化工进展 ›› 2019, Vol. 38 ›› Issue (01): 467-484.DOI: 10.16085/j.issn.1000-6613.2018-1094
收稿日期:
2018-05-28
修回日期:
2018-09-17
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
魏嫣莹,王海辉
作者简介:
周胜(1994—),男,硕士研究生,研究方向为金属有机骨架膜。E-mail:<email>zhou.sheng@mail.scut.edu.cn</email>。|魏嫣莹,研究员,硕士生导师,研究方向为膜分离技术。E-mail:<email>ceyywei@scut.edu.cn</email>|王海辉,教授,博士生导师, 研究方向为无机膜。E-mail:<email>hhwang@scut.edu.cn</email>
基金资助:
Sheng ZHOU(),Qianqian HOU,Yanying WEI(),Haihui WANG()
Received:
2018-05-28
Revised:
2018-09-17
Online:
2019-01-05
Published:
2019-01-05
Contact:
Yanying WEI,Haihui WANG
摘要:
膜分离技术因其高效节能的特点,被认为是最有前景的分离技术之一。由于众多待分离的混合组分在物理性质(如尺寸)上极为接近,实现精确的膜分离仍具有极大的挑战。金属有机骨架材料具有孔径精确可调、孔隙率高等优点,使其有望实现对尺寸相近分子的精确筛分,因此可以作为理想的膜材料。本文对传统的多孔膜材料进行了比较,并对基于金属有机骨架材料的多孔膜进行了分类,包括支撑型金属有机骨架膜和混合基质膜。同时,系统地总结了两大类金属有机骨架膜的制备方法及其发展历程,对先进的膜制备技术进行了展望;总结了金属有机骨架膜在气体分离、纳滤及海水淡化、渗透汽化等方面的应用。最后,针对支撑型金属有机骨架膜提出了改善其透量和选择性的思路。
中图分类号:
周胜, 侯倩倩, 魏嫣莹, 王海辉. 金属有机骨架膜的制备与应用进展[J]. 化工进展, 2019, 38(01): 467-484.
Sheng ZHOU, Qianqian HOU, Yanying WEI, Haihui WANG. Recent progress on the preparation and applications of metal organic framework membranes[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 467-484.
1 | TAYLOR P . Energy technology perspectives 2010—Scenarios and strategies to 2050[ R/OL ]. International Energy Agency, Paris, 2010, 74. |
2 | ADIL K , BELMABKHOUT Y , PILLAI R S , et al . Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship[J]. Chemical Society Reviews, 2017, 46(11): 3402-3430. |
3 | SHOLL D S , LIVELY R P . Seven chemical separations: to change the world: purifying mixtures without using heat would lower global energy use, emissions and pollution—and open up new routes to resources[J]. Nature, 2016, 532(7600): 435-438. |
4 | ZOU X , ZHU G . Microporous organic materials for membrane-based gas separation[J]. Advanced Materials, 2018, 30(3): 1700750. |
5 | DAVIS M E . Ordered porous materials for emerging applications[J]. Nature, 2002, 417(6891): 813-821. |
6 | VOGT E , WECKHUYSEN B . Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis[J]. Chemical Society Reviews, 2015, 44(20): 7342-7370. |
7 | LI J , CORMA A , YU J . Synthesis of new zeolite structures[J]. Chemical Society Reviews, 2015, 44(20): 7112-7127. |
8 | JEON M Y , KIM D , KUMAR P , et al . Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets[J]. Nature, 2017, 543(7647): 690. |
9 | SILVA J A , RODRIGUES A E . Sorption and diffusion of n-pentane in pellets of 5A zeolite[J]. Industrial & Engineering Chemistry Research, 1997, 36(2): 493-500. |
10 | MCKEOWN N B , BUDD P M . Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage[J]. Chemical Society Reviews, 2006, 35(8): 675-683. |
11 | SWAIDAN R , GHANEM B , PINNAU I . Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations[J]. ACS Macro Letters, 2015, 4(9): 947-951. |
12 | ROBESON L M , LIU Q , FREEMAN B D , et al . Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship[J]. Journal of Membrane Science, 2015, 476: 421-431. |
13 | FREEMAN B D . Basis of permeability/selectivity trade off relations in polymeric gas separation membranes[J]. Macromolecules, 1999, 32(2): 375-380. |
14 | SWAIDAN R , GHANEM B , LITWILLER E , et al . Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity[J]. Macromolecules, 2015, 48(18): 6553-6561. |
15 | DENNY J M S , MORETON J C , BENZ L , et al . Metal-organic frameworks for membrane-based separations[J]. Nature Reviews Materials, 2016, 1(12): 16078. |
16 | FURUKAWA H , CORDOVA K E , O’KEEFFE M , et al . The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
17 | WILMER C E , LEAF M , LEE C Y , et al . Large-scale screening of hypothetical metal-organic frameworks[J]. Nature Chemistry, 2012, 4(2): 83-89. |
18 | MOULTON B , ZAWOROTKO M J . From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids[J]. Chemical Reviews, 2001, 101(6): 1629-1658. |
19 | GUILLERM V , KIM D , EUBANK J F , et al . A supermolecular building approach for the design and construction of metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 6141-6172. |
20 | YAGHI O M , O’KEEFFE M , OCKWIG N W , et al . Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941): 705-714. |
21 | VAN DE VOORDE B , BUEKEN B , DENAYER J , et al . Adsorptive separation on metal-organic frameworks in the liquid phase[J]. Chemical Society Reviews, 2014, 43(16): 5766-5788. |
22 | LIU J , THALLAPALLY P K , MCGRAIL B P , et al . Progress in adsorption-based CO2 capture by metal-organic frameworks[J]. Chemical Society Reviews, 2012, 41(6): 2308-2322. |
23 | ROSI N L , ECKERT J , EDDAOUDI M , et al . Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622): 1127-1129. |
24 | LI N N , FANE A G , HO W W , et al . Advanced membrane technology and applications[M]. New York: John Wiley & Sons, 2011. |
25 | BURTCH N C , JASUJA H , WALTON K S . Water stability and adsorption in metal-organic frameworks[J]. Chemical Reviews, 2014, 114(20): 10575-10612. |
26 | SUN Y , YANG F , WEI Q , et al . Oriented nano-microstructure-assisted controllable fabrication of metal-organic framework membranes on nickel foam[J]. Advanced Materials, 2016, 28(12): 2374-2381. |
27 | HUANG A , BUX H , STEINBACH F , et al . Molecular-sieve membrane with hydrogen permselectivity: ZIF‐22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker[J]. Angewandte Chemie, 2010, 122(29): 5078-5081. |
28 | XIE Z , YANG J , WANG J , et al . Deposition of chemically modified α-Al2O3 particles for high performance ZIF-8 membrane on a macroporous tube[J]. Chemical Communications, 2012, 48(48): 5977-5979. |
29 | HUANG A , DOU W , CARO J . Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization[J]. Journal of the American Chemical Society, 2010, 132(44): 15562-15564. |
30 | LIU Q , WANG N , CARO J , et al . Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes[J]. Journal of the American Chemical Society, 2013, 135(47): 17679-17682. |
31 | WANG N , LIU Y , QIAO Z , et al . Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H2/CO2 selectivity[J]. Journal of Materials Chemistry A, 2015, 3(8): 4722-4728. |
32 | ZHANG X , LIU Y , LI S , et al . New membrane architecture with high performance: ZIF-8 membrane supported on vertically aligned ZnO nanorods for gas permeation and separation[J]. Chemistry of Materials, 2014, 26(5): 1975-1981. |
33 | ZHOU S , WEI Y , ZHUANG L , et al . Introduction of metal precursors by electrodeposition for the in situ growth of metal-organic framework membranes on porous metal substrates[J]. Journal of Materials Chemistry A, 2017, 5(5): 1948-1951. |
34 | ADATOZ E , AVCI A K , KESKIN S . Opportunities and challenges of MOF-based membranes in gas separations[J]. Separation and Purification Technology, 2015, 152: 207-237. |
35 | RUI Z , JAMES J B , KASIK A , et al . Metal-organic framework membrane process for high purity CO2 production[J]. AIChE Journal, 2016, 62(11): 3836-3841. |
36 | SHAH M , MCCARTHY M C , SACHDEVA S , et al . Current status of metal-organic framework membranes for gas separations: promises and challenges[J]. Industrial & Engineering Chemistry Research, 2012, 51(5): 2179-2199. |
37 | LIU X , DEMIR N K , WU Z , et al . Highly water-stable zirconium metal organic framework UiO-66 membranes supported on alumina hollow fibers for desalination[J]. Journal of the American Chemical Society, 2015, 137(22): 6999-7002. |
38 | SCHNEEMANN A , BON V , SCHWEDLER I , et al . Flexible metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 6062-6096. - |
39 | KOLOKOLOV D I , STEPANOV A G , JOBIC H . Mobility of the 2-methylimidazolate linkers in ZIF-8 probed by 2H NMR: saloon doors for the guests[J]. The Journal of Physical Chemistry C, 2015, 119(49): 27512-27520. |
40 | LIU B , FISCHER R A . Liquid-phase epitaxy of metal organic framework thin films[J]. Science China Chemistry, 2011, 54(12): 1851-1866. |
41 | SHEKHAH O , SWAIDAN R , BELMABKHOUT Y , et al . The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: pure and mixed gas transport study[J]. Chemical Communications, 2014, 50(17): 2089-2092. |
42 | ZACHER D , SCHMID R , LL C W , et al . Surface chemistry of metal-organic frameworks at the liquid-solid interface[J]. Angewandte Chemie International Edition, 2011, 50(1): 176-199. |
43 | CAMPBELL J , DAVIES R , BRADDOCK D C , et al . Improving the permeance of hybrid polymer/metal-organic framework (MOF) membranes for organic solvent nanofiltration (OSN)-development of MOF thin films via interfacial synthesis[J]. Journal of Materials Chemistry A, 2015, 3(18): 9668-9674. |
44 | YAO J , DONG D , LI D , et al . Contra-diffusion synthesis of ZIF-8 films on a polymer substrate[J]. Chemical Communications, 2011, 47(9): 2559-2561. |
45 | HUANG K , LI Q , LIU G , et al . A ZIF-71 hollow fiber membrane fabricated by contra-diffusion[J]. ACS Applied Materials & Interfaces, 2015, 7(30): 16157-16160. |
46 | HOU J , WEI Y , ZHOU S , et al . Highly efficient H2/CO2 separation via an ultrathin metal-organic framework membrane[J]. Chemical Engineering Science, 2018, 182: 180-188. |
47 | MONDLOCH J E , BURY W , FAIREN-JIMENEZ D , et al . Vapor-phase metalation by atomic layer deposition in a metal-organic framework[J]. Journal of the American Chemical Society, 2013, 135(28): 10294-10297. |
48 | SOTTO A , ORCAJO G , ARSUAGA J M , et al . Preparation and characterization of MOF‐PES ultrafiltration membranes[J]. Journal of Applied Polymer Science, 2015, 132(21): 41633. |
49 | LI W , ZHANG Y , LI Q , et al . Metal-organic framework composite membranes: synthesis and separation applications[J]. Chemical Engineering Science, 2015, 135: 232-257. |
50 | BASU S , MAES M , CANO-ODENA A , et al . Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks[J]. Journal of Membrane Science, 2009, 344(1/2): 190-198. |
51 | AMIRILARGANI M , SADATNIA B . Poly(vinyl alcohol)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of isopropanol[J]. Journal of Membrane Science, 2014, 469: 1-10. |
52 | DUAN J , PAN Y , PACHECO F , et al . High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8[J]. Journal of Membrane Science, 2015, 476: 303-310. |
53 | ORDO EZ M J C , BALKUS JR K J , FERRARIS J P , et al . Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes[J]. Journal of Membrane Science, 2010, 361(1/2): 28-37. |
54 | DENNY M S , COHEN S M . In situ modification of metal-organic frameworks in mixed-matrix membranes[J]. Angewandte Chemie International Edition, 2015, 54(31): 9029-9032. |
55 | DECOSTE J B , DENNY JR M S , PETERSON G W , et al . Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption[J]. Chemical Science, 2016, 7(4): 2711-2716. |
56 | BACHMAN J E , SMITH Z P , LI T , et al . Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals[J]. Nature Materials, 2016, 15(8): 845-849. |
57 | FAN H , SHI Q , YAN H , et al . Simultaneous spray self-assembly of highly loaded ZIF-8-PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation[J]. Angewandte Chemie International Edition, 2014, 53(22): 5578-5582. |
58 | YAN H , LI J , FAN H , et al . Sonication-enhanced in situ assembly of organic/inorganic hybrid membranes: evolution of nanoparticle distribution and pervaporation performance[J]. Journal of Membrane Science, 2015, 481: 94-105. |
59 | COHEN S M . Postsynthetic methods for the functionalization of metal-organic frameworks[J]. Chemical Reviews, 2011, 112(2): 970-1000. |
60 | ZHANG Y , FENG X , LI H , et al . Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane[J]. Angewandte Chemie International Edition, 2015, 54(14): 4259-4263. |
61 | YAO B J , JIANG W L , DONG Y , et al . Post-synthetic polymerization of UIO-66-NH2 nanoparticles and polyurethane oligomer toward stand-alone membranes for dye removal and separation[J]. Chemistry-A European Journal, 2016, 22(30): 10565-10571. |
62 | MARTI A M , TRAN D , BALKUS K J . Fabrication of a substituted imidazolate material 1 (SIM-1) membrane using post synthetic modification (PSM) for pervaporation of water/ethanol mixtures[J]. Journal of Porous Materials, 2015, 22(5): 1275-1284. |
63 | DING L , WEI Y , LI L , et al . MXene molecular sieving membranes for highly efficient gas separation[J]. Nature Communications, 2018, 9(1): 155. |
64 | BUX H , LIANG F , LI Y , et al . Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J]. Journal of the American Chemical Society, 2009, 131(44): 16000-16001. |
65 | HUANG A , WANG N , KONG C , et al . Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance[J]. Angewandte Chemie International Edition, 2012, 51(42): 10551-10555. |
66 | BROWN A J , BRUNELLI N A , EUM K , et al . Interfacial microfluidic processing of metal-organic framework hollow fiber membranes[J]. Science, 2014, 345(6192): 72-75. |
67 | KWON H T , JEONG H K . In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation[J]. Journal of the American Chemical Society, 2013, 135(29): 10763-10768. |
68 | KWON H T , JEONG H K , LEE A S , et al . Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances[J]. Journal of the American Chemical Society, 2015, 137(38): 12304-12311. |
69 | GHALEI B , SAKURAI K , KINOSHITA Y , et al . Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles[J]. Nature Energy, 2017, 2(7): 17086. |
70 | XIANG L , SHENG L , WANG C , et al . Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation[J]. Advanced Materials, 2017, 29(32): 160699. |
71 | FALCARO P , OKADA K , HARA T , et al . Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth[J]. Nature Materials, 2017, 16(3): 342-348. |
72 | LIU G , CHERNIKOVA V , LIU Y , et al . Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations[J]. Nature Materials, 2018, 17(3): 283-289. |
73 | ZHU Y , GUPTA K M , LIU Q , et al . Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes[J]. Desalination, 2016, 385: 75-82. |
74 | SORRIBAS S , GORGOJO P , TÉLLEZ C , et al . High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration[J]. Journal of the American Chemical Society, 2013, 135(40): 15201-15208. |
75 | ZHANG H , HOU J , HU Y , et al . Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores[J]. Science Advances, 2018, 4(2): eaaq0066. |
76 | ZHANG R , JI S , WANG N , et al . Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes[J]. Angewandte Chemie International Edition, 2014, 53(37): 9775-9779. |
77 | LIPNIZKI F , HAUSMANNS S , TEN P K , et al . Organophilic pervaporation: prospects and performance[J]. Chemical Engineering Journal, 1999, 73(2): 113-129. |
78 | SORRIBAS S , KUDASHEVA A , ALMENDRO E , et al . Pervaporation and membrane reactor performance of polyimide based mixed matrix membranes containing MOF HKUST-1[J]. Chemical Engineering Science, 2015, 124: 37-44. |
79 | WEE L H , LI Y , ZHANG K , et al . Submicrometer‐sized ZIF-71 filled organophilic membranes for improved bioethanol recovery: mechanistic insights by Monte Carlo simulation and FTIR spectroscopy[J]. Advanced Functional Materials, 2015, 25(4): 516-525. |
80 | LIU X L , LI Y S , ZHU G Q , et al . An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols[J]. Angewandte Chemie International Edition, 2011, 50(45): 10636-10639. |
81 | YING Y , XIAO Y , MA J, et al . Recovery of acetone from aqueous solution by ZIF-7/PDMS mixed matrix membranes[J]. RSC |
Advances, 2015, 5(36): 28394-28400. | |
82 | LEE M J , KWON H T , JEONG H K . High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange[J]. Angewandte Chemie International Edition, 2018, 57(1): 156-161. |
83 | SHAMSAEI E , LIN X , WAN L , et al . A one-dimensional material as a nano-scaffold and a pseudo-seed for facilitated growth of ultrathin, mechanically reinforced molecular sieving membranes[J]. Chemical Communications, 2016, 52(95): 13764-13767. |
84 | HU Y , WU Y , DEVENDRAN C , et al . Preparation of nanoporous graphene oxide by nanocrystal-masked etching: toward a nacre-mimetic metal-organic framework molecular sieving membrane[J]. Journal of Materials Chemistry A, 2017, 5(31): 16255-16262. |
85 | HUANG A , LIU Q , WANG N , et al . Highly hydrogen permselective ZIF-8 membranes supported on polydopamine functionalized macroporous stainless-steel-nets[J]. Journal of Materials Chemistry A, 2014, 2(22): 8246-8251. |
86 | PENG Y , LI Y , BAN Y , et al . Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359. |
87 | PENG Y , LI Y , BAN Y , et al . Two-dimensional metal-organic framework nanosheets for membrane-based gas separation[J]. Angewandte Chemie International Edition, 2017, 56(33): 9757-9761. |
88 | ZHOU S , WEI Y , HOU J , et al . Self-sacrificial template strategy coupled with smart in situ seeding for highly oriented metal-organic framework layers: from films to membranes[J]. Chemistry of Materials, 2017, 29(17): 7103-7107. |
89 | ZHOU M , KORELSKIY D , YE P , et al . A uniformly oriented MFI membrane for improved CO2 separation[J]. Angewandte Chemie International Edition, 2014, 53(13): 3492-3495. |
90 | ZHONG Z , YAO J , CHEN R , et al . Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties[J]. Journal of Materials Chemistry A, 2015, 3(30): 15715-15722. |
91 | QIU S , XUE M , ZHU G . Metal-organic framework membranes: from synthesis to separation application[J]. Chemical Society Reviews, 2014, 43(16): 6116-6140. |
92 | SHENG L , WANG C , YANG F , et al . Enhanced C3H6/C3H8 separation perform ance on MOF membranes through blocking defects and hindering framework flexibility by silicone rubber coating[J]. Chemical Communications, 2017, 53(55): 7760-7763. |
93 | ZHANG C , KOROS W J . Zeolitic imidazolate framework-enabled membranes: challenges and opportunities[J]. The Journal of Physical Chemistry Letters, 2015, 6(19): 3841-3849. |
94 | ZHANG C , LIVELY R P , ZHANG K , et al . Unexpected molecular sieving properties of zeolitic imidazolate framework-8[J]. The Journal of Physical Chemistry Letters, 2012, 3(16): 2130-2134. |
95 | THOMPSON J A , BLAD C R , BRUNELLI N A , et al . Hybrid zeolitic imidazolate frameworks: controlling framework porosity and functionality by mixed-linker synthesis[J]. Chemistry of Materials, 2012, 24(10): 1930-1936. |
96 | DIESTEL L , WANG N , SCHWIEDLAND B , et al . MOF based MMMs with enhanced selectivity due to hindered linker distortion[J]. Journal of Membrane Science, 2015, 492: 181-186. |
97 | YIN H , WANG J , XIE Z , et al . A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO2-N2 separation[J]. Chemical Communications, 2014, 50(28): 3699-3701. |
98 | ZHANG F , ZOU X , GAO X , et al . Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability[J]. Advanced Functional Materials, 2012, 22(17): 3583-3590. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[5] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[6] | 张婷婷, 左旭乾, 田玲娣, 王世猛. 化工园区挥发性有机物排放清单及因子库构建方法[J]. 化工进展, 2023, 42(S1): 549-557. |
[7] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[8] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[9] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[10] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[11] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[12] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[13] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[14] | 杨志强, 曾纪珺, 马义丁, 尉涛, 赵波, 刘英哲, 张伟, 吕剑, 李兴文, 张博雅, 唐念, 李丽, 孙东伟. 六氟化硫替代气体的研究现状及未来发展趋势[J]. 化工进展, 2023, 42(8): 4093-4107. |
[15] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |