化工进展 ›› 2019, Vol. 38 ›› Issue (02): 867-875.DOI: 10.16085/j.issn.1000-6613.2018-0324
收稿日期:
2018-02-06
修回日期:
2018-04-19
出版日期:
2019-02-05
发布日期:
2019-02-05
通讯作者:
杨朝合
作者简介:
<named-content content-type="corresp-name">李硕</named-content>(1989—),男,博士研究生。E-mail:<email>lishuoupc@163.com</email>。|杨朝合,教授,从事化学反应工程、石油炼制技术、化工过程节能与优化等方面的研究。E-mail:<email>yangch@upc.edu.cn</email>。
基金资助:
Shuo LI(),Yibin LIU,Xiang FENG,Chaohe YANG()
Received:
2018-02-06
Revised:
2018-04-19
Online:
2019-02-05
Published:
2019-02-05
Contact:
Chaohe YANG
摘要:
加氢脱硫工艺在清洁油品生产过程中发挥着重要作用,而MoS2基催化剂是加氢脱硫的主要催化剂,因此对MoS2基催化剂活性相和催化反应机理的深入研究有助于从原子层面上对催化剂进行优化设计。本文首先介绍了国内外有关MoS2基催化剂活性相形貌结构的研究,着重探讨了硫化气氛、助剂和载体类型对活性相结构的影响,以及现有表征技术在MoS2基催化剂活性相形貌结构研究中所面临的挑战,总结了不同条件下活性相的微观结构特征;同时,从MoS2基催化剂的活性相组成和结构角度分析了噻吩的加氢脱硫机理,发现了加氢脱硫活性与催化剂微观结构之间的紧密联系;最后展望了理论计算在设计和开发高效加氢脱硫催化剂过程中的重要指导作用。
中图分类号:
李硕, 刘熠斌, 冯翔, 杨朝合. MoS2基催化剂加氢脱硫反应活性相和作用机理研究进展[J]. 化工进展, 2019, 38(02): 867-875.
Shuo LI, Yibin LIU, Xiang FENG, Chaohe YANG. Research progress in active phase structure and reaction mechanism of MoS2-based catalysts for hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2019, 38(02): 867-875.
1 | LIU B , LIU L , WANG Z , et al . Effect of hydrogen spillover in selective hydrodesulfurization of FCC gasoline over the CoMo catalyst[J]. Catalysis Today, 2017, 282: 214-221. |
2 | LIU L H , LIU S Q , YIN H L , et al . Hydrogen spillover effect between Ni2P and MoS2 catalysts in hydrodesulfurization of dibenzothiophene[J]. Journal of Fuel Chemistry and Technology, 2015, 43(6): 708-713. |
3 | 李大东 . 加氢处理工艺与工程[M]. 北京: 中国石化出版社, 2004: 93-94. |
LI D D . Hydrotreating technology and engineering[M]. Beijing: China Petrochemical Press, 2004: 93-94. | |
4 | 刘丽, 郭蓉, 孙进, 等 .柴油加氢脱硫催化剂的研究进展[J].化工进展, 2016, 35(11): 3503-3510. |
LIU L , GUO R , SUN J , et al . The research development of diesel hydrodesulfurization catalysts[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3503-3510. | |
5 | 王继元, 堵文斌, 陈韶辉, 等 . TiO2载体在柴油加氢脱硫中的应用进展[J]. 化工进展, 2010, 29(4): 654-658. |
WANG J Y , DU W B , CHEN S H , et al . Progress in application of TiO2 support for catalytic diesel hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2010, 29(4): 654-658. | |
6 | 刘迪, 张景成, 刘晨光 .非负载型加氢精制催化剂的制备及工业应用研究进展[J].化工进展, 2010, 29(4): 643-648. |
LIU D , ZHANG J C , LIU C G . Progress in preparation and industrial application of unsupported hydrotreating catalysts[J]. Chemical Industry and Engineering Progress, 2010, 29(4): 643-648. | |
7 | 仝建波, 蔺阳, 刘淑玲, 等 . 加氢脱硫催化剂载体的研究进展[J]. 化工进展, 2014, 33(5): 1170-1179. |
TONG J B , LIN Y , LIU S L , et al . Recent progress in the support of hydrodesulfurization catalysts[J]. Chemical Industry and Engineering Progress, 2014, 35(5): 1170-1179. | |
8 | LIPSCH J M J G , SCHUIT G C A . The CoO MoO3 Al2O3 catalyst: Ⅱ.The structure of the catalyst[J]. Journal of Catalysis, 1969, 15(2): 174-178. |
9 | VOORHOEVE R J H , STUIVER J C M . The mechanism of the hydrogenation of cyclohexene and benzene on nickel-tungsten sulfide catalysts[J].Journal of Catalysis, 1971, 23(2): 243-252. |
10 | ASUA J M , DELMON B .Separation of the kinetic terms in catalytic reactions with varying number of active sites (case of the remote control model)[J]. Applied Catalysis, 1984, 12(2): 249-262. |
11 | DAAGE M , CHIANELLI R R . Structure-function relations in molybdenum sulfide catalysts: the “Rim-Edge”model[J]. Journal of Catalysis, 1994, 149: 414-427. |
12 | TOPSOEE H , CLAUSEN B S , NAN Y T, et al . Recent basic research in hydrodesulfurization catalysis[J]. Industrial & Engineering Chemistry Fundamentals, 1986, 25(1): 25-36. |
13 | TOPSØE H , CLAUSEN B S , CANDIA R , et al . In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided CoMo hydrodesulfurization catalysts: evidence for and nature of a CoMoS phase[J]. Journal of Catalysis, 1981, 68(2): 433-452. |
14 | MAUGÉ F , DUCHET J C , LAVALLEY J C , et al . The sulphided state of nickel molybdenum catalysts supported on zirconia and aluminates[J]. Catalysis Today, 1991, 10(91): 561-577. |
15 | CALAIS C , MATSUBAYASHI N , GEANTET C , et al . Crystallite size determination of highly dispersed unsupported MoS2 catalysts[J]. Journal of Catalysis, 1998, 174(2): 130-141. |
16 | SHIDO T , PRINS R . Why EXAFS underestimated the size of small supported MoS2 particles[J]. The Journal of Physical Chemistry B, 1998, 102(43): 8426-8435. |
17 | KONG D S , WANG H T , CHA J J, et al . Synthesis of MoS2 and MoSe2 films with vertically aligned layers[J]. Nano Letters, 2013, 13(3): 1341-1347. |
18 | TOPSØE H , CLAUSEN B S , MASSOTH F E . Hydrotreating catalysis[M]. Berlin: Springer-Verlag, 1996. |
19 | DING S J , ZHOU Y S , WEI Q , et al . Substituent effects of 4,6-DMDBT on direct hydrodesulfurization routes catalyzed by Ni-Mo-S active nanocluster-A theoretical study[J]. Catalysis Today, 2018, 305: 28-39. |
20 | HAANDEL L V , BREMMER G M , HENSEN E J M , et al . Influence of sulfiding agent and pressure on structure and performance of CoMo/Al2O3 hydrodesulfurization catalysts[J]. Journal of Catalysis, 2016, 342: 27-39. |
21 | LAURITSEN J V , BOLLINGER M V , LÆGSGAARD E , et al . Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts[J]. Journal of Catalysis, 2004, 221(2): 510-522. |
22 | LIU B , CHAI Y M , LI Y P , et al . Effect of sulfidation atmosphere on the performance of the CoMo/γ-Al2O3 catalysts in hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A: General, 2014, 471: 70-79. |
23 | RAYBAUD P , HAFNER J , KRESSE G , et al . Ab initio study of the H2-H2S/MoS2 gas-solid interface: the nature of the catalytically active sites[J]. Journal of Catalysis, 2000, 189(1): 129-146. |
24 | SCHWEIGER H , RAYBAUD P , KRESSE G , et al . Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: a theoretical study[J]. Journal of Catalysis, 2002, 207(1): 76-87. |
25 | MOSES P G , HINNEMANN B , TOPSØE H , et al . The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: a density functional study[J]. Journal of Catalysis, 2007, 248(2): 188-203. |
26 | 鞠雅娜, 兰玲, 刘坤红, 等 . 催化裂化汽油深度加氢脱硫催化剂的研制及性能评价[J]. 化工进展, 2017, 36(7): 2511-2516. |
JU Y N , LAN L , LIU K H , et al . Preparation and evaluation of a deep hydrodesulfurization(HDS) catalyst for catalytic cracking gasoline[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2511-2516. | |
27 | KIBSGAARD J , TUXEN A , KNUDSEN K G , et al . Comparative atomic-scale analysis of promotional effects by late 3D-transition metals in MoS2 hydrotreating catalysts[J]. Journal of Catalysis, 2010, 272(2): 195-203. |
28 | LAURITSEN J V , KIBSGAARD J , OLESEN G H , et al . Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts[J]. Journal of Catalysis, 2007, 249(2): 220-233. |
29 | KREBS E , SILVI B , RAYBAUD P . Mixed sites and promoter segregation: a DFT study of the manifestation of Le Chatelier’s principle for the Co(Ni)MoS active phase in reaction conditions[J]. Catalysis Today, 2008, 130(1): 160-169. |
30 | BARA C , LAMIC-HUMBLOT A F , FONDA E , et al . Surface-dependent sulfidation and orientation of MoS2 slabs on alumina-supported model hydrodesulfurization catalysts[J]. Journal of Catalysis, 2016, 344: 591-605. |
31 | LAURITSEN J V , JACOBSEN K W , NØRSKOV J K , et al . One-dimensional metallic edge states in MoS2 [J]. Physical Review Letters, 2001, 87(19): 196803. |
32 | COSTA D , ARROUVEL C , BREYSSE M , et al . Edge wetting effects of γ Al2O3 and anatase-TiO2 supports by MoS2 and CoMoS active phases: a DFT study[J]. Journal of Catalysis, 2007, 246(2): 325-343. |
33 | WALTON A S , LAURITSEN J V , TOPSØE H , et al . MoS2 nanoparticle morphologies in hydrodesulfurization catalysis studied by scanning tunneling microscopy[J]. Journal of Catalysis, 2013, 308: 306-318. |
34 | KIBSGAARD J , LAURITSEN J V , LÆGSGAARD E , et al . Cluster-support interactions and morphology of MoS2 nanoclusters in a graphite-supported hydrotreating model catalyst[J]. Journal of the American Chemical Society, 2006, 128(42): 13950-13958. |
35 | KIBSGAARD J , CLAUSEN B S , TOPSØE H , et al . Scanning tunneling microscopy studies of TiO2-supported hydrotreating catalysts: anisotropic particle shapes by edge-specific MoS2-support bonding[J]. Journal of Catalysis, 2009, 263(1): 98-103. |
36 | LI Y , LI A T , LI F F , et al . Application of HF etching in a HRTEM study of supported MoS2 catalysts[J]. Journal of Catalysis, 2014, 317: 240-252. |
37 | KOLBOE S . Catalytic hydrodesulfurization of thiophene: Ⅶ. Comparison between thiophene, tetrahydrothiophene, and n-butanethiol[J]. Canadian Journal of Chemistry, 1969, 47(2): 352-355. |
38 | AMBERG C H . Molybdenum in hydrodesulphurisation catalysts[J]. Journal of the Less Common Metals, 1974, 6(1/2): 339-352. |
39 | KRAUS J , ZDRAŽIL M . Tetrahydrothiophene as intermediate in the hydrodesulfurization of thiophene[J]. Reaction Kinetics and Catalysis Letters, 1977, 6(4): 475-480. |
40 | KIERAN P , KEMBALL C . Some catalytic reactions of thiophene on disulfides of tungsten and molybdenum[J]. Journal of Catalysis, 1965, 4(3): 394-402. |
41 | NØRSKOV J K , CLAUSEN B S , TOPSØE H . Understanding the trends in the hydrodesulfurization activity of the transition metal sulfides[J]. Catalysis Letters, 1992, 13(1): 1-8. |
42 | NAGAI M , SATO T , AIBA A . Poisoning effect of nitrogen compounds on dibenzothiophene hydrodesulfurization on sulfided NiMoAl2O3 catalysts and relation to gas-phase basicity[J]. Journal of Catalysis, 1986, 97(1): 52-58. |
43 | VOPA V L , SATTERFIELD C N . Poisoning of thiophene hydrodesulfurization by nitrogen compounds[J]. Journal of Catalysis, 1988, 110(2): 375-387. |
44 | RANGARAJAN S , MAVRIKAKIS M . DFT insights into the competitive adsorption of sulfur-and nitrogen-containing compounds and hydrocarbons on Co-promoted molybdenum sulfide catalysts[J]. ACS Catalysis, 2016, 6(5): 2904-2917. |
45 | PRINS R , EGOROVA M , RÖTHLISBERGER A , et al . Mechanisms of hydrodesulfurization and hydrodenitrogenation[J]. Catalysis Today, 2006, 111(1/2): 84-93. |
46 | EGOROVA M , PRINS R . Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over sulfided NiMo/γ Al2O3, CoMo/γ-Al2O3, and Mo/γ-Al2O3 catalysts[J]. Journal of Catalysis, 2004, 225(2): 417-427. |
47 | RANGARAJAN S , MAVRIKAKIS M . On the preferred active sites of promoted MoS2 for hydrodesulfurization with minimal organonitrogen inhibition[J]. ACS Catalysis, 2016, 7(1): 501-509. |
48 | LAURITSEN J V , NYBERG M , VANG R T . Chemistry of one-dimensional metallic edge states in MoS2 nanoclusters[J]. Nanotechnology, 2003, 14(3): 385. |
49 | LAURITSEN J V , NYBERG M , NØRSKOV J K , et al . Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy[J]. Journal of Catalysis, 2004, 224(1): 94-106. |
50 | SULLIVAN D L , EKERDT J G . Mechanisms of thiophene hydrodesulfurization on model molybdenum catalysts[J]. Journal of Catalysis, 1998, 178(1): 226-233. |
51 | LIU B , ZHAO Z , WANG D X , et al . A theoretical study on the mechanism for thiophene hydrodesulfurization over zeolite L-supported sulfided Co-Mo catalysts: insight into the hydrodesulfurization over zeolite-based catalysts[J]. Computational & Theoretical Chemistry, 2015, 1052: 47-57. |
52 | MARKEL E J , SCHRADER G L , SAUER N N , et al . Thiophene, 2,3- and 2,5-dihydrothiophene and tetrahydrothiophene hydrodesulfurization on Mo and Re γ Al2O3 catalysts[J]. Journal of Catalysis, 1989, 116(1): 11-22. |
53 | BORGNA A , HENSEN E J M , COULIER L , et al . Intrinsic thiophene hydrodesulfurization kinetics of a sulfided NiMo/SiO2 model catalyst: volcano-type behavior[J]. Catalysis Letters, 2003, 90(3): 117-122. |
54 | VRINAT M L . The kinetics of the hydrodesulfurization process - a review[J]. Applied Catalysis, 1983, 6(2): 137-158. |
55 | SCHULZ H , DO D . Fast and slow steps of hydrodesulfurization[J]. Bulletin des Sociétés Chimiques Belges, 1984, 93(8/9): 645-652. |
56 | MOSES P G , HINNEMANN B , TOPSØE H , et al . Corrigendum to“The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: a density functional study” [Journal of Catalysis, 2007, 248: 188][J]. Journal of Catalysis, 2008, 260(1): 202-203. |
57 | MOSES P G , HINNEMANN B , TOPSØE H , et al . The effect of Co-promotion on MoS2 catalysts for hydrodesulfurization of thiophene: a density functional study[J]. Journal of Catalysis, 2009, 268(2): 201-208. |
58 | GRØNBORG S S , ŠARIĆ M , MOSES P G , et al . Atomic scale analysis of sterical effects in the adsorption of 4, 6-dimethyldibenzothiophene on a CoMoS hydrotreating catalyst[J]. Journal of Catalysis, 2016, 344: 121-128. |
59 | ZHENG P , DUAN A J , CHI K B , et al . Influence of sulfur vacancy on thiophene hydrodesulfurization mechanism at different MoS2 edges: a DFT study[J]. Chemical Engineering Science, 2017, 164: 292-306. |
60 | DING S J , JIANG S J , ZHOU Y S , et al . Catalytic characteristics of active corner sites in CoMoS nanostructure hydrodesulfurization-a mechanism study based on DFT calculations[J]. Journal of Catalysis, 2017, 345: 24-38. |
61 | CHEN J J , MAUGÉ F , FALLAH J E , et al . IR spectroscopy evidence of MoS2, morphology change by citric acid addition on MoS2/Al2O3 catalysts-a step forward to differentiate the reactivity of M-edge and S-edge[J]. Journal of Catalysis, 2014, 320(1): 170-179. |
62 | HUANG T T , XU J D , FAN Y . Effects of concentration and microstructure of active phases on the selective hydrodesulfurization performance of sulfided CoMo/Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 2017, 220: 42-56. |
63 | LI P , CHEN Y D , ZHANG C , et al . Highly selective hydrodesulfurization of gasoline on unsupported Co-Mo sulfide catalysts: effect of MoS2 morphology[J]. Applied Catalysis A: General, 2017, 533: 99-108. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |