化工进展 ›› 2019, Vol. 38 ›› Issue (02): 1027-1037.DOI: 10.16085/j.issn.1000-6613.2018-0806
收稿日期:
2018-04-18
修回日期:
2018-05-22
出版日期:
2019-02-05
发布日期:
2019-02-05
通讯作者:
余南阳
作者简介:
<named-content content-type="corresp-name">郭沛</named-content>(1994—),男,博士研究生,研究方向为生物质能源的开发及应用。E-mail:<email>jeep1994@163.com</email>。|余南阳,教授,博士生导师,研究方向为空调系统故障诊断与节能控制、可再生能源及低温余热综合利用等。E-mail:<email>rhinos@126.com</email>。
基金资助:
Pei GUO1(),Rongjiang MA2,Nanyang YU1(),Yanping YUAN1
Received:
2018-04-18
Revised:
2018-05-22
Online:
2019-02-05
Published:
2019-02-05
Contact:
Nanyang YU
摘要:
基于微藻培养的沼液处理相关耦合技术是近些年沼液资源化处理利用领域的研究热点。本文综述了沼液处理与CO2固定耦合技术、沼液处理与高值生物质生产耦合技术、沼液处理与生态农业耦合技术等耦合技术的研究发展现状与优缺点,并指出了各耦合技术发展的关键问题,如沼液处理与CO2固定耦合技术中高CO2耐受性藻株选育与固碳影响机理研究问题、沼液处理与高值生物质生产耦合技术中低成本、低能耗高值生物质生产技术开发问题、沼液处理与生态农业耦合技术系统性评价体系缺乏问题等。最后,为促进耦合技术突破现有瓶颈,从微藻选育、微藻培养、沼液处理与沼气工程综合经济性4个角度提出相关的建议。
中图分类号:
郭沛, 马荣江, 余南阳, 袁艳平. 基于微藻培养的沼液处理相关耦合技术进展[J]. 化工进展, 2019, 38(02): 1027-1037.
Pei GUO, Rongjiang MA, Nanyang YU, Yanping YUAN. Recent progress in coupling technologies of biogas slurry treatment based on microalgae cultivation[J]. Chemical Industry and Engineering Progress, 2019, 38(02): 1027-1037.
COD/mg·L–1 | NH3-N/mg·L–1 | TP/mg·L–1 | pH |
---|---|---|---|
300~10000 | 400~3200 | 50~300 | 7.2~8.5 |
表1 沼气工程沼液主要特征[13]
COD/mg·L–1 | NH3-N/mg·L–1 | TP/mg·L–1 | pH |
---|---|---|---|
300~10000 | 400~3200 | 50~300 | 7.2~8.5 |
原料 | 油脂质量分数/% | 油脂产量/L·hm-2·a-1 |
---|---|---|
大豆 | 15~20 | 446 |
向日葵 | 25~35 | 952 |
油菜籽 | 38~46 | 1190 |
花生 | 45~55 | 1059 |
玉米 | 48 | 72 |
棕榈树 | 30~60 | 5950 |
微藻(低油成分) | 30 | 58700 |
微藻(中油成分) | 50 | 97800 |
微藻(高油成分) | 70 | 136900 |
表2 不同生物柴油原料油脂成分和产量[51]
原料 | 油脂质量分数/% | 油脂产量/L·hm-2·a-1 |
---|---|---|
大豆 | 15~20 | 446 |
向日葵 | 25~35 | 952 |
油菜籽 | 38~46 | 1190 |
花生 | 45~55 | 1059 |
玉米 | 48 | 72 |
棕榈树 | 30~60 | 5950 |
微藻(低油成分) | 30 | 58700 |
微藻(中油成分) | 50 | 97800 |
微藻(高油成分) | 70 | 136900 |
废水类型 | 藻种 | 生物量 /g·L-1 | 油脂含量 /mg·L-1 | 参考文献 |
---|---|---|---|---|
市政污水 | Chlorella sp.227 | 0.666 | 206.1① | [ |
市政污水 | Nannochloropsis sp. | 0.212 | 63.6 | [ |
市政二级出水 | Chlorella sp., Micractinium sp., Actinastrum sp. | 0.812 | 73.08 | [ |
市政二级出水 | Neochloris oleoabundans OU2 | 0.68 | — | [ |
豆腐厂废水(20%) | Chlorella vulgaris | 0.758 | 166.8 | [ |
豆腐厂废水(30%) | Chlorella vulgaris | 0.827 | 191.9 | [ |
造纸厂废水和市政污水(1∶1) | Scenedesmus dimorphus | 0.92 | 220.8 | [ |
牛场废水 | Chroococcus sp.1 | 3.83 | — | [ |
秸秆厌氧发酵液 | Chorella pyrenoidosa | 1.45 | 270.9 | [ |
猪场厌氧发酵液 | Desmodesmus sp. | 1.039 | 261.8 | [ |
表3 利用不同类型污水培养的微藻的生物量与油脂含量
废水类型 | 藻种 | 生物量 /g·L-1 | 油脂含量 /mg·L-1 | 参考文献 |
---|---|---|---|---|
市政污水 | Chlorella sp.227 | 0.666 | 206.1① | [ |
市政污水 | Nannochloropsis sp. | 0.212 | 63.6 | [ |
市政二级出水 | Chlorella sp., Micractinium sp., Actinastrum sp. | 0.812 | 73.08 | [ |
市政二级出水 | Neochloris oleoabundans OU2 | 0.68 | — | [ |
豆腐厂废水(20%) | Chlorella vulgaris | 0.758 | 166.8 | [ |
豆腐厂废水(30%) | Chlorella vulgaris | 0.827 | 191.9 | [ |
造纸厂废水和市政污水(1∶1) | Scenedesmus dimorphus | 0.92 | 220.8 | [ |
牛场废水 | Chroococcus sp.1 | 3.83 | — | [ |
秸秆厌氧发酵液 | Chorella pyrenoidosa | 1.45 | 270.9 | [ |
猪场厌氧发酵液 | Desmodesmus sp. | 1.039 | 261.8 | [ |
技术类型 | 主要技术手段 | 特点 | 参考文献 |
---|---|---|---|
微藻高密度培养技术 | 固定化培养 | 易收获、产量稳定、成本低 | [ |
连续化培养 | 微藻生长状态稳定、产量高、培养成本高 | [ | |
微藻采收技术 | 化学法:絮凝、电凝 | 应用广泛、效果较好 | [ |
物理法:离心、膜过滤、气浮收获 | 操作简单、投入少但能耗较高 | ||
微藻干燥技术 | 冻干、喷雾、鼓风、自然风干 | 自然风干受天气影响较大且易受污染;其他方法成本较高,但成分破坏较少 | [ |
微藻细胞破壁技术 | 物理法:超声波处理、高压均质、珠磨 | 破碎效率高、能耗高、设备要求高 | [ |
酶法:酶处理 | 破碎效率一般,成本高 | [ | |
化学法:酸处理、臭氧处理、反复冻溶 | 破碎效率一般,需化学物质,污染环境 | [ | |
微藻高值生物质提取技术 | 有机溶剂提取法 | 溶剂添加量大、提取效率低、技术简单 | [ |
超/亚临界萃取法 | 处理工艺能耗高、经济性较差、技术设备要求高 | ||
原位萃取法 | 不需干燥、提取效率较高、技术不成熟 |
表4 微藻利用相关延伸技术
技术类型 | 主要技术手段 | 特点 | 参考文献 |
---|---|---|---|
微藻高密度培养技术 | 固定化培养 | 易收获、产量稳定、成本低 | [ |
连续化培养 | 微藻生长状态稳定、产量高、培养成本高 | [ | |
微藻采收技术 | 化学法:絮凝、电凝 | 应用广泛、效果较好 | [ |
物理法:离心、膜过滤、气浮收获 | 操作简单、投入少但能耗较高 | ||
微藻干燥技术 | 冻干、喷雾、鼓风、自然风干 | 自然风干受天气影响较大且易受污染;其他方法成本较高,但成分破坏较少 | [ |
微藻细胞破壁技术 | 物理法:超声波处理、高压均质、珠磨 | 破碎效率高、能耗高、设备要求高 | [ |
酶法:酶处理 | 破碎效率一般,成本高 | [ | |
化学法:酸处理、臭氧处理、反复冻溶 | 破碎效率一般,需化学物质,污染环境 | [ | |
微藻高值生物质提取技术 | 有机溶剂提取法 | 溶剂添加量大、提取效率低、技术简单 | [ |
超/亚临界萃取法 | 处理工艺能耗高、经济性较差、技术设备要求高 | ||
原位萃取法 | 不需干燥、提取效率较高、技术不成熟 |
1 | ZHAO Y , SUN S , HU C , et al . Performance of three microalgal strains in biogas slurry purification and biogas upgrade in response to various mixed light-emitting diode light wavelengths[J]. Bioresource Technology, 2015, 187: 338-345. |
2 | TAN X , CHU H , ZHANG Y , et al . Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor[J]. Bioresource Technology, 2014, 170:538-548. |
3 | ZHU L , YAN C , LI Z . Microalgal cultivation with biogas slurry for biofuel production[J].Bioresource Technology, 2016, 220:629-636. |
4 | 潘瑜春, 孙超, 刘玉, 等 . 基于土地消纳粪便能力的畜禽养殖承载力[J].农业工程学报, 2015, 31(4): 232-239. |
PAN Y C , SUN C , LIU Y , et al . Carrying capacity of livestock and poultry breeding based on feces disposal volume of land[J]. Transactions of the CSAE, 2015, 31(4): 232-239. | |
5 | ZHU Liandong . Microalgal culture strategies for biofuel production: a review[J]. Biofuels Bioproducts and Biorefining, 2015, 9(6): 801-814. |
6 | 陈超, 阮志勇, 吴进, 等 .规模化沼气工程沼液综合处理与利用的研究进展[J].中国沼气, 2013, 31(1): 25-28, 43. |
CHEN C , RUAN Z Y , WU J , et al . Research progress on the comprehensive disposal and utilization of biogas slurry from large scale biogas engineering[J]. China Biogas, 2013, 31(1): 25-28, 43. | |
7 | POSADAS E , BOCHON S , COCA M , et al . Microalgae-based agro-industrial wastewater treatment: a preliminary screening of biodegradability[J]. Journal of Applied Phycology, 2014, 26(6): 2335-2345. |
8 | XU J , ZHAO Y , ZHAO G , et al . Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment[J].Apply Microbiol Biotechnol, 2015, 99(15): 6493-6501. |
9 | NATALIA G , GADUŠ J , SLOBODNĬK J . Biomass of microalgae as a source of renewable energy[J]. Acta Regionalia et Environmentalica, 2017, 14(1): 24-29. |
10 | GOLUEKE C G . Comparative studies of the physiology of Sapromyces and related genera[J]. Journal of Bacteriology, 1957, 74(3): 337-343. |
11 | 赵立欣, 宋成军, 董保成, 等 .基于微藻养殖的沼液资源化利用与高价值生物质生产耦合技术研究[J]. 安全与环境学报, 2012, 12(3): 61-65. |
ZHAO L X , SONG C J , DONG B C , et al . On the microalgae-cultivation based coupling of biogas fermentative liquid-resource utilization and high-quality biomass production[J]. Jouranl of Safety and Environment, 2012, 12(3): 61-65. | |
12 | PRAJAPATI S K , KUMAR P , MALIK A , et al . Bioconversion of algae to methane and subsequent utilization of digestate for algae cultivation: a closed loop bioenergy generation process[J].Bioresource Technology, 2014, 158: 174-180. |
13 | 闫园园, 李子富, 程世昆, 等 .养殖场厌氧发酵沼液处理研究进展[J].中国沼气, 2013, 31(5): 48-52. |
YAN Y Y , LI Z F , CHENG S K , et al . A review of anaerobic digested effluent treatment on livetock farm[J]. China Biogas, 2013, 31(5): 48-52. | |
14 | HJORTH M , CHRRISTENSEN K V , CHRISTENSEN M L , et al . Solid-liquid separation of animal slurry in theory and practice (a review)[J]. Agronomy for Sustainable Development, 2010, 30(1): 153-180. |
15 | JI F , ZHOU Y , PANF A , et al . Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater forimproved nutrient removal and biodiesel production[J]. Bioresource Technology, 2015, 184: 116-122. |
16 | CHEN R , LI R , DEITZ L , et al . Freshwater algal cultivation with animal waste for nutrient removal and biomass production[J]. Biomass and Bioenergy, 2012, 39(s1): 128-138. |
17 | WANG M Z , WU Y , LI B , et al . Pretreatment of poultry manure anaerobic-digested effluents by electrolysis, centrifugation and autoclaving process for Chlorella vulgaris growth and pollutants removal[J]. Environmental Technology, 2015, 36(7): 837-843. |
18 | CHEN C Y , YEH K L, AISYAH R , et al . Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review[J]. Bioresource Technology, 2011, 101(1): 71-81. |
19 | 罗龙皂, 邵瑜, 田光明 .基于微藻培养的养猪废水氨氮吹脱预处理[J].浙江大学学报(工学版), 2017, 51(10): 2055-2060, 2076. |
LUO L Z , SHAO Y , TIAN G M . Ammonia stripping of piggery wastewater for microalgae culturing[J]. Journal of Zhejiang University(Engineering Science), 2017, 51(10): 2055-2060, 2076. | |
20 | PARK J , JIN H F , LIM B R, et al . Ammonia removal from anaerobic digestion effluent of livestock waste using greenalga Scenedesmus sp[J]. Bioresource Technology, 2010, 101(22): 8649-8657. |
21 | LEVINE R B , COSTANZA-R M S , SPATAFORA G A . Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production[J]. Biomass and Bioenergy, 2011, 35(1): 40-49. |
22 | UGGETTI E , SIALVE B , LATRILLE E , et al . Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity[J]. Bioresource Technology, 2014, 152: 437-443. |
23 | HAN W , LI S F , DAI L H . Study on operation mode of solar energy-ground source heat pump system[J] Energy Conservation, 2011, 30(4): 64-68. |
24 | KUAMAR A , YUAN X , SAHU A K , et al . Hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach[J]. Journal of Chemical Technology and Biotechnology, 2009, 85(3): 387-394. |
25 | AKKERMAN I , JANSSEN M , ROCHA J , et al . Photobiological hydrogen production: photochemical effiency and bioreactor design[J]. International Journal of Hydrogen Energy, 2002, 27(11): 1195-1208. |
26 | CHISTI M Y . Airlift bioreactors[M]. Amsterdam: Elsevier Appiled Science, 1989: 13-15. |
27 | HSIEH C H , WU W T . A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae[J]. Biochemical Engineering Journal, 2009, 46(3): 300-305. |
28 | CHITRALEKHA N D , GILBERT J J , PETER L , et al . Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(19): 10218-10238. |
29 | PIRES J C M , ALVIM F , M C M, et al . Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3043-3053. |
30 | 陈明明, 杨忠华, 吴高明, 等 .利用微藻技术减排CO2的研究[J].武汉科技大学学报, 2009, 32(4): 436-440. |
CHEN M M , YANG Z H , WU G M , et al . Reduction of carbon dioxide emission by microalgae[J]. Journal of Wuhan University of Science and Technology, 2009, 32(4): 436-440. | |
31 | YUE L H , CHEN W G . Isolation and determination of cultural characteristics of a new highly CO2 tolerant freshwater microalgae[J]. Energy Convers Manage, 2005, 46(11/12): 1868-1876. |
32 | ZHAO B T , SU Y X . Process effect of microalgal-carbon dioxide fixation and biomass production: a review[J]. Renewable Sustainable Energy Reviews, 2014, 31(2): 121-132. |
33 | CHEAH W Y , SHOW P L , CHANG J S , et al . Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae[J]. Biosource Technology, 2015, 184: 190-201. |
34 | KAO C Y, CHIU S Y , HUANG T T , et al . A mutant strain of microalgae Chlorella sp. for the carbon dioxide capture from biogas[J]. Biomass and Bioenergy, 2012, 36(328): 132-140. |
35 | XU J J , GALAN A , ZHAO F M . Kinetic model analysis of Haematococcus pluvialis in a cultivation optimization to accumulate lipids[J].International Agricultural Engineering Journal, 2012, 21(3): 74-81. |
36 | CHENG H X , TIAN G M . Identification of a newly isolated microalgae from a local pond and evaluation of its growth and nutrients removal potential in swine breeding effluent[J]. Desalination and Water Treatment, 2013, 51(13-15): 2768-2775. |
37 | MALLICK N . Biotechnological potential of immobilized algae for wastewater N, P and metal removal[J]. Biometals, 2002, 15(4): 377-390. |
38 | PETERSSON A , WE L A . Biogas upgrading technologies-developments and innovations[J]. IEA Bioenergy, 2009, 37: 12-15. |
39 | TALUKDAR J , KALITA M , BHATNAGAR S , et al . Prospects of microalgae of north east India for biodiesel production[M]. New Delhi: Studium Press LLC, 2011: 69-90. |
40 | MSA R, CHENG L H , XU X H , et al . A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 4002-4012. |
41 | YAN C , ZHENG Z . Performance of mixed LED light wavelengths on biogas upgrade and biogas fluid removal by microalga Chlorella sp.[J]. Applied Energy, 2014, 113(1): 1008-1014. |
42 | 王钦琪, 李环, 王翠, 等 .沼液培养的普通小球藻对CO2的去除[J].应用与环境生物学报, 2011, 17(5): 700-705. |
WANG Q Q , LI H , WANG C , et al . Reduction of CO2 by Chlorella vulgaris culture in biogas slurry[J]. Chinese Journal of Applied and Environmental Biology, 2011, 17(5): 700-705. | |
43 | 李博, 颜诚, 王东, 等 .小球藻(Chlorella vulgaris)净化沼液和提纯沼气[J].环境工程学报, 2013, 7(6): 2396-2400. |
LI B , YAN C , WANG D , et al . Purifying biogas slurry and upgrading biogas by Chlorella vulgaris [J]. Chinese Journal of Environment Engineering, 2013, 7(6): 2396-2400. | |
44 | SHEN Q H , GONG Y P , FANG W Z , et al . Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency[J]. Bioresource Technology, 2015, 193(1): 68-75. |
45 | RYCKEBOSCH E , DROUILLON M , VERVAEREN H . Techniques for transformation of biogas to biomethane[J]. Biomass Bioenergy, 2011, 35(5): 1633-1645. |
46 | RAZON L F , TAN R R . Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis [J]. Applied Energy, 2011, 88(10): 3507-3514. |
47 | CHISTI Y . Biodiesel from microalgae beats bioethanol[J]. Trends in Biotechnology, 2008, 26(3): 126-131. |
48 | REWAT I , KUMAR R R , MUTANDA T , et al . Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production[J]. Applied Energy, 2011, 88(10): 3411-3424. |
49 | 李道义, 李树君, 刘天舒, 等 .微藻能源产业化关键技术的研究进展[J].农业机械学报, 2010, 41(s1): 160-166. |
LI D Y , LI S J , LIU T S , et al . Technology of microalgae bioenergy industrialization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(s1): 160-166. | |
50 | TORRES C M , RIOS S D , TORRAS C , et al . Microalgae-based biodiesal: a multicriteria analysis of the production process using realistic scenarios[J]. Bioresource Technology, 2013, 147(7): 7-16. |
51 | CHISTI Y . Biodiesel from microalgae[J]. Biotechnology Advance, 2007, 25(3): 294-306. |
52 | WIJFFELS R , BARBOSA M . An outlook on microalgal biofuels[J]. Science, 2010, 329(5993): 796-799. |
53 | 刘天中, 张维, 王俊峰, 等 .微藻规模培养技术研究进展[J].生命科学, 2014, 26(5): 509-522. |
LIU T Z , ZHANG W , WANG J F , et al . A review of mass cultivation technology for microalgae[J]. Chinese Bulletin of Life Sciences, 2014, 26(5): 509-522. | |
54 | KLEINEGRIS D M M , JANSSEN M , BRANDENBURG W A , et al . Two-phase systems: potential for in situ extraction of microalgae products[J]. Biotechnology Advances, 2011, 29(5): 502-507. |
55 | AMER L , ADHIKARI B , PELLEGRINO J . Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity[J]. Bioresource Technology, 2011, 102(20): 9350-9359. |
56 | CHO S, LUONG T T , LEE D, et al . Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production[J]. Bioresource Technology, 2011, 102(18): 8639-8645. |
57 | JIANG L , LUO S , FAN X , et al . Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2 [J]. Applied Energy, 2011, 88(10): 3336-3341. |
58 | WOERTZ I , FEFFER A , LUNDQUIST T , et al . Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock[J]. Journal of Environmental Engineering, 2009, 135(11): 1115-1122. |
59 | WANG B , LAN C Q . Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent[J]. Bioresource Technology, 2011, 102(10): 5639-5644. |
60 | DIANURSANTIA, RIZKYTATA B T , MOHAMAD T G , et al . Industrial tofu wastewater as a cultivation medium of microalgae Chlorella vulgaris [J]. Energy Procedia, 2014, 47: 56-61. |
61 | GENTILI F G . Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases[J]. Bioresource Technology, 2014, 169(5): 27-32. |
62 | PRAJAPATI S K , CHOUDHARY P , MALIK A , et al . Algae mediated treatment and bioenergy generation process for handling liquid and solid waste from dairy cattle farm[J]. Bioresource Technology, 2014, 167(3): 260-268. |
63 | YANG L , TAN X , LI D , et al . Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater[J]. Bioresource Technology, 2011, 181: 54-61. |
64 | JI F , ZHOU Y , PANG A , et al . Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater for improved nutrient removal and biodiesel production[J]. Bioresource Technology, 2015, 184(5): 116-122. |
65 | CAI T , GE X , PARK S Y , et al . Comparison of Synechocystis sp. PCC6803 and Nunnochloropsis salina for lipid production using artificial seawater and nutrients from anaerobic digestion effluent[J]. Bioresource Technology, 2013, 144: 255-260. |
66 | FRANCHINO M , COMINO E , BONA F , et al . Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate[J]. Chemosphere, 2013, 92(6): 738-744. |
67 | YAN C , ZHENG Z . Performance of photoperiod and light intensity on biogas upgrade and biogas effluent nutrient reduction by the microalgae Chlorella sp.[J]. Bioresource Technology, 2013, 139: 292-299. |
68 | YAN C , LUO X Z , ZHENG Z , et al . Performance of purifying anaerobic fermentation slurry using microalgae in response to various LED light wavelengths and intensities[J]. Journal of Chemical Technology and Biotechnology, 2013, 88(9): 1622-1630. |
69 | BUTTERWICK C , HEANEY S I , TALLING J F . Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance[J]. Freshwater Biology, 2005, 50(2): 291-300. |
70 | CONVERTI A , CASAZZA A A , ORTIZ E Y , et al . Effect of temperature and nitrogen concentration on growth and lipid content of nannochloropsis oculata for biodiesel production[J]. Chemical Engineering and Processing, 2009, 48: 1146-1151. |
71 | SHAH S M U , RADZIAH C C , IBRAHIM S , et al . Effects of photoperiod, salinity and pH on cell growth and lipid content of Pavlova lutheri [J]. Annals of Microbiology, 2014, 64(1): 157-164. |
72 | 王翠, 李环, 王钦琪, 等 .pH值对沼液培养的普通小球藻生长及油含量积累的影响[J].生物工程学报, 2010, 26(8): 1074-1079. |
WANG C , LI H , WANG Q Q , et al . Effect of pH on growth and lipid content of Chlorella vulgaris cultured in biogas slurry[J]. Chinese Journal of Biotechnology, 2010, 26(8): 1074-1079. | |
73 | CHEN P , MIN M , CHEN Y , et al . Review of the biological and engineering aspects of algae to fuels approach[J]. International Journal of Agricultural & Biological Engineering, 2009, 2(4): 261-268. |
74 | 缪晓玲, 吴庆余 .微藻油脂制备生物柴油的研究[J].太阳能学报, 2007, 28(2): 219-222. |
MIAO X L , WU Q Y . Study on preparation of biodiesel from microalgal oil[J]. Acta Energiae Solaris Sinica, 2007, 28(2): 219-222. | |
75 | CHIU S Y , KAO C Y, TSAI M T , et al . Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 Aeration[J]. Biotechnology Advances, 2009, 100(2): 833-838. |
76 | HEMAISWARY S , RAJA R , RAVI Kumar R , et al . Microalgae: a sustainable feed source for aquaculture[J]. World Journal of Microbiology & Biotechnology, 2011, 27(8): 1737-1746. |
77 | PRIYADARSHANI I , SAHU D , RATH B . Algae in aquaculture[J]. International Journal of Health Sciences& Research, 2012, 2(1): 108-114. |
78 | HUSSEIN E E S , DABROWSKI K , EISAIDY D M S D , et al . Enhancing the growth of Nile tilapia larvae/juveniles by replacing plant (gluten) protein with algae protein[J]. Aquaculture Research, 2013, 44(6): 937-949. |
79 | 冯天翼 . 利用水产养殖废水培养产油微藻技术研究[D]. 南京: 南京农业大学, 2011. |
FENG T Y . The research of cultivating oil production microalgae in aquaculture wastewater [D]. Nanjing: Nanjing Agricultural University, 2011. | |
80 | 王高学, 姚嘉赟, 王绥标 .复合藻-菌系统水质净化模型建立与净化养殖水体水质的研究[J]. 西北农业学报, 2006, 15(2): 22-27. |
WANG G X , YAO J Y , WANG S B . Study on establishment of water purification model of alga-bacteria system and its application in purifying the deteriorated aquaculture water[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2006, 15(2): 22-27. | |
81 | 谢作明, 陈兰洲, 李敦海, 等 .土壤丝状蓝藻在荒漠治理中的作用研究[J].水生生物学报, 2007, 31(6): 886-890. |
XIE Z M , CHEN L Z , LI D H , et al . The research on the function of soil filamentous cyanobacteria in desertification control[J]. Acta Hydrobiologica Sinica, 2007, 31(6): 886-890. | |
82 | 唐东山, 卿人韦, 傅华龙, 等 .利用土壤微藻改良贫瘠土壤的研究[J].四川大学学报(自然科学版), 2003, 40(2): 352-355. |
TANG D S , QING R W , FU H L , et al . Studies on soil micro-algae's ameliorative effection to sterile soil[J]. Journal of Sichuan University(Natural Science Edition), 2003, 40(2): 352-355. | |
83 | MILLEDGE J J . Commercial application of microalgae other than as biofuels review[J]. Reviews in Environmental Science & Biotechnology, 2011, 10(1): 31-41. |
84 | 国家自然科学基金委员会工程与材料科学部 . 工程热物理与能源利用学科发展战略研究报告(2011—2020) [M].北京: 科学出版社, 2014: 310-312. |
Department of Engineering and Materials Science, National Natural Science Foundation of China . Strategic research report on discipline development of engineering thermophysics and energy utilization(2011—2020)[M]. Beijing: Science Press, 2014: 310-312. | |
85 | 程军, 杨宗波, 黄云, 等 .核诱变驯化微藻固定燃煤烟气中的CO2 [J]. 燃烧科学与技术, 2016, 22(3): 193-197. |
CHENG J , YANG Z B , HUANG Y , et al . Mutation of Nannochloropsis Oculata for fixing CO2 from flue gas in a coal-fired power plant[J]. Journal of Combustion Science and Technology, 2016, 22(3): 193-197. | |
86 | 张弛, 程丽华, 陈荣辉, 等 .小球藻产三酰甘油过程的代谢途径分析[J].现代化工, 2014, 34(9): 55-58, 60. |
ZHANG C , CHENG L H , CHEN R H , et al . Metabolic pathway analysis on enhanced TAG production of chlorella[J]. Modern Chemical Industry, 2014, 34(9): 55-58, 60. | |
87 | CHENG J , YU T , LI T , et al . Using wet microalgae for direct biodiesel production via microwave irradiation[J]. Bioresource Technology, 2013, 131(2): 531-535. |
88 | LIANG F , WEN X , GENG Y , et al . Growth rate and biomass productivity of chlorella as affected by culture depth and cell density in an open circular photobioreactor[J]. Journal of Microbiology and Biotechnology, 2013, 23(4): 539-544. |
89 | FRAPPART M , MASSÉ A , JAFFRIN M Y , et al . Influence of hydrodynamics in tangential and dynamic ultrafiltration system for microalgae separation[J]. Desalination, 2011, 265(1): 279-283. |
90 | HALIM R , HARUN R , DANQUAH M K , et al . Microalgae cell disruption for biofuel development[J]. Applied Energy, 2012, 91(1): 116-121. |
91 | HUANG Y , HONG A , ZHANG D , et al . Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris [J]. Environmental Technology, 2014, 35(8): 931-937. |
92 | BAHADAR, BILAL K M . Process in energy from microalgae: a review[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 128-148. |
93 | 张芳, 程丽华, 徐新华, 等 . 能源微藻采收及油脂提取技术[J].化学进展, 2012, 24(10): 2062-2072. |
ZHANG F , CHENG L H , XU X H , et al . Technologies of microalgal harvesting and lipid extraction[J]. Process in Chemistry, 2012, 24(10): 2062-2072. |
[1] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[2] | 李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
[3] | 高宁博, 胡雅迪, 全翠. 餐厨垃圾的热转化和生物处理研究进展[J]. 化工进展, 2022, 41(S1): 507-515. |
[4] | 余正伟, 张晓霞, 雷杰, 李澳, 王光应, 丁祥, 龙红明. 废CeO x -MnO x 基SCR脱硝催化剂还原酸浸综合回收铈锰[J]. 化工进展, 2022, 41(9): 5122-5131. |
[5] | 蔡思超, 周静, 杜金泽, 李方舟, 李源森, 何林, 李鑫钢, 王成扬. 煤化工酚基精馏釜残资源化利用过程初步分析[J]. 化工进展, 2022, 41(6): 3360-3371. |
[6] | 王建斌, 陈云, 王可华, 于学鹏, 陈聪, 刘建忠. 工业窑炉协同处置固废研究进展[J]. 化工进展, 2022, 41(3): 1494-1502. |
[7] | 相宏伟, 杨勇, 李永旺. 碳中和目标下的煤化工变革与发展[J]. 化工进展, 2022, 41(3): 1399-1408. |
[8] | 聂紫萌, 杨点, 熊玉路, 李英杰, 田森林, 宁平. 电解锰渣浆液烟气脱硫性能及机制[J]. 化工进展, 2022, 41(2): 1063-1072. |
[9] | 刘安仓, 陈川, 陈建忠, 陈裕忠, 朱晨亮, 江永, 鲁福身, 王双喜, 钟子宜, 宋一兵. 催化反应技术在滨海电厂的CO2资源化利用和海洋防污领域的应用[J]. 化工进展, 2021, 40(9): 5145-5155. |
[10] | 姜亚光, 王瑞康, 王倩, 李春喜. 以三氯乙烯为供氢剂将四氯化碳转化为氯仿[J]. 化工进展, 2021, 40(2): 1114-1121. |
[11] | 陈宏, 吴军, 陈晨, 涂智, 禹丽娥, 杨恩喆, 杨敏, 肖本益. 有机废弃物厌氧共发酵制氢研究进展[J]. 化工进展, 2021, 40(1): 440-450. |
[12] | 方书起,崔俊乐,史兆臣,白净,常春,李攀. 医疗固体废弃物热解及其产物特性分析[J]. 化工进展, 2019, 38(12): 5587-5593. |
[13] | 蒋旭光, 方纯琪, 金余其, 吕国钧, 袁伟中, 陈锡炯, 罗伟忠. 含铬制革废弃物处理的研究现状和研究思路[J]. 化工进展, 2018, 37(02): 752-760. |
[14] | 陶雷, 王学谦, 宁平, 李子燕, 王郎郎. 矿浆烟气脱硫及资源化研究进展[J]. 化工进展, 2017, 36(05): 1868-1879. |
[15] | 黄欣怡, 张珺婷, 王凡, 贺文智, 李光明. 餐厨垃圾资源化利用及其过程污染控制研究进展[J]. 化工进展, 2016, 35(09): 2945-2951. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |