化工进展 ›› 2019, Vol. 38 ›› Issue (06): 2835-2846.DOI: 10.16085/10.16085/j.issn.1000-6613.2018-1950
收稿日期:
2018-09-06
出版日期:
2019-06-05
发布日期:
2019-06-05
通讯作者:
杨继年,聂士斌
作者简介:
徐煜轩(1989—),男,硕士研究生。E-mail:<email>xuyuxuan_AUST@163.com</email>。
基金资助:
Yuxuan XU1,2(),Jinian YANG2(),Shibin NIE1()
Received:
2018-09-06
Online:
2019-06-05
Published:
2019-06-05
Contact:
Jinian YANG,Shibin NIE
摘要:
二维纳米材料层状硅酸镍(Ni-PS)具有片层结构规则有序、比表面积高和层间性能可调等优点,作为功能材料在磁、电及催化等领域具有广泛的应用前景。本文在综述了Ni-PS的合成机理和制备方法的基础上,介绍了引入有机Si源、利用金属离子(或氧化物)进行掺杂、合成纳米管以及与碳基材料进行复合等手段来调控Ni-PS的结构和性能,详细阐述了Ni-PS或作为前体在制备高质量金属纳米粒子、电极材料、磁性载体和重金属离子吸附剂等方面的应用,着重指出Ni-PS的独特层状结构能够在还原过程中限制金属扩散和保护纳米粒子不被氧化和烧结长大,可用于制备新型高效Ni基催化剂,被广泛应用于制合成气、催化制氢/加氢及分子链催化重构等。最后,提出了Ni-PS在材料领域的发展方向和建议:深入研究Ni-PS的合成技术和改性方法,制备高性能、多功能Ni-PS及复合材料,进一步拓展其在功能材料和工程材料领域的应用。
中图分类号:
徐煜轩, 杨继年, 聂士斌. 功能化层状硅酸镍在磁、电及催化领域的应用[J]. 化工进展, 2019, 38(06): 2835-2846.
Yuxuan XU, Jinian YANG, Shibin NIE. Functionalized nickel phyllosilicate and applications in magnetic, electrical and catalytic fields[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2835-2846.
1 | BURATTIN P , CHE M , LOUIS C . Characterization of the Ni(II) phase formed on silica upon deposition-precipitation[J]. The Journal of Physical Chemistry B, 1997, 101(36): 7060-7074. |
2 | BURATTIN P , CHE M , LOUIS C . Molecular approach to the mechanism of deposition-precipitation of the Ni (II) phase on silica[J]. The Journal of Physical Chemistry B, 1998, 102(15): 2722-2732. |
3 | CHE M , CHENG Z X , LOUIS C . Nucleation and particle growth processes involved in the preparation of silica-supported nickel materials by a two-step procedure[J]. Journal of the American Chemical Society, 1995, 117(7): 2008-2018. |
4 | CHEN B H , CHAO Z S , HE H , et al . Towards a full understanding of the nature of Ni(II) species and hydroxyl groups over highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation method[J]. Dalton Trans., 2016, 45(6): 2720-2739. |
5 | MIZUTANI T , FUKUSHIMA Y , OKADA A , et al . Synthesis of nickel and magnesium phyllosilicates with 1∶1 and 2∶1 layer structures[J]. Bulletin of the Chemical Society of Japan, 1990, 63(7): 2094-2098. |
6 | CLAUSE O , KERMAREC M , BONNEVIOT L , et al . Nickel(II) ion-support interactions as a function of preparation method of silica-supported nickel materials[J]. Journal of the American Chemical Society, 1992, 114(12): 4709-4717. |
7 | NARES R , RAMÍREZ J , GUTIÉRREZ-ALEJANDRE A , et al . Ni/Hβ-zeolite catalysts prepared by deposition-precipitation[J]. The Journal of Physical Chemistry B, 2002, 106(51): 13287-13293. |
8 | YANG Y , LIANG Q , LI J , et al . Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries[J]. Nano Research, 2011, 4(9): 882-890. |
9 | LU B , JU Y , ABE T, et al . Grafting Ni particles onto SBA-15, and their enhanced performance for CO2 methanation[J]. RSC Advances, 2015, 5(70): 56444-56454. |
10 | MASLENNIKOVA T P , GATINA E N . Hydrothermal synthesis of Ti-doped nickel hydrosilicates of various morphologies[J]. Russian Journal of Applied Chemistry, 2018, 91(2): 286-291. |
11 | LIU H , WANG H , SHEN J , et al . Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing CO x -free hydrogen from ammonia[J]. Applied Catalysis A: General, 2008, 337(2): 138-147. |
12 | SIVAIAH M V , PETIT S , BEAUFORT M F , et al . Nickel based catalysts derived from hydrothermally synthesized 1∶1 and 2∶1 phyllosilicates as precursors for carbon dioxide reforming of methane[J]. Microporous and Mesoporous Materials, 2011, 140(1-3): 69-80. |
13 | SIVAIAH M V , PETIT S , BARRAULT J , et al . CO2 reforming of CH4 over Ni-containing phyllosilicates as catalyst precursors[J]. Catalysis Today, 2010, 157(1-4): 397-403. |
14 | RICHARD-PLOUET M , VILMINOT S . Magnetic properties of two-dimensional triangular arrays of Ni ions in nickel phyllosilicates[J]. Journal of Materials Chemistry, 1998, 8(1): 131-137. |
15 | RICHARD-PLOUET M , VILMINOT S , GUILLOT M , et al . Canted antiferromagnetism in an organo-modified layered nickel phyllosilicate[J]. Chemistry of Materials, 2002, 14(9): 3829-3836. |
16 | DIMOS K , PANAGIOTOPOULOS I , TSOUFIS T , et al . Effect of [Fe(CN)6]4- substitutions on the spin-flop transition of a layered nickel phyllosilicate[J]. Langmuir, 2012, 28(27): 10289-10295. |
17 | TANG C , SHENG J , XU C , et al . Facile synthesis of reduced graphene oxide wrapped nickel silicate hierarchical hollow spheres for long-life lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19427-19432. |
18 | ZHANG Q , WANG M , ZHANG T , et al . A stable Ni/SBA-15 catalyst prepared by the ammonia evaporation method for dry reforming of methane[J]. RSC Advances, 2015, 5(114): 94016-94024. |
19 | YANG M , JIN P , FAN Y , et al . Ammonia-assisted synthesis towards a phyllosilicate-derived highly-dispersed and long-lived Ni/SiO2 catalyst[J]. Catalysis Science & Technology, 2015, 5(12): 5095-5099. |
20 | ZHANG C , YUE H , HUANG Z , et al . Hydrogen production via steam reforming of ethanol on phyllosilicate-derived Ni/SiO2: enhanced metal-support interaction and catalytic stability[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(1): 161-173. |
21 | WANG Z , ASHOK J , PU Z , et al . Low temperature partial oxidation of methane via BaBi0.05Co0.8Nb0.15O3- δ -Ni phyllosilicate catalytic hollow fiber membrane reactor[J]. Chemical Engineering Journal, 2017, 315: 315-323. |
22 | YAN L , LIU X , DENG J , et al . Molybdenum modified nickel phyllosilicates as a high performance bifunctional catalyst for deoxygenation of methyl palmitate to alkanes under mild conditions[J]. Green Chemistry, 2017, 19(19): 4600-4609. |
23 | KONG X , ZHU Y , ZHENG H , et al . Ni nanoparticles inlaid nickel phyllosilicate as a metal-acid bifunctional catalyst for low-temperature hydrogenolysis reactions[J]. ACS Catalysis, 2015, 5(10): 5914-5920. |
24 | ASHOK J , KATHIRASER Y , ANG M L, et al . Ni and/or Ni-Cu alloys supported over SiO2 catalysts synthesized via phyllosilicate structures for steam reforming of biomass tar reaction[J]. Catalysis Science & Technology, 2015, 5(9): 4398-4409. |
25 | ASHOK J , ANG M L, TERENCE P Z L , et al . Promotion of the water-gas-shift reaction by nickel hydroxyl species in partially reduced nickel-containing phyllosilicate catalysts[J]. ChemCatChem, 2016, 8(7): 1308-1318. |
26 | ZHAO B , CHEN Z , YAN X , et al . CO methanation over Ni/SiO2 catalyst prepared by ammonia impregnation and plasma decomposition[J]. Topics in Catalysis, 2017, 60(12-14): 879-889. |
27 | FUKUSHIMA Y , TANI M . An organic/inorganic hybrid layered polymer: methacrylate-magnesium (nickel) phyllosilicate[J]. Journal of the Chemical Society, Chemical Communications, 1995 (2): 241-242. |
28 | FONSECA M G DA , SILVA C R , BARONE J S , et al . Layered hybrid nickel phyllosilicates and reactivity of the gallery space[J]. Journal of Materials Chemistry, 2000, 10(3): 789-795. |
29 | FUKUSHIMA Y , TANI M . Synthesis of 2∶1 type 3-(methacryloxy) propyl magnesium (nickel) phyllosilicate[J]. Bulletin of the Chemical Society of Japan, 1996, 69(12): 3667-3671. |
30 | MELO J M A , PIRES C T G V M T , AIROLDI C . The influence of the leaving iodine atom on phyllosilicate syntheses and useful application in toxic metal removal with favorable energetic effects[J]. RSC Advances, 2014, 4(77): 41028-41038. |
31 | ALENCAR J M , OLIVEIRA F J V E , AIROLDI C , et al . Organophilic nickel phyllosilicate for reactive blue dye removal[J]. Chemical Engineering Journal, 2014, 236: 332-340. |
32 | LEHMANN T , WOLFF T , HAMEL C , et al . Physico-chemical characterization of Ni/MCM-41 synthesized by a template ion exchange approach[J]. Microporous and Mesoporous Materials, 2012, 151: 113-125. |
33 | CHEN B H , LIU W , LI A , et al . A simple and convenient approach for preparing core-shell-like silica@nickel species nanoparticles: highly efficient and stable catalyst for the dehydrogenation of 1,2-cyclohexanediol to catechol[J]. Dalton Trans, 2015, 44(3): 1023-1038. |
34 | RICHARD-PLOUET M , GUILLOT M , VILMINOT S , et al . HCP and FCC nickel nanoparticles prepared from organically functionalized layered phyllosilicates of nickel (II)[J]. Chemistry of Materials, 2007, 19(4): 865-871. |
35 | MELO M A , OLIVEIRA F J V E , AIROLDI C . Novel talc-like nickel phyllosilicates functionalized with ethanolamine and diethanolamine[J]. Applied Clay Science, 2008, 42(1/2): 130-136. |
36 | LI Z , KATHIRASER Y , ASHOK J , et al . Simultaneous tuning porosity and basicity of nickel@nickel-magnesium phyllosilicate core-shell catalysts for CO2 reforming of CH4 [J]. Langmuir, 2014, 30(48): 14694-14705. |
37 | BIAN Z , SURYAWINATA I Y , KAWI S . Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2016, 195: 1-8. |
38 | BIAN Z , KAWI S . Highly carbon-resistant Ni-Co/SiO2 catalysts derived from phyllosilicates for dry reforming of methane[J]. Journal of CO2 Utilization, 2017, 18: 345-352. |
39 | RICHARD A R , FAN M . Low-pressure hydrogenation of CO2 to CH3OH using Ni-In-Al/SiO2 catalyst synthesized via a phyllosilicate precursor[J]. ACS Catalysis, 2017, 7(9): 5679-5692. |
40 | JIANG B , LI L , BIAN Z , et al . Hydrogen generation from chemical looping reforming of glycerol by Ce-doped nickel phyllosilicate nanotube oxygen carriers[J]. Fuel, 2018, 222: 185-192. |
41 | QIU C , AI L H , JIANG J . Layered phosphate-incorporated nickel–cobalt hydrosilicates for highly efficient oxygen evolution electrocatalysis[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4492-4498. |
42 | ALBARAZI A , GÁLVEZ M E , COSTA P DA . Synthesis strategies of ceria-zirconia doped Ni/SBA-15 catalysts for methane dry reforming[J]. Catalysis Communications, 2015, 59: 108-112. |
43 | KORYTKOVA E , PIVOVAROVA L , DROZDOVA I , et al . Synthesis of nanotubular nickel hydrosilicates and nickel-magnesium hydrosilicates under hydrothermal conditions[J]. Glass Physics and Chemistry, 2005, 31(6): 797-802. |
44 | KORYTKOVA E , MASLOV A , PIVOVAROVA L , et al . Synthesis of nanotubular Mg3Si2O5(OH)4-Ni3Si2O5(OH)4 silicates at elevated temperatures and pressures[J]. Inorganic Materials, 2005, 41(7): 743-749. |
45 | MCDONALD A , SCOTT B , VILLEMURE G . Hydrothermal preparation of nanotubular particles of a 1∶1 nickel phyllosilicate[J]. Microporous and Mesoporous Materials, 2009, 120(3): 263-266. |
46 | ZHANG C , ZHU W , LI S , et al . Sintering-resistant Ni-based reforming catalysts obtained via the nanoconfinement effect[J]. Chemical Communications, 2013, 49(82): 9383-9385. |
47 | KRASILIN A A , SEMENOVA A S , KELLERMAN D G , et al . Magnetic properties of synthetic Ni3Si2O5(OH)4 nanotubes[J]. EPL (Europhysics Letters), 2016, 113(4): 47006. |
48 | GUI C , HAO S , LIU Y , et al . Carbon nanotube@layered nickel silicate coaxial nanocables as excellent anode materials for lithium and sodium storage[J]. Journal of Materials Chemistry A, 2015, 3(32): 16551-16559. |
49 | QIU C , JIANG J , AI L . When layered nickel-cobalt silicate hydroxide nanosheets meet carbon nanotubes: a synergetic coaxial nanocable structure for enhanced electrocatalytic water oxidation[J]. ACS Applied Materials & Interfaces, 2016, 8(1): 945-951. |
50 | CHEN X , HUANG Y , ZHANG K . Cobalt nanofibers coated with layered nickel silicate coaxial core-shell composites as excellent anode materials for lithium ion batteries[J]. Journal of Colloid and Interface Science, 2018, 513: 788-796. |
51 | WANG Q Q , QU J , LIU Y , et al . Growth of nickel silicate nanoplates on reduced graphene oxide as layered nanocomposites for highly reversible lithium storage[J]. Nanoscale, 2015, 7(40): 16805-16811. |
52 | ZHANG Y , ZHOU W , YU H , et al . Self-templated synthesis of nickel silicate hydroxide/reduced graphene oxide composite hollow microspheres as highly stable supercapacitor electrode material[J]. Nanoscale Research Letters, 2017, 12(1): 325. |
53 | ZHANG X Q , LI W C , HE B , et al . Ultrathin phyllosilicate nanosheets as anode materials with superior rate performance for lithium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(4): 1397-1402. |
54 | RODRIGUEZ-GOMEZ A , CABALLERO A . Identification of outer and inner nickel particles in a mesoporous support: how the channels modify the reducibility of Ni/SBA-15 catalysts[J]. ChemNanoMat, 2017, 3(2): 94-97. |
55 | OHTSUKA K , KOGA J , SUDA M , et al . Fabrication of metal-layer (nickel) silicate microcomposite particles by a surface-nucleated precipitation route[J]. Journal of the American Ceramic Society, 1989, 72(10): 1924-1930. |
56 | BURATTIN P , CHE M , LOUIS C . Metal particle size in Ni/SiO2 materials prepared by deposition-precipitation: influence of the nature of the Ni(Ⅱ) phase and of its interaction with the support[J]. The Journal of Physical Chemistry B, 1999, 103(30): 6171-6178. |
57 | NARES R , RAMÍREZ J , GUTIÉRREZ-ALEJANDRE A D , et al . Characterization and hydrogenation activity of Ni/Si(Al)-MCM-41 catalysts prepared by deposition-precipitation[J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1154-1162. |
58 | YANG Y , JIN R , SONG S , et al . Synthesis of flower-like nickel oxide/nickel silicate nanocomposites and their enhanced electrochemical performance as anode materials for lithium batteries[J]. Materials Letters, 2013, 93: 5-8. |
59 | FANG Q , XUAN S , JIANG W , et al . Yolk-like micro/nanoparticles with superparamagnetic iron oxide cores and hierarchical nickel silicate shells[J]. Advanced Functional Materials, 2011, 21(10): 1902-1909. |
60 | LI Z , KATHIRASER Y , KAWI S . Facile synthesis of high surface area yolk-shell Ni@Ni embedded SiO2 via Ni phyllosilicate with enhanced performance for CO2 reforming of CH4 [J]. ChemCatChem, 2015, 7(1): 160-168. |
61 | LI Z , KAWI S . Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: influence of Ni precursors on structure, sintering, and carbon resistance[J]. Catalysis Science & Technology, 2018, 8(7): 1915-1922. |
62 | BIAN Z , KAWI S . Sandwich-like silica@Ni@silica multicore-shell catalyst for the low-temperature dry reforming of methane: confinement effect against carbon formation[J]. ChemCatChem, 2018, 10(1): 320-328. |
63 | DAS S, ASHOK J , BIAN Z , et al . Silica-ceria sandwiched Ni core-shell catalyst for low temperature dry reforming of biogas: coke resistance and mechanistic insights[J]. Applied Catalysis B: Environmental, 2018, 230: 220-236. |
64 | MAJEWSKI A J , WOOD J , BUJALSKI W . Nickel-silica core@shell catalyst for methane reforming[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14531-14541. |
65 | PARK J C , LEE H J, BANG J U , et al . Chemical transformation and morphology change of nickel-silica hybrid nanostructures via nickel phyllosilicates[J]. Chemical Communications, 2009, (47): 7345-7347. |
66 | MA B, CUI H , ZHAO C . A nickel-phyllosilicate core-echinus catalyst via a green and base additive free hydrothermal approach for hydrogenation reactions[J]. Chemical Communications, 2017, 53(75): 10358-10361. |
67 | KIM M, PARK J C , KIM A, et al . Porosity control of Pd@SiO2 yolk-shell nanocatalysts by the formation of nickel phyllosilicate and its influence on Suzuki coupling reactions[J]. Langmuir, 2012, 28(15): 6441-6447. |
[1] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[2] | 王帅旗, 王从新, 王学林, 田志坚. 无溶剂快速合成ZSM-12分子筛[J]. 化工进展, 2023, 42(7): 3561-3571. |
[3] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[4] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[5] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
[6] | 卓祖优, 宋生南, 黄明堦, 杨旋, 卢贝丽, 陈燕丹. 草酸钾-尿素协同活化法制备超大比表面积面粉基多级孔炭及其电化学储能应用[J]. 化工进展, 2023, 42(2): 925-933. |
[7] | 田甜, 雷西萍, 于婷, 樊凯, 宋晓琪, 朱航. 碳材料在柔性超级电容器中的研究进展[J]. 化工进展, 2023, 42(2): 884-896. |
[8] | 陈邦富, 欧阳平, 李宇涵, 段有雨, 董帆. ZnSn(OH)6 基纳米材料在环境光催化中的应用[J]. 化工进展, 2023, 42(2): 756-764. |
[9] | 边宇, 张百超, 郑红. 多级孔COFs材料的设计、合成及应用[J]. 化工进展, 2022, 41(9): 4866-4883. |
[10] | 龙垠荧, 杨健, 管敏, 杨怡洛, 程正柏, 曹海兵, 刘洪斌, 安兴业. 木质素基材料在混合型超级电容器电极材料中的研究进展[J]. 化工进展, 2022, 41(9): 4855-4865. |
[11] | 徐虎, 郭泓凯, 柴昌盛, 郝相忠, 杨子元, 徐卫军. 碳纤维类材料用于电芬顿体系电极的研究现状[J]. 化工进展, 2022, 41(7): 3707-3718. |
[12] | 敬双怡, 刘超, 蔡怡婷, 李卫平, 于玲红, 侯娜. 低温下磁性载体强化MBBR硝化性能及微生物群落分析[J]. 化工进展, 2022, 41(4): 2180-2190. |
[13] | 许泽涛, 曹怡婷, 王俏, 王志红. 固相钴基催化剂活化过一硫酸盐在水处理中的研究进展[J]. 化工进展, 2022, 41(2): 730-739. |
[14] | 郭冠伦, 刘锐, 余洋洋, 汪云. 塑料衍生碳材料用于超级电容器的研究现状[J]. 化工进展, 2022, 41(2): 781-790. |
[15] | 林俊明, 岑洁, 李正甲, 杨林颜, 姚楠. Ni基重整催化剂失活机理研究进展[J]. 化工进展, 2022, 41(1): 201-209. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |