 127-135. |
3 | KEXIN L I, LIANG T, WANG L, et al. Contamination and health risk assessment of heavy metals in road dust in Bayan Obo Mining Region in Inner Mongolia, North China[J]. Journal of Geographical Sciences, 2015, 25(12): 1439-1451. |
4 | XU C, TAYLOR R N, LI W, et al. Comparison of fluorite geochemistry from REE deposits in the Panxi region and Bayan Obo, China[J]. Journal of Asian Earth Sciences, 2012, 57(6): 76-89. |
5 | SONG B, ZENG G, GONG J, et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals[J]. Environment International, 2017, 105: 43-55. |
6 | KARACA O, CAMESELLE C, REDDY K R. Mine tailing disposal sites: contamination problems, remedial options and phytocaps for sustainable remediation[J]. Reviews in Environmental Science and Bio/Technology, 2017, 17: 205-228. |
7 | YIN D, WANG X, CHEN C, et al. Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil[J]. Chemosphere, 2016, 152: 196-206. |
8 | FANG S, TSANG D, ZHOU F, et al. Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar[J]. Chemosphere, 2016, 149: 263-271. |
9 | BEIYUAN J, AWAD Y, BECKERS F, et al. Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions[J]. Chemosphere, 2017, 178: 110-118. |
10 | PAZ-FERREIRO J, LU H, FU S, et al. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review[J]. Solid Earth Discussions, 2013, 5(2): 2155-2179. |
11 | NOVAK J M, BUSSCHER W J, LAIRD D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science, 2009, 174(2): 105-112. |
12 | BEESLEY L, MARMIROLI M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar[J]. Environmental Pollution, 2011, 159(2): 474-480. |
13 | KELLY C N, PELTZ C D, STANTON M, et al. Biochar application to hardrock mine tailings: soil quality, microbial activity, and toxic element sorption[J]. Applied Geochemistry, 2014, 43: 35-48. |
14 | 吴萍萍, 王家嘉, 李录久, 等. 模拟酸雨条件下生物炭对污染林地土壤重金属淋失和有效性的影响[J]. 水土保持学报, 2016, 30(3): 115-119. |
WU P P, WANG J J, LI L J, et al. Effects of biochar on heavy metal leaching and availability in contaminated forest soil under simulated acid rain condition[J]. Journal of Soil and Water Conservation, 2016, 30(3): 115-119. | |
15 | 荆延德, 巩晨, 孙小银, 等. 棉花、花生秸秆生物炭对棕壤中Cu(Ⅱ)运移的影响[J]. 水土保持通报, 2016, 36(3): 50-55. |
JIN Y D, GONG C, SUN X Y, et al. Effects of cotton and peanut straw biochar on Cu(Ⅱ) migration in brown soil[J]. Bulletin of Soil and Water Conservation, 2016, 36(3): 50-55. | |
16 | 梁媛. 重金属污染土壤与地下水一体化修复新技术研究[D]. 上海: 上海交通大学, 2015. |
LIANG Y. A new technology for simultaneous remediation of heavy metals contaminated soil and groundwater[D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
17 | KARAMI N, CLEMENTE R, MORENO-JIMENEZ E, et al. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass[J]. Journal of Hazardous Materials, 2011, 191(1/2/3): 41-48. |
18 | 张丽华, 朱志良, 郑承松, 等. 模拟酸雨对三明地区受重金属污染土壤的淋滤过程研究[J]. 农业环境科学学报, 2008, 27(1):151-155. |
ZHANG L H, ZHU Z L, ZHENG C S, et al. Leaching of heavy metals from Sanming polluted soil with simulated acid rain[J]. Journal of Agro-Environment Science, 2008, 27(1):151-155. | |
19 | LUNDBERG B, SUNDQVIST B. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environmental Pollution, 2011, 159(12): 3269-3282. |
20 | 房增强. 铅锌矿区土壤重金属污染特征及稳定化研究[D]. 北京: 中国矿业大学, 2016. |
FANG Z Q. Pollution characteristics of heavy metal in soil from lead and zinc mine and its stabilization study[D]. Beijing: China University of Mining & Technology, 2016. | |
21 | UCHIMIYA M, KLASSON K T, WARTELLE L H, et al. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations[J]. Chemosphere, 2011, 82(10): 1431-1437. |
22 | PUGA A P, MELO L C A, DE ABREU C A, et al. Leaching and fractionation of heavy metals in mining soils amended with biochar[J]. Soil and Tillage Research, 2016, 164: 25-33. |
23 | SAHA U K, TANIGUCHI S, SAKURAI K. Adsorption behavior of cadmium, zinc, and lead on hydroxyaluminum- and hydroxyaluminosilicate- montmorillonite complexes[J]. Soil Science Society of America Journal, 2001, 65(3): 694-703. |
24 | 林青, 徐绍辉. 土壤中重金属离子竞争吸附的研究进展[J]. 土壤, 2008, 40(5): 706-711. |
LIN Q, XU S H. A review on competitive adsorption of heavy metals in soils[J]. Soils, 2008, 40(5): 706-711. | |
25 | 郑顺安, 郑向群, 张铁亮, 等. 污染紫色土重金属的淋溶特征及释放动力学研究[J]. 水土保持学报, 2011, 25(4): 253-256. |
ZHENG S A, ZHENG X Q, ZHANG T L, et al. Study on leaching characteristics and release kinetics of heavy metals in polluted purple soil[J]. Journal of Soil and Water Conservation, 2011, 25(4): 253-256. | |
26 | 许中坚, 刘广深. 酸雨作用下红壤铅的释放特征与规律研究[J]. 农业环境科学学报, 2005, 24(6): 1109-1113. |
XU Z J, LIU G S. Characteristics and law of lead release from red soils under the influence of simulated acid rain[J]. Journal of Agro-Environment Science, 2005, 24(6): 1109-1113. | |
27 | FONSECA B, MAIO H, QUINTELAS C, et al. Retention of Cr(Ⅵ) and Pb(Ⅱ) on a loamy sand soil: kinetics, equilibria and breakthrough[J]. Chemical Engineering Journal, 2009, 152(1): 212-219. |
28 | 王代长, 蒋新, 卞永荣, 等. 模拟酸雨条件下Cd2+在土壤及其矿物表面的解吸动力学特征[J]. 环境科学, 2004, 25(4): 117-122. |
WANG D C, JIANG X, BIAN Y R, et al. Kinetic characteristics of Cd2+ desorption in minerals and soils under simulated acid rain[J]. Chinese Journal of Environmental Science, 2004, 25(4): 117-122. | |
29 | 李媛媛. 尾矿重金属淋溶污染及其抑制技术研究——以广东大宝山尾矿为例[D]. 广州:华南理工大学, 2010. |
LI Y Y. The study of heavy metal pollution produced by leaching tailings and suppression control-a case study of Da Baoshan tailings[D]. Guangzhou: South China University of Technology, 2010. | |
30 | BASHIR S, ZHU J, FU Q, et al. Cadmium mobility, uptake and anti-oxidative response of water spinach ( ipomoea aquatic ) under rice straw biochar, zeolite and rock phosphate as amendments[J]. Chemosphere, 2018, 194: 579-587. |
31 | 李烨炜. 生物炭对Cd单一和Cd-Pb复合污染淡灰钙土性质及镉稳定化影响研究[D]. 兰州: 兰州交通大学, 2016. |
LI Y W. Stabilization of cadmium in Cd and Cd-Pb contaminated loesses by addition of biochars[D]. Lanzhou: Lanzhou Jiaotong University, 2016. | |
32 | HOUBEN D, EVRARD L, SONNET P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar[J]. Chemosphere, 2013, 92(11): 1450-1457. |
33 | JALALI M, KHANLARI Z V. Effect of aging process on the fractionation of heavy metals in some calcareous soils of Iran[J]. Geoderma, 2008, 143: 26-40. |
34 | CHEUNG C W, PORTER J F, MCKAY G. Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char[J]. Journal of Chemical Technology & Biotechnology, 2000, 75(11): 963-970. |
35 | ZHANG R H, LI Z G, LIU X D, et al. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar[J]. Ecological Engineering, 2017, 98: 183-188. |
36 | SHEN X, HUANG D Y, REN X F, et al. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil[J]. Journal of Environmental Management, 2016, 168: 245-251. |
37 | UCHIMIYA M, LIMA I M, KLASSON K T, et al. Immobilization of heavy metal ions(Cu-Ⅱ, Cd-Ⅱ, Ni-Ⅱ, and Pb-Ⅱ) by broiler litter-derived biochars in water and soil[J]. Journal of Agricultural and Food Chemistry, 2010, 58(9): 5538-5544. |
38 | TAN X F, LIU Y G, GU Y L, et al. Immobilization of Cd(Ⅱ) in acid soil amended with different biochars with a long term of incubation[J]. Environmental Science and Pollution Research, 2015, 22(16): 12597-12604. |
39 | REES F, SIMONNOT M O, MOREL J L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase[J]. European Journal of Soil Science, 2014, 65(1): 149-161. |
40 | BIAN R, JOSEPH S, CUI L, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials, 2014, 272: 121-128. |
41 | LU H, LI Z, FU S, et al. Effect of biochar in cadmium fractions and soil biological activity in an anthrosol following acid rain deposition and aging[J]. Water Air Soil Pollution, 2015, 226: 164-173. |
42 | LEE H H, OWENS V N, PARK S, et al. Adsorption and precipitation of cadmium affected by chemical form and addition rate of phosphate in soils having different levels of cadmium[J]. Chemosphere, 2018, 206: 369-375. |
43 | JIANG T Y, JIANG J, XU R K, et al. Adsorption of Pb(Ⅱ) on variable charge soils amended with rice-straw derived biochar[J]. Chemosphere, 2012, 89(3): 249-256. |
[1] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[2] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[3] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[4] | 谈继淮, 余敏, 张彤彤, 黄能坤, 王梓雯, 朱新宝. 新型栲胶聚丙氧基醚酯的合成及增塑PVC性能[J]. 化工进展, 2023, 42(9): 4847-4855. |
[5] | 李卫华, 于倩雯, 尹俊权, 吴寅凯, 孙英杰, 王琰, 王华伟, 杨玉飞, 龙於洋, 黄启飞, 葛燕辰, 何依洋, 赵灵燕. 酸雨环境下填埋飞灰吨袋破损后重金属的溶出行为[J]. 化工进展, 2023, 42(9): 4917-4928. |
[6] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[7] | 王浩然, 殷全玉, 方明, 侯建林, 李军, 何斌, 张明月. 近临界水处理废弃烟梗工艺优化[J]. 化工进展, 2023, 42(9): 5019-5027. |
[8] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[9] | 欧阳素芳, 周道伟, 黄伟, 贾凤. 新型耐迁移橡胶防老剂的研究进展[J]. 化工进展, 2023, 42(7): 3708-3719. |
[10] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[11] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[12] | 郑昕, 贾里, 王彦霖, 张靖超, 陈世虎, 乔晓磊, 樊保国. 污泥与煤泥混烧对重金属固留特性的影响[J]. 化工进展, 2023, 42(6): 3233-3241. |
[13] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[14] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[15] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 479
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 362
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |