化工进展 ›› 2019, Vol. 38 ›› Issue (01): 495-504.DOI: 10.16085/j.issn.1000-6613.2018-1160
杨冬1,2(),周致远1,丁菲3,4,赵旭阳1,陈瑶3,4,姜忠义3,4()
收稿日期:
2018-06-03
修回日期:
2018-08-24
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
姜忠义
作者简介:
杨冬(1973—),男,副教授,硕士生导师,研究方向为光催化。E-mail:<email>dongyang@tju.edu.cn</email>。|姜忠义,教授,博士生导师,研究方向为光催化。E-mail:<email>zhyjiang@tju.edu.cn</email>。
基金资助:
Dong YANG1,2(),Zhiyuan ZHOU1,Fei DING3,4,Xuyang ZHAO1,Yao CHEN3,4,Zhongyi JIANG3,4()
Received:
2018-06-03
Revised:
2018-08-24
Online:
2019-01-05
Published:
2019-01-05
Contact:
Zhongyi JIANG
摘要:
特殊形貌石墨相氮化碳(g-C3N4)基材料具有多级结构、可调变的短程电子传递路径等特点,能较好地解决传统g-C3N4基材料存在的比表面积小、可见光利用效率低以及光生载流子易复合等问题,因而具有广阔的发展前景和应用潜力。本文对管/棒/阵列、多孔微球、凝胶和仿生形貌等特殊形貌g-C3N4基光催化材料的研究进展进行了系统评述,并对该类材料的形貌与催化功能之间的构效关系进行了分析和总结。指出目前该类材料的研究尚处于起步阶段,还存在着形貌数量种类偏少、合成方法较少、构效关系认识不够深入等问题。因此,该领域未来应该在拓展形貌种类、调控能带位置、光生载流子转移机理和分子模拟等方面进行深入研究,为高性能光催化剂的研制提供更好的思路。
中图分类号:
杨冬, 周致远, 丁菲, 赵旭阳, 陈瑶, 姜忠义. 特殊形貌g-C3N4基光催化材料的研究进展[J]. 化工进展, 2019, 38(01): 495-504.
Dong YANG, Zhiyuan ZHOU, Fei DING, Xuyang ZHAO, Yao CHEN, Zhongyi JIANG. Research advances of g-C3N4-based photocatalytic materials with special morphologies[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 495-504.
催化剂种类 | 制备方法 | 形貌 | 应用领域 | 光催化活性 | 参考文献 |
---|---|---|---|---|---|
g-C3N4 | 热聚合 | 体相 | 产氢 | 12μmol·h-1 | Wang等[ |
g-C3N4 | 模板法 | 手性纳米棒 | 产氢 | 74 μmol·h-1 | Zheng等[ |
g-C3N4 | 自组装 | 氮缺陷纳米管 | 产氢 | 118.5μmol·h-1 | Mo等[ |
g-C3N4 | 水热合成 | 自掺杂六棱形微管 | 产氢 | 1575μmol·h-1·g-1 | Tong等[ |
g-C3N4/InVO4 | 无模板法 | 纳米棒/空心球 | 降解抗生素 | 体相g-C3N4降解速率的2.5倍 | You等[ |
g-C3N4 | 微波加热 | 金字塔阵列 | 降解罗丹明B | 脱色率99.5%(2h) | Yu等[ |
g-C3N4 | 模板法 | 多孔微球 | 产氢 | 157μmol·h-1 | Zhao等[ |
g-C3N4 | 模板法 | 多壳层微囊 | 产氢 | 630μmol·h·-1·g-1 | Tong等[ |
g-C3N4 | 水热合成 | 凝胶 | 性能研究 | 氧化还原能力增强 | Zeng等[ |
g-C3N4/GO | 水热合成 | 凝胶 | 降解甲基橙 | 去除率92%(4h) | Tong等[ |
g-C3N4 /GO | 超声化学 | 凝胶 | 去除NO | NO去除率为64.9%和60.7% | Li等[ |
g-C3N4 | 无模板法 | 磷掺杂纳米花 | 产氢 | 104μmol·h-1 | Zhu等[ |
g-C3N4/C | 超分子组装 | 微米花 | 性能研究 | 高析氧反应活性 | Tong等[ |
g-C3N4 | 热结晶 | 树状结构 | 产氢 | 178μmol·h-1 | Song等[ |
表1 具有代表性的特殊形貌g-C3N4基光催化材料的性能比较
催化剂种类 | 制备方法 | 形貌 | 应用领域 | 光催化活性 | 参考文献 |
---|---|---|---|---|---|
g-C3N4 | 热聚合 | 体相 | 产氢 | 12μmol·h-1 | Wang等[ |
g-C3N4 | 模板法 | 手性纳米棒 | 产氢 | 74 μmol·h-1 | Zheng等[ |
g-C3N4 | 自组装 | 氮缺陷纳米管 | 产氢 | 118.5μmol·h-1 | Mo等[ |
g-C3N4 | 水热合成 | 自掺杂六棱形微管 | 产氢 | 1575μmol·h-1·g-1 | Tong等[ |
g-C3N4/InVO4 | 无模板法 | 纳米棒/空心球 | 降解抗生素 | 体相g-C3N4降解速率的2.5倍 | You等[ |
g-C3N4 | 微波加热 | 金字塔阵列 | 降解罗丹明B | 脱色率99.5%(2h) | Yu等[ |
g-C3N4 | 模板法 | 多孔微球 | 产氢 | 157μmol·h-1 | Zhao等[ |
g-C3N4 | 模板法 | 多壳层微囊 | 产氢 | 630μmol·h·-1·g-1 | Tong等[ |
g-C3N4 | 水热合成 | 凝胶 | 性能研究 | 氧化还原能力增强 | Zeng等[ |
g-C3N4/GO | 水热合成 | 凝胶 | 降解甲基橙 | 去除率92%(4h) | Tong等[ |
g-C3N4 /GO | 超声化学 | 凝胶 | 去除NO | NO去除率为64.9%和60.7% | Li等[ |
g-C3N4 | 无模板法 | 磷掺杂纳米花 | 产氢 | 104μmol·h-1 | Zhu等[ |
g-C3N4/C | 超分子组装 | 微米花 | 性能研究 | 高析氧反应活性 | Tong等[ |
g-C3N4 | 热结晶 | 树状结构 | 产氢 | 178μmol·h-1 | Song等[ |
1 | WANG Q , HISATOMI T , JIA Q , et al . Scalable water splitting on particulate photocatalyst sheets with a solar to hydrogen energy conversion efficiency exceeding 1%[J]. Nature Materials, 2016, 15(6): 611-611. |
2 | MAEDA K , TERAMURE K , LU D , et al . Photocatalyst releasing hydrogen from water[J]. Nature, 2006, 440(7082): 295-295. |
3 | SCHULTA D M , YOON T P . Solar synthesis:prospects in visible light photocatalysis[J]. Science, 2014, 343(6174): 1239176-1239176. |
4 | FUJISHIMA A , HONDA K . Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
5 | YANG D , ZOU X Y , TONG Z W , et al . Fabrication of SrTiO3, nanotubes via an isomorphic conversion strategy[J]. Journal of Nanoparticle Research, 2018, 20(2): 30-30. |
6 | 郭雅容, 陈志鸿, 刘琼, 等 . 石墨相氮化碳光催化剂研究进展[J]. 化工进展, 2016, 35(7): 2063-2070. |
GUO Y R , CHENG Z H , LIU Q , et al .Research progress of graphitic carbon nitride in photocatalysis[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2063-2070. | |
7 | WANG X C , MAEDA K , THOMAS A , et al . A metal free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. |
8 | MA L, KANG X X , HU S Z , et al . Preparation of Fe/P co-doped graphitic carbon nitride with enhanced visible light photocatalytic activity[J]. Journal of Molecular Catalysis, 2015, 157(4): 840-842. |
9 | LI X B , HARTLEY G , WARD A J , et al . Hydrogenated defects in graphitic carbon nitride nanosheets for improved photocatalytic hydrogen evolution[J]. Journal of Physical Chemistry C, 2015, 119(27): 14938−14946. |
10 | SRINIVASU K , MODAK B , GHOSH S K . Porous graphitic carbon nitride:a possible metal free photocatalyst for water splitting[J]. Journal of Physical Chemistry C, 2014, 118(46): 26479−26484. |
11 | LU W Y , XU T F , YU W , et al . Synergistic photocatalytic properties and mechanism of g-C3N4, coupled with zinc phthalocyanine catalyst under visible light irradiation[J]. Applied Catalysis B:Environmental, 2016, 180:20-28. |
12 | WANG J , QIN C , WANG H , et al . Supporting information exceptional photocatalytic activities for CO2 conversion on Al/O bridged g-C 3N4 /α-Fe 2O3 Z-scheme nanocomposites and mechanism insight with isotopes[J]. Applied Catalysis B: Environmental, 2018, 221:459-466. |
13 | LIU L , QI Y , HU J , et al . Efficient visible light photocatalytic hydrogen evolution and enhanced photostability of core shell Cu2O/g-C3N4 octahedra[J]. Applied Surface Science, 2015, 351:1146-1154. |
14 | ZHU B , ZHANG L , CHENG B , et al . First principle calculation study of tri-s-triazine based g-C3N4: a review[J]. Applied Catalysis B: Environmental, 2017, 224:983-999. |
15 | PATNAIK S , SAHOO D P , PADIDA K . An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications[J]. Renewable & Sustainable Energy Reviews, 2018, 82:1297-1312. |
16 | MASIH D , MA Y, ROHANI S . g-C3N4, Based noble metal free photocatalyst systems:a review[J]. Applied Catalysis B:Environmental, 2017, 206:556-588. |
17 | WANG Y , JIANG Q , SHANG J K , et al . Advances in the synthesis of mesoporous carbon nitride materials[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1913-1928. |
18 | FU J W , YU J G , JIANG C J , et al . g-C3N4 Based heterostructured photocatalysts[J]. Advanced Energy Materials, 2017, 8(3): 1701503. |
19 | NASERI A , SAMADI M , POURJAVADI A , et al . Graphitic carbon nitride (g-C3N4) based photocatalysts for solar hydrogen generation:recent advances and future development directions[J]. Journal of Materials Chemistry A, 2017, 5: 23406-23433. |
20 | XU Y , KRAFT M , XU R . Metal free carbonaceous electrocatalysts and photocatalysts for water splitting[J]. Chemical Society Reviews, 2016, 45(11): 3039-3052. |
21 | CAO S , LOW J , YU J , et al . Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 46(21): 2150-2176. |
22 | ZHENG Y , LIN L , WANG B , et al . Graphitic carbon nitride polymers toward sustainable photoredox catalysis[J]. Angewandte Chemie International Edition, 2015, 54(44): 2868-12884. |
23 | LIU J , WANG H , ANOTONIETTI M . Graphitic carbon nitride “reloaded”:emerging applications beyond (photo)catalysis[J]. Chemical Society Reviews, 2016, 45(8): 2308-2326. |
24 | LI J , LI H , ZHAN G , et al . Solar water splitting and nitrogen fixation with layered bismuth oxyhalides[J]. Accounts of Chemical Research, 2016, 50(1): 112-121. |
25 | GONG Y , LI M , WANG Y . Carbon nitride in energy conversion and storage:recent advances and future prospects[J]. Chemsuschem, 2015, 8(6): 931-946. |
26 | DING F , YANG D , TING Z W , et al . Graphitic carbon nitride based nanocomposites as visible light driven photocatalysts for environmental purification[J]. Environmental Science Nano, 2017, 4(7): 1455-1469. |
27 | 范乾靖, 刘建军, 于迎春, 等 . 新型非金属光催化剂——石墨型氮化碳的研究进展[J]. 化工进展, 2014, 33(5): 1185-1194. |
FAN Q J , LIU J H , YU Y C , et al . Research progress in a new metal free photocatalyst graphitic carbon nitride[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1185-1194. | |
28 | TONG H , OUYANG S , BI Y , et al . Nano photocatalytic materials:possibilities and challenges[J]. Advanced Materials, 2012, 24(2): 229-251 |
29 | LI H J , QIAN D J , CHEN M . A templateless infrared heating process for fabricating carbon nitride nanorods with efficient photocatalytic H2 evolution[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25162-25170. |
30 | CUI Y , DING Z , FU X , et al . Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis[J]. Angewandte Chemie International Edition, 2012, 124(47): 11814-11818. |
31 | FU J , ZHU B , JIANG C , et al . Hierarchical horous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity[J]. Small, 2017, 13(15): 1603938. |
32 | ZHAO Y , WANG Y , LIU X , et al . Carbon quantum dot implanted graphite carbon nitride nanotubes:excellent charge separation and enhanced photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition, 2018, 57:5765-5771. |
33 | ZHU Y , MARIANOV A N , XU H , et al . Bimetallic Ag-Cu supported on graphitic carbon nitride nanotubes for improved visible light photocatalytic hydrogen production[J]. ACS Applied Materials & Interfaces, 2018, 10 (11): 9468-9477. |
34 | ZHENG Y , LIN L , YE X , et al . Helical graphitic carbon nitrides with photocatalytic and optical activities[J]. Angewandte Chemie International Edition, 2014, 53(44): 11926-12930. |
35 | LI X H , WANG X , ANTONIETTI M . Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles:hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step[J]. Chemical Science, 2012, 3(6): 2170-2174. |
36 | JIAN L , HUANG J , HAN Z , et al . Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8434-8440. |
37 | MO Z , XU H , CHEN Z , et al . Self-assembled synthesis of defect engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy[J]. Applied Catalysis B:Environmental, 2017, 225:154-161. |
38 | ONG W J , TAN L L , NG Y H , et al . Graphitic carbon nitride (g-C3N4) based photocatalysts for artificial photosynthesis and environmental remediation:are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159-7329. |
39 | TONG Z W , YANG D , SUN Y Y , et al . Tubular g-C3N4 isotype heterojunction: enhanced visible light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer[J]. Small, 2016, 12(30): 4093-4101. |
40 | YOU Z Y , SU Y X , YU Y , et al . Preparation of g-C3N4, nanorod/InVO4, hollow sphere composite with enhanced visible light photocatalytic activities[J]. Applied Catalysis B:Environmental, 2017, 213:127-135. |
41 | ZHENG Y , LIU J , LIANG J , et al . Graphitic carbon nitride materials:controllable synthesis and applications in fuel cells and photocatalysis[J]. Energy & Environmental Science, 2012, 5(5): 6717-6731. |
42 | YU Y Z , WANG C C , LUO L H , et al . An environment friendly route to synthesize pyramid like g-C3N4 arrays for efficient degradation of rhodamine B under visible-light irradiation[J]. Chemical Engineering Journal, 2017, 334:1869-1877. |
43 | LI Y , JIANG Y , RUAN Z , et al . Simulation guided synthesis of graphitic carbon nitride beads with 3D interconnected and continuous meso/macropore channels for enhanced light absorption and photocatalytic performance[J]. Journal of Materials Chemistry A, 2017, 5:21300-21312. |
44 | WANG J , ZHANG C , SHEN Y , et al . Environment friendly preparation of porous graphite phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity[J]. Journal of Materials Chemistry A, 2015, 3(9): 5126-5131. |
45 | ZHAO S , ZHANG Y W , ZHOU Y M , et al . Facile one step synthesis of hollow mesoporous g-C3N4 spheres with ultrathin nanosheets for photoredox water splitting[J]. Carbon, 2018, 126:247-256. |
46 | SHEN W , REN L , ZHOU H , et al . Facile one pot synthesis of bimodal mesoporous carbon nitride and its function as a lipase immobilization support[J]. Journal of Materials Chemistry, 2011, 21(11): 3890-3894. |
47 | WANG Y , WANG X , ANTONIETTI M , et al . Facile one pot synthesis of nanoporous carbon nitride solids by using soft templates[J]. Chemsuschem, 2010, 3(4): 435-439. |
48 | TONG Z W , YANG D , LI Z , et al . Thylakoid inspired multishell g-C3N4 nanocapsules with enhanced visible light harvesting and electron transfer properties for high efficiency photocatalysis[J]. ACS Nano, 2017, 11(1): 1103-1112. |
49 | SUN J , ZHANG J , ZHANG M , et al . Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012, 3(4): 1139-1139. |
50 | ZHENG D , HUANG C , WANG X . Post annealing reinforced hollow carbon nitride nanospheres for hydrogen photosynthesi[J]. Nanoscale, 2014, 7(2): 465-470. |
51 | ZOU Y , SHI J W , MA D, et al . In situ synthesis of C-doped TiO2/g-C3N4, core shell hollow nanospheres with enhanced visible light photocatalytic activity for H2 evolution[J]. Chemical Engineering Journal, 2017, 322:435-444. |
52 | LI G , CHEN Q , LAN J . Facile synthesis metastable phase induced morphological evolution and crystal ripening, and structure dependent photocatalytic properties of 3D hierarchical anatase superstructures[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22561-22568. |
53 | HWANG S H , YUN J , JANG J . Multi shell porous TiO2 hollow nanoparticles for enhanced light harvesting in dye sensitized solar cells[J]. Advanced Functional Materials, 2015, 24(48): 7619-7626. |
54 | XIANG Q , LIU Y , ZOU X , et al . Hydrothermal synthesis of a new kind of N-doped graphene gel like hybrid as an enhanced ORR electrocatalyst[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 10842-10850. |
55 | ZENG Y X , LIU C B , WANG L L , et al . A three dimensional graphitic carbon nitride belt network for enhanced visible light photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2016, 4(48): 19003-19010. |
56 | TONG Z W , YANG D , SHI J F , et al . Three dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible light photocatalytic performance[J]. ACS Applied Materials & Interfaces, 2015, 7(46): 25693-25701. |
57 | JIANG W , LUO W , ZONG R , et al . Polyaniline/carbon nitride nanosheets composite hydrogel:a separation free and high efficient photocatalyst with 3D hierarchical structure[J]. Small, 2016, 12(32): 4370-4378. |
58 | ONG W J , TAN L L , CHAI S P , et al . Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4, nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane[J]. Nano Energy, 2015, 13:757-770. |
59 | LI Y , SUN Y , DONG F , et al . Enhancing the photocatalytic activity of bulk g-C3N4 by introducing mesoporous structure and hybridizing with graphene[J]. Journal of Colloid and Interface Science, 2014, 436:29-36. |
60 | ZHU Y P , REN T Z , YUAN Z Y . Mesoporous phosphorus doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance[J]. ACS Applied Materials & Interfaces, 2015, 7(30): 16850-16856. |
61 | TONG Z W , YANG D , ZHAO X Y , et al . Bio-inspired synthesis of three-dimensional porous g-C3N4/Carbon microflowers with enhanced oxygen evolution reactivity[J]. Chemical Engineering Journal, 2017, 337:312-321. |
62 | LIN B , AN H , YAN X , et al . Fish scale structured g-C3N4, nanosheet with unusual spatial electron transfer property for high efficiency photocatalytic hydrogen evolution[J]. Applied Catalysis B:Environmental, 2017, 210:173-183. |
63 | WANG M , JU P , LI J , et al . Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7878-7886. |
64 | LIN X , XU D , CHE G , et al . Construction of leaf-like g-C3N4/Ag/BiVO4 nanoheterostructures with enhanced photocatalysis performance under visible light irradiation[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2017, 513:117-124. |
65 | SONG T , YONG Z P , ZENG J , et al . In situ construction of globe like carbon nitride as self cocatalyst modified tree like carbon nitride for drastic improvement of visible light photocatalytic H2 evolution[J]. Chemcatchem, 2017, 9(21): 4035-4042. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[13] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[14] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[15] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |