化工进展 ›› 2019, Vol. 38 ›› Issue (01): 485-494.DOI: 10.16085/j.issn.1000-6613.2018-1378
姜霞1,2(),李雯3,郭云龙1,2,王璐1,2,李群1,2,李清彪1,2,3()
收稿日期:
2018-07-05
修回日期:
2018-09-29
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
李清彪
作者简介:
姜霞(1989—),女,博士研究生,研究方向为工业催化。E-mail:<email>xingyu20080923@126.com</email>。|李清彪,教授,博士生导师,研究方向为工业催化、生物化工和环境工程。E-mail:<email>kelqb@xmu.edu.cn</email>。
基金资助:
Xia JIANG1,2(),Wen LI3,Yunlong GUO1,2,Lu WANG1,2,Qun LI1,2,Qingbiao LI1,2,3()
Received:
2018-07-05
Revised:
2018-09-29
Online:
2019-01-05
Published:
2019-01-05
Contact:
Qingbiao LI
摘要:
自然环境中长期进化形成的多层次、多维和多尺度天然硬模板结构和一些具有多层次多维结构的天然“软”生物分子可为多级结构纳米材料的设计与制备提供了新的思路。金属氧化物通常作为催化剂的重要组成部分,其制备与催化应用得到广泛关注,生物模板法为金属氧化物的制备提供了一条简单、绿色、有效的合成路线。本文从基于生物模板的制备方法、生物模板在氧化物制备过程中的作用和生物模板在金属氧化物催化应用时的作用方面总结近十年来的研究进展。基于硬模板的制备方法简单高效,可完美地复制结构类似的金属氧化物材料,而软模板能够灵活地调控金属氧化物颗粒的尺寸和分散性。基于生物模板制备金属氧化物的过程往往经历“吸附-成核-生长-组装”多步骤,生物模板起着表面吸附、空间限域、导向等重要作用。就所得金属氧化物的催化应用而言,生物模板法的优势在于能够实现氧化物材料元素的自掺杂、有效改善传质以及特殊的表面结构赋予催化剂优异的催化性能。
中图分类号:
姜霞, 李雯, 郭云龙, 王璐, 李群, 李清彪. 生物模板法制备金属氧化物及其催化应用研究进展[J]. 化工进展, 2019, 38(01): 485-494.
Xia JIANG, Wen LI, Yunlong GUO, Lu WANG, Qun LI, Qingbiao LI. Progress on bio-templated synthesis of metal oxides and their catalytic applications[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 485-494.
硬模板 | 金属氧化物 | 制备方法 | 应用 |
---|---|---|---|
向日葵花粉[ | CoFe2O4 | LBL+SSG②(WCM) | —① |
油菜花粉[ | PGs@(Ti-Zr)O4 | WCM | 蛋白质检测 |
百合花粉[ | TiO x /C或SiO x /C | WCM | 光催化降解活性艳红X-3B染料 |
A.trifida花粉[ | TiO2 | WCM | 光催化降解罗丹明B染料 |
油菜花粉[ | ZrO2 | WCM | 吸附刚果红染料 |
松花粉[ | MgFe2O4/γ-Fe2O3 | WCM | 刚果红染料和二甲胺四环素药物的废水处理 |
P. pterocarpum花粉[ | SnO2 | WCM | —① |
蒲公英花粉[ | CoFe2O4 | WCM | 盐酸阿霉素药物释放 |
荷花花粉[ | MnO/C | WCM | 锂离子电池 |
荷花花粉[ | WO3 | WCM | NO 传感器 |
棕榈树花粉[ | ZnO | WCM | —① |
向日葵花粉[ | 赤铁矿/α-Fe2O3/Fe3O4 | LBL+SSG②(WCM) | —① |
荷花花粉[ | NiO | WCM | NO2传感器 |
松树花粉[ | ZnAl-LDH/ZnCo2O4 | WCM | 吸附刚果红并光催化降解 |
油菜花粉[ | TiO2 | WCM | 1,3-丁二烯加氢 |
向日葵花粉[ | ZrO2 | WCM | 储氢 |
荷花花粉[ | CeO2 | WCM | 光催化降解亚甲基蓝 |
油菜花粉[ | SnO2 | SSG②(WCM) | 气体传感器 |
油菜花粉[ | α-Fe2O3/C | WCM | 气体传感器 |
向日葵花粉[ | Fe3O4 | LBL+SSG②(WCM) | —① |
花/树的花粉[ | CaCO3/CaHPO4 | WCM | 布洛芬药物释放 |
花粉[ | SO4 2?/M1 x O y -M2 x O y (M为Zr,Mo, Ti, Wo) | WCM | 氯苯的硝化反应 |
蒲公英花粉[ | TiO2(板钛矿) | SSG②(WCM) | 光催化降解甲基蓝染料 |
油菜花粉[ | Cu/TiO2 | SSG②(WCM) | 光催化降解氯四环素 |
蝴蝶翅膀[ | SiO2 | CVD | 以获得光子结构和光催化为主 |
Al2O3/ TiO2 | ALD | ||
Y2O3, TiO2/ SiO2, ZnO, ZrO2/ TiO2/ SnO2/ Fe3O4/ WO3/ Bi2WO6, BiVO4 | WCM | ||
芭蕉叶[ | TiO2 | WCM | 光催化降解亚甲基蓝染料 |
甘蔗叶[ | TiO2 | WCM | 光催化降解罗丹明6G |
枫树叶[ | CeO2 | WCM | 染料废水净化 |
芳樟叶[ | MgO | WCM | 除菌 |
香樟叶[ | N-ZnO | WCM | 光催化降解亚甲基蓝 |
A.vitifoliaBuch.树叶[ | Pt/N-doped TiO2 | SSG②(WCM) | 光催化产氢 |
表1 以硬模板制备金属氧化物的部分报道
硬模板 | 金属氧化物 | 制备方法 | 应用 |
---|---|---|---|
向日葵花粉[ | CoFe2O4 | LBL+SSG②(WCM) | —① |
油菜花粉[ | PGs@(Ti-Zr)O4 | WCM | 蛋白质检测 |
百合花粉[ | TiO x /C或SiO x /C | WCM | 光催化降解活性艳红X-3B染料 |
A.trifida花粉[ | TiO2 | WCM | 光催化降解罗丹明B染料 |
油菜花粉[ | ZrO2 | WCM | 吸附刚果红染料 |
松花粉[ | MgFe2O4/γ-Fe2O3 | WCM | 刚果红染料和二甲胺四环素药物的废水处理 |
P. pterocarpum花粉[ | SnO2 | WCM | —① |
蒲公英花粉[ | CoFe2O4 | WCM | 盐酸阿霉素药物释放 |
荷花花粉[ | MnO/C | WCM | 锂离子电池 |
荷花花粉[ | WO3 | WCM | NO 传感器 |
棕榈树花粉[ | ZnO | WCM | —① |
向日葵花粉[ | 赤铁矿/α-Fe2O3/Fe3O4 | LBL+SSG②(WCM) | —① |
荷花花粉[ | NiO | WCM | NO2传感器 |
松树花粉[ | ZnAl-LDH/ZnCo2O4 | WCM | 吸附刚果红并光催化降解 |
油菜花粉[ | TiO2 | WCM | 1,3-丁二烯加氢 |
向日葵花粉[ | ZrO2 | WCM | 储氢 |
荷花花粉[ | CeO2 | WCM | 光催化降解亚甲基蓝 |
油菜花粉[ | SnO2 | SSG②(WCM) | 气体传感器 |
油菜花粉[ | α-Fe2O3/C | WCM | 气体传感器 |
向日葵花粉[ | Fe3O4 | LBL+SSG②(WCM) | —① |
花/树的花粉[ | CaCO3/CaHPO4 | WCM | 布洛芬药物释放 |
花粉[ | SO4 2?/M1 x O y -M2 x O y (M为Zr,Mo, Ti, Wo) | WCM | 氯苯的硝化反应 |
蒲公英花粉[ | TiO2(板钛矿) | SSG②(WCM) | 光催化降解甲基蓝染料 |
油菜花粉[ | Cu/TiO2 | SSG②(WCM) | 光催化降解氯四环素 |
蝴蝶翅膀[ | SiO2 | CVD | 以获得光子结构和光催化为主 |
Al2O3/ TiO2 | ALD | ||
Y2O3, TiO2/ SiO2, ZnO, ZrO2/ TiO2/ SnO2/ Fe3O4/ WO3/ Bi2WO6, BiVO4 | WCM | ||
芭蕉叶[ | TiO2 | WCM | 光催化降解亚甲基蓝染料 |
甘蔗叶[ | TiO2 | WCM | 光催化降解罗丹明6G |
枫树叶[ | CeO2 | WCM | 染料废水净化 |
芳樟叶[ | MgO | WCM | 除菌 |
香樟叶[ | N-ZnO | WCM | 光催化降解亚甲基蓝 |
A.vitifoliaBuch.树叶[ | Pt/N-doped TiO2 | SSG②(WCM) | 光催化产氢 |
软模板 | 材料 | 结构特点 | 应用 |
---|---|---|---|
细菌纤维素[ | ZnO | 花朵状纳米颗粒 | 抗菌剂 |
纸浆[ | TiO2 | 纤维状, 大孔 | 光降解罗丹明B |
淀粉[ | ZnO | 多个小球沉积形成“甜甜圈”状等 | 光催化降解苯酚 |
酵母细胞[ | TiO2 | 椭圆形多级有序介孔结构 | 光降解COD |
笼型去铁蛋白[ | Co3O4 | 小尺寸、窄粒径分布颗粒(粒径5nm±0.7nm) | —① |
无害利斯特菌铁蛋白[ | Co3O4 | 小尺寸纳米颗粒(平均粒径5nm) | —① |
Mms6蛋白[ | Fe3O4 | 球状纳米颗粒 | —① |
氨基酸[ | TiO2 | 10~15nm立方块, 大孔径纳米棒,花球状纳米颗粒 | 光降解亚甲基蓝、布洛芬、萘酚蓝黑、甲基橙 |
天冬氨酸[ | TiO2 | 介孔纳米球 | 葡萄糖脱水制糠醛 |
氨基酸[ | TiO2 | 介孔纳米球 | Li离子、Na离子电池 |
甘氨酸[ | TiO2 | 介孔空心纳米球 | 光致发光 |
表2 以软模板制备金属氧化物的部分报道
软模板 | 材料 | 结构特点 | 应用 |
---|---|---|---|
细菌纤维素[ | ZnO | 花朵状纳米颗粒 | 抗菌剂 |
纸浆[ | TiO2 | 纤维状, 大孔 | 光降解罗丹明B |
淀粉[ | ZnO | 多个小球沉积形成“甜甜圈”状等 | 光催化降解苯酚 |
酵母细胞[ | TiO2 | 椭圆形多级有序介孔结构 | 光降解COD |
笼型去铁蛋白[ | Co3O4 | 小尺寸、窄粒径分布颗粒(粒径5nm±0.7nm) | —① |
无害利斯特菌铁蛋白[ | Co3O4 | 小尺寸纳米颗粒(平均粒径5nm) | —① |
Mms6蛋白[ | Fe3O4 | 球状纳米颗粒 | —① |
氨基酸[ | TiO2 | 10~15nm立方块, 大孔径纳米棒,花球状纳米颗粒 | 光降解亚甲基蓝、布洛芬、萘酚蓝黑、甲基橙 |
天冬氨酸[ | TiO2 | 介孔纳米球 | 葡萄糖脱水制糠醛 |
氨基酸[ | TiO2 | 介孔纳米球 | Li离子、Na离子电池 |
甘氨酸[ | TiO2 | 介孔空心纳米球 | 光致发光 |
1 | WHITE R J , LUQUE R , BUDARIN V L , et al . Supported metal nanoparticles on porous materials. Methods and applications[J]. Chemical Society Reviews, 2009, 38(2): 481-494. |
2 | ZHOU H , FAN T , ZHANG D . Biotemplated materials for sustainable energy and environment: current status and challenges[J]. ChemSusChem, 2011, 4(10): 1344-1387. |
3 | CHEN X , MAO S S . Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007, 107(7): 2891-2959. |
4 | YANG X Y , CHEN L H , LI Y , et al . Hierarchically porous materials: synthesis strategies and structure design[J]. Chemical Society Reviews, 2017, 46(2): 481-558. |
5 | ZAN G , WU Q . Biomimetic and bioinspired synthesis of nanomaterials/nanostructures[J]. Advanced Materials, 2016, 28(11): 2099-2147. |
6 | GOODWIN W B , SHIN D , SABO D , et al . Tunable multimodal adhesion of 3D, nanocrystalline CoFe2O4 pollen replicas[J]. Bioinspiration & Biomimetics, 2017, 12(6): 066009. |
7 | WANG J , LI J , WANG Y , et al . A novel double-component MOAC honeycomb composite with pollen grains as a template for phosphoproteomics research[J]. Talanta, 2016, 154: 141-149. |
8 | QIN L , LIU M , WU Y , et al . Bioinspired hollow and hierarchically porous MO x (M=Ti,Si)/carbon microellipsoids supported with Fe2O3 for heterogenous photochemical oxidation[J]. Applied Catalysis B: Environmental, 2016, 194: 50-60. |
9 | ERDOGAN D A , OZENSOY E . Hierarchical synthesis of corrugated photocatalytic TiO2 microsphere architectures on natural pollen surfaces[J]. Applied Surface Science, 2017, 403: 159-167. |
10 | ZHAO J , GE S , LIU L , et al . Microwave solvothermal fabrication of zirconia hollow microspheres with different morphologies using pollen templates and their dye adsorption removal[J]. Industrial & Engineering Chemistry Research, 2017, 57(1): 231-241. |
11 | LU L , LI J , YU J , et al . A hierarchically porous MgFe2O4/γ-Fe2O3 magnetic microspheres for efficient removals of dye and pharmaceutical from water[J]. Chemical Engineering Journal, 2016, 283: 524-534. |
12 | FAZIL A A , BHANU J U , AMUTHA A , et al . A facile bio-replicated synthesis of SnO2 motifs with porous surface by using pollen grains of Peltophorumpterocarpum as a template[J]. Microporous and Mesoporous Materials, 2015, 212: 91-99. |
13 | CAI B , ZHAO M , MA Y, et al . Bioinspired formation of 3D hierarchical CoFe2O4 porous microspheres for magnetic-controlled drug release[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1327-1333. |
14 | ZHU W , HUANG H , ZHANG W , et al . Synthesis of MnO/C omposites derived from pollen template for advanced lithium-ion batteries[J]. Electrochimica Acta, 2015, 152: 286-293. |
15 | WANG X X , TIAN K , LI H Y , et al . Bio-templated fabrication of hierarchically porous WO3 microspheres from lotus pollens for NO gas sensing at low temperatures[J]. RSC Advances, 2015, 5(37): 29428-29432. |
16 | AZIZI S , NAMVAR F , MOHAMAD R , et al . Facile biosynthesis and characterization of palm pollen stabilized ZnO nanoparticles[J]. Materials Letters, 2015, 148: 106-109. |
17 | GOMEZ I J , GOODWIN W B , SABO D , et al . Three-dimensional magnetite replicas of pollen particles with tailorable and predictable multimodal adhesion[J]. Journal of Materials Chemistry C, 2015, 3(3): 632-643. |
18 | TIAN K , WANG X X , LI H Y , et al . Lotus pollen derived 3-dimensional hierarchically porous NiO microspheres for NO2 gas sensing[J]. Sensors and Actuators B: Chemical, 2016, 227: 554-560. |
19 | YU J , LU L , LI J , et al . Biotemplated hierarchical porous-structure of ZnAl-LDH/ZnCo2O4 composites with enhanced adsorption and photocatalytic performance[J]. RSC Advances, 2016, 6(16): 12797-12808. |
20 | JIANG X , LIU Y , HAO H , et al . Rape pollen-templated synthesis of C, N self-doped hierarchical TiO2 for selective hydrogenation of 1,3-butadiene[J]. ACS Sustainable Chemistry & Engineering, 2017, 6(1): 882-888. |
21 | YANG X , SONG X , WEI Y , et al . Synthesis of spinous ZrO2 core-shell microspheres with good hydrogen storage properties by the pollen bio-template route[J]. Scripta Materialia, 2011, 64(12): 1075-1078. |
22 | QIAN J , CHEN Z , LIU C , et al . Improved visible-light-driven photocatalytic activity of CeO2 microspheres obtained by using lotus flower pollen as biotemplate[J]. Materials Science in Semiconductor Processing, 2014, 25: 27-33. |
23 | SONG F , SU H , HAN J , et al . Bioinspired hierarchical tin oxide scaffolds for enhanced gas sensing properties[J]. The Journal of Physical Chemistry C, 2012, 116(18): 10274-10281. |
24 | YANG F , SU H , ZHU Y , et al . Bioinspired synthesis and gas-sensing performance of porous hierarchical α-Fe2O3/C nanocomposites[J]. Scripta Materialia, 2013, 68(11): 873-876. |
25 | BRANDON GOODWIN W , GOMEZ I J , FANG Y , et al . Conversion of pollen particles into three-dimensional ceramic replicas tailored for multimodal adhesion[J]. Chemistry of Materials, 2013, 25(22): 4529-4536. |
26 | HALL S R , BOLGER H , MANN S . Morphosynthesis of complex inorganic forms using pollen grain templates[J]. Chemical Communications, 2003(22): 2784-2785. |
27 | WANGP C , YAO K , ZHU J , et al . Preparation, catalytic performance and theoretical study of porous sulfated binary metal oxides shell (SO4 2−/M1 x O y -M2 x O y ) using pollen grain templates[J]. Catalysis Communications, 2013, 39: 90-95. |
28 | HALL S R , SWINERD V M , NEWBY F N , et al . Fabrication of porous titania(brookite) microparticles with complex morphology by sol-gel replication of pollen grains[J]. Chemistry of Materials, 2006, 18(3): 598-600. |
29 | BU D , ZHUANG H . Synthesis, characterization, and photocatalytic studies of copper-doped TiO2 hollow spheres using rape pollen as a novel biotemplate[J]. Catalysis Communications, 2012, 29: 24-28. |
30 | BU D , ZHUANG H . Biotemplated synthesis of high specific surface area copper-doped hollow spherical titania and its photocatalytic research for degradatingchlorotetracycline[J]. Applied Surface Science, 2013, 265: 677-685. |
31 | GU J , ZHANG W , SU H , et al . Morphology genetic materials templated from natural species[J]. Advanced Materials, 2015, 27(3): 464-478. |
32 | 马欢, 刘伟伟, 朱苏文, 等 . 基于芭蕉叶分级结构的 TiO2材料的制备及其吸附-光催化性能的研究[J]. 化学学报, 2012, 70(22): 2353-2358. |
MA H, LIU W W , ZHU S W , et al . Biotemplatedhierarchical TiO2 derived from banana leaf and its adsorption-photocatalytic performance[J]. Acta Chimica Sinica, 2012, 70(22): 2353-2358. | |
33 | LI X , FAN T , ZHOU H , et al . Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green-leaf biotemplates[J]. Advanced Functional Materials, 2009, 19(1): 45-56. |
34 | 陈丰, 陈志刚, 钱君超, 等 . 以枫叶为模板合成分级多孔氧化铈材料及其催化性能[J]. 无机材料学报, 2012, 27(1): 69-73. |
CHEN F , CHEN Z G , QIAN J C , et al .Hierarchicalporous ceria synthesized by maple leaf templates andits catalytic performance[J]. Journal of Inorganic Materials, 2012, 27(1): 69-73. | |
35 | YANG D , FAN T , ZHANG D , et al . Biotemplated hierarchical porous material: the positively charged leaf[J]. Chemistry: A European Journal, 2013, 19(15): 4742-4747. |
36 | ZHOU H , FAN T , LI X , et al . Biomimetic photocatalyst system derived from the natural prototype in leaves for efficient visible-light-driven catalysis[J]. Journal of Materials Chemistry, 2009, 19(18): 2695-2703. |
37 | ZHOU H , LI X , FAN T , et al . Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis[J]. Advanced Materials, 2010, 22(9): 951-956. |
38 | COOK G , TIMMS P L , GÖLTNER-SPICKERMANN C . Exact replication of biological structures by chemical vapor deposition of silica[J]. Angewandte Chemie: International Edition, 2003, 42(5): 557-559. |
39 | YUAN W , YUAN P , LIU D , et al . In situ hydrothermal synthesis of a novel hierarchically porous TS-1/modified-diatomite composite for methylene blue (MB) removal by the synergistic effect of adsorption and photocatalysis[J]. Journal of Colloid and Interface Science, 2016, 462: 191-199. |
40 | KOCHKINA N E , AGAFONOV A V , VINOGRADOV A V , et al . Photocatalytic activity of biomorphic TiO2 fibers obtained by ultrasound-assisted impregnation of cellulose with titanium polyhydroxocomplexes[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5148-5155. |
41 | DHANALAKSHMI A , PALANIMURUGAN A , NATARAJAN B . Enhanced antibacterial effect using carbohydrates biotemplate of ZnO nano thin films[J]. Carbohydrate Polymers, 2017, 168: 191-200. |
42 | CARP O , TIRSOAGA A , JURCA B , et al . Biopolymer starch mediated synthetic route of multi-spheres and donut ZnO structures[J]. Carbohydrate Polymers, 2015, 115: 285-293. |
43 | BOURY B , PLUMEJEAU S . Metal oxides and polysaccharides: an efficient hybrid association for materials chemistry[J]. Green Chemistry, 2015, 17(1): 72-88. |
44 | HE W , CUI J , YUE Y , et al . High-performance TiO2 from baker's yeast[J]. Journal of Colloid & Interface Science, 2011, 354(1): 109-115. |
45 | TSUKAMOTO R , IWAHORI K , MURAOKA M , et al . Synthesis of Co3O4 nanoparticles using the cage-shaped protein, apoferritin[J]. Bulletin of the Chemical Society of Japan, 2005, 78(11): 2075-2081. |
46 | ALLEN M , WILLITS D , YOUNG M , et al . Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from listeria innocua[J]. Inorganic chemistry, 2008, 42(20): 6300-6305. |
47 | KASHYAP S , WOEHL T J , LIU X , et al . Nucleation of iron oxide nanoparticles mediated by mms6 protein in situ [J]. ACS Nano, 2014, 8(9): 9097-9106. |
48 | BAKRE P V , TILVE S G , GHOSH N N . Investigation of amino acids as templates for the sol-gel synthesis of mesoporous nano TiO2 for photocatalysis[J]. Monatshefte für Chemie: Chemical Monthly, 2018, 149(1): 1-8. |
49 | EL-SHEIKH S M , KHEDR T M , AMERHAKKI, et al . Visible light activated carbon and nitrogen co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen[J]. Separation & Purification Technology, 2017, 173: 258-268. |
50 | CHANG Y , LIU X , CAI A , et al . Glycine-assisted synthesis of mesoporous TiO2 nanostructures with improved photocatalytic activity[J]. Ceramics International, 2014, 40(9): 14765-14768. |
51 | TAO Y G , XU Y Q , PAN J , et al . Glycine assisted synthesis of flower-like TiO2 hierarchical spheres and its application in photocatalysis[J]. Materials Science & Engineering B, 2012, 177(18): 1664-1671. |
52 | DE S , DUTTA S , PATRA A K , et al . Self-assembly of mesoporous TiO2nanospheresviaaspartic acid templating pathway and its catalytic application for 5-hydroxymethyl-furfural synthesis[J]. Journal of Materials Chemistry, 2011, 21(43): 17505-17510. |
53 | CHANG Y C , WANG Y X , LEE C Y , et al . Arginine-assisted formation of hierarchical TiO2 microspheres for lithium-ion and sodium-ion battery applications[J]. ChemNanoMat, 2016, 2(12): 1092-1097. |
54 | DING S J , WANG Y M , HONG Z L , et al . Biomolecule‐assisted route to prepare titania mesoporous hollow structures[J]. Chemistry, 2011, 17(41): 11535-11541. |
55 | DING S , HUANG F , MOU X , et al . Mesoporous hollow TiO2 microspheres with enhanced photoluminescence prepared by a smart amino acid template[J]. Journal of Materials Chemistry, 2011, 21(13): 4888-4892. |
56 | MILLE C , TYRODE E C , CORKERY R W . Inorganic chiral 3-D photonic crystals with bicontinuousgyroid structure replicated from butterfly wing scales[J]. Chemical Communications, 2011, 47(35): 9873-9875. |
57 | TAO X , DU J , YANG Y , et al . TiC nanorods derived from cotton fibers: chloride-assisted VLS growth, structure, and mechanical properties[J]. Crystal Growth & Design, 2011, 11(11): 4422-4426. |
58 | FANG Y N , BERRIGAN J D , CAI Y , et al . Syntheses of nanostructured Cu- and Ni-based micro-assemblies with selectable 3-D hierarchical biogenic morphologies[J]. Journal of Materials Chemistry, 2012, 22(4): 1305-1312. |
59 | MEYER K C , COKER E N , BOLINTINEANU D S , et al . Mechanically encoded cellular shapes for synthesis of anisotropic mesoporous particles[J]. Journal of the American Chemical Society, 2014, 136(38): 13138-13141. |
60 | SHIN Y , EXARHOS G J . Conversion of cellulose materials into nanostructured ceramics by biomineralization[J]. Cellulose, 2007, 14(3): 269-279. |
61 | SUZUMOTO Y , OKUDA M , YAMASHITA I . Fabrication of zinc oxide semiconductor nanoparticles in the apoferritin cavity[J]. Crystal Growth & Design, 2012, 12(8): 4130-4134. |
62 | MANN S . Molecular recognition in biomineralization[J]. Nature, 1988, 332(6160): 119-124. |
63 | RAMAKRISHNAN S K , MARTIN M , CLOITRE T , et al . Insights on the facet specific adsorption of amino acids and peptides toward platinum[J]. Journal of Chemical Information and Modeling, 2013, 53(12): 3273-3279. |
64 | SUMEREL J L , YANG W , KISAILUS D , et al . Biocatalytically templated synthesis of titanium dioxide[J]. Chemistry of Materials, 2003, 15(25): 4804-4809. |
65 | JIANG Y , YANG D , ZHANG L , et al . Biomimetic synthesis of titania nanoparticles induced by protamine[J]. Dalton Transactions, 2008 (31): 4165-4171. |
66 | KLEM M T , YOUNG M , DOUGLAS T . Biomimetic synthesis of β-TiO2 inside a viral capsid[J]. Journal of Materials Chemistry, 2008, 18(32): 3821-3823. |
67 | JIANG Y , SUN Q , JIANG Z , et al . The improved stability of enzyme encapsulated in biomimetic titania particles[J]. Materials Science and Engineering C, 2009, 29(1): 328-334. |
68 | SUN Q , JIANG Y , JIANG Z , et al . Green and efficient conversion of CO2 to methanol by biomimetic coimmobilization of three dehydrogenases in protamine-templated titania[J]. Industrial & Engineering Chemistry Research, 2009, 48(9): 4210-4215. |
69 | MALLAMPATI R , VALIYAVEETTIL S . Biomimetic metal oxides for the extraction of nanoparticles from water[J]. Nanoscale, 2013, 5(8): 3395-3399. |
70 | NGUYEN T D , DINH C T , DO T O . Tailoring the assembly, interfaces, and porosity of nanostructures toward enhanced catalytic activity[J]. Chemical Communications, 2014, 51(4):624-635. |
71 | KAPLIN I Y , LOKTEVA E S , GOLUBINA E V , et al . Sawdust as an effective biotemplate for the synthesis of Ce0.8Zr0.2O2 and CuO-Ce0.8Zr0.2O2 catalysts for total CO oxidation[J]. RSC Advances, 2017, 7(81): 51359-51372. |
72 | JIANG X , HUANG X , ZENG W , et al . Facile morphology control of 3D porous CeO2 for CO oxidation [J]. RSC Advances, 2018, 8(38): 21658-21663. |
73 | LIU C , SUN H , QIAN J , et al . Biotemplating synthesis and photocatalytic activities of N-doped CeO2 microcapsule tailored by hemerocallis pollen[J]. Advanced Powder Technology, 2017, 28(10): 2741-2746. |
74 | QIAN J , ZHANG W , WANG Y , et al . Visible-light driven nitrogen-doped petal-morphological ceria nanosheets for water splitting[J]. Applied Surface Science, 2018, 444: 118-125. |
75 | LIU Y , LV H , HU J , et al . Synthesis and characterization of Bi2WO6 nanoplates using egg white as a biotemplate through sol-gel method[J]. Materials Letters, 2015, 139: 401-404. |
76 | QIAN J , CHEN Z , SUN H , et al . Enhanced photocatalytic H2 production on three-dimensional porous CeO2/carbon nanostructure[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9691-9698 |
77 | ZHENG T , TIAN Z , SU B , et al . Facile method to prepare TiO2 hollow fiber materials via replication of cotton fiber [J]. Industrial & Engineering Chemistry Research, 2012, 51(3): 1391-1395. |
78 | KOCHKINA N , AGAFONOV A V , VINOGRADOV A V , et al . Photocatalytic activity of biomorphic TiO2 fibres obtained by ultrasound-assisted impregnation of cellulose with titanium polyhydroxocomplexes[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5148-5155. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |