化工进展 ›› 2019, Vol. 38 ›› Issue (01): 457-466.DOI: 10.16085/j.issn.1000-6613.2018-1340
收稿日期:
2018-07-02
修回日期:
2018-09-11
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
王胜平
作者简介:
郭红霞(1982—),女,博士研究生,研究方向为CO2的高效捕集。E-mail:<email>guohongxia.ok@163.com</email>。|王胜平,教授,博士生导师,研究方向为一碳化学与化工。E-mail:<email>spwang@tju.edu.cn</email>。
基金资助:
Hongxia GUO(),Yan NAN,Xiaochen KOU,Shengping WANG(),Yujun ZHAO,Xinbin MA
Received:
2018-07-02
Revised:
2018-09-11
Online:
2019-01-05
Published:
2019-01-05
Contact:
Shengping WANG
摘要:
有效捕集CO2对于缓解亟待解决的温室效应、气候变暖、环境污染和能源危机问题具有重大意义。钙基吸附材料因为CO2吸附容量高及成本低廉而受到了广泛关注。本文介绍了钙基吸附剂的CO2吸附机理,着重阐述了显著提高吸附性能的两种改性方法,包括惰性掺杂和形貌调控。归纳了利用Zr、Ce、Mn、Mg、Al等塔曼温度较高或富含氧空穴的金属氧化物对氧化钙进行单掺杂和复合掺杂改性,针对合成方法、吸脱附条件、惰性组分掺杂量、钙基前体等不同参数对掺杂改性钙基CO2吸附剂性能的影响进行总结。同时指出,采用聚苯乙烯小球、碳凝胶、碳球、表面活性剂等制备得到的中空结构球形钙基吸附剂或实心结构球形钙基吸附剂,具有良好的CO2吸附容量和吸附稳定性。提出两种改性方法距离工业化应用还有较大的差距,亟需深入探讨吸附剂的结构与性能之间的关系,从而为吸附剂的设计提供理论指导。
中图分类号:
郭红霞, 南雁, 寇晓晨, 王胜平, 赵玉军, 马新宾. 钙基CO2吸附剂的惰性掺杂和形貌调控研究进展[J]. 化工进展, 2019, 38(01): 457-466.
Hongxia GUO, Yan NAN, Xiaochen KOU, Shengping WANG, Yujun ZHAO, Xinbin MA. Research on doping modification and morphology control of calcium-based CO2 sorbents[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 457-466.
掺杂量 Ca/Zr(摩尔比) | 制备方法 | 吸脱附温度/℃ | 循环次数 | 反应器 | 吸附容量/g·g-1 | 参考文献 |
---|---|---|---|---|---|---|
10/3 | 火焰喷雾法 | 700/700 | 100 | TGA | 64%(X CaO) | [ |
10/5 | 火焰喷雾法 | 700/700 | 1200 | TGA | 60%(X CaO) | [ |
10/1 | 湿混合 | 650/930 | 25 | IGA | 0.30 | [ |
30/1 | 湿化学法 | 650/800 | 30 | TGA | 0.37 | [ |
13.2/1 | 溶胶-凝胶法 | 650/900 | 30 | TGA | 0.45 | [ |
95/5 | 溶胶-凝胶法 | 800/800 | 90 | TGA | 0.34 | [ |
8.5/1 | 高温固相法 | 650/700 | 20 | TGA | 0.48 | [ |
3.3/1 | 表面活性剂模板/超声法 | 600/750 | 15 | TGA | 0.15 | [ |
10/5 | 溶胶-凝胶法 | 700/700 | 1200 | TGA | 0.30 | [ |
表1 Zr掺杂改性钙基CO2吸附剂
掺杂量 Ca/Zr(摩尔比) | 制备方法 | 吸脱附温度/℃ | 循环次数 | 反应器 | 吸附容量/g·g-1 | 参考文献 |
---|---|---|---|---|---|---|
10/3 | 火焰喷雾法 | 700/700 | 100 | TGA | 64%(X CaO) | [ |
10/5 | 火焰喷雾法 | 700/700 | 1200 | TGA | 60%(X CaO) | [ |
10/1 | 湿混合 | 650/930 | 25 | IGA | 0.30 | [ |
30/1 | 湿化学法 | 650/800 | 30 | TGA | 0.37 | [ |
13.2/1 | 溶胶-凝胶法 | 650/900 | 30 | TGA | 0.45 | [ |
95/5 | 溶胶-凝胶法 | 800/800 | 90 | TGA | 0.34 | [ |
8.5/1 | 高温固相法 | 650/700 | 20 | TGA | 0.48 | [ |
3.3/1 | 表面活性剂模板/超声法 | 600/750 | 15 | TGA | 0.15 | [ |
10/5 | 溶胶-凝胶法 | 700/700 | 1200 | TGA | 0.30 | [ |
1 | 郭庆杰 .温室气体二氧化碳捕集和利用技术进展[M].北京:化学工业出版社,2010:5-10. |
GUO Qingjie . The progress of CO2 capture and utilization[M]. Beijing: Chemical Industry Publisher, 2010: 5-10. | |
2 | 朱战敏 .钙基高温CO2吸附剂的研究[D].西安:西北大学,2016. |
ZHU Zhanmin . Research on calcium based high temperature carbon dioxide adsorbent[D]. Xi’an: Northwest University, 2016. | |
3 | BHATIA S K , PERLMUTER D D . Effect of the product layer on the kinetics of the CO2-lime reaction[J]. AIChE Journal, 1983, 29: 79-86. |
4 | LU H , KHAN A , PRATSINIS S E , et al . Flame-made durable doped-CaO nanosorbents for CO2 capture[J]. Energy & Fuel, 2009, 23(1/2): 1093-1100. |
5 | WU S F , BEUM T H , YANG J I , et al . Properties of Ca-base CO2 sorbent using Ca(OH)2 as precursor[J]. Industrial & Engineering Chemistry Research, 2007, 46: 7896-7899. |
6 | SULTANA K S , CHEN D . Enhanced hydrogen production by in situ CO2 removal on CaCeZrO x nanocrystals[J]. Catalysis Today, 2011, 171: 43-51. |
7 | KOIRALA R , GUNUGUNURI K R , PRATSINIS S E , et al . Effect of zirconia doping on the structure and stability of CaO-based sorbents for CO2 capture during extended operating cycles[J]. Journal of Physical Chemistry C, 2011, 115 (50): 24804-24812. |
8 | RADFARNIA H R , ILIUTA M C . Metal oxide-stabilized calcium oxide CO2 sorbent for multicycle operation[J]. Chemical Engineering Journal, 2013, 232: 280-289. |
9 | ZHAO M , BILTON M , BROWN A P , et al . Durability of CaO-CaZrO3 sorbents for high-temperature CO2 capture prepared by a wet chemical method[J]. Energy & Fuel, 2014, 28(2): 1275-1283. |
10 | ZHAO C J , ZHOU Z M , CHENG Z M . Sol-gel-derived synthetic CaO-based CO2 sorbents incorporated with different inert materials[J]. Industrial & Engineering Chemistry Research, 2014, 53(36): 14065-14074. |
11 | BRODA M , MÜLLER C R . Sol-gel-derived, CaO-based, ZrO2-stabilized CO2 sorbents[J]. Fuel, 2014, 127: 94-100. |
12 | MOHAMMADI M , LAHIJANI P , MOHAMED A R . Refractory dopant-incorporated CaO from waste eggshell as sustainable sorbent for CO2 capture: experimental and kinetic studies[J]. Chemical Engineering Journal, 2014, 243: 455-464. |
13 | RADFARNIA H R , ILIUTA M C . Development of zirconium-stabilized calcium oxide absorbent for cyclic high-temperature CO2 capture[J]. Industrial & Engineering Chemistry Research, 2012, 51(31): 10390-10398. |
14 | REDDY G K , QUILLIN S , SMIRNIOTIS P . Influence of the synthesis method on the structure and CO2 adsorption properties of Ca/Zr sorbents[J]. Energy & Fuels, 2014, 28 (5): 3292-3299. |
15 | PHROMPRASIT J , POWELL J , WONGSAKULPHASATCH S , et al . H2 production from sorption enhanced steam reforming of biogas using multifunctional catalysts of Ni over Zr-, Ce- and La-modified CaO sorbents[J]. Chemical Engineering Journal, 2017, 313: 1415-1425. |
16 | WANG S P , FAN S S , FAN L J , et al . Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles[J]. Environmental Science & Technology, 2015, 49(8): 5021-5027. |
17 | LIU X T , SHI J F , HE L , et al . Modification of CaO-based sorbents prepared from calcium acetate for CO2 capture at high temperature[J]. Chinese Journal of Chemical Engineering, 2017, 25: 572-580. |
18 | YANASE I , MAEDA T , KOBAYASHI H . The effect of addition of a large amount of CeO2 on the CO2 adsorption properties of CaO powder[J]. Chemical Engineering Journal, 2017, 327: 548-554. |
19 | 张雷,张力,闫云飞,等 . 掺杂Ce、Zr对CO2钙基吸附剂循环特性的影响[J]. 化工学报, 2015, 66(2):612-617. |
ZHANG Lei , ZHANG Li , YAN Yunfei , et al . Effect of Ce, Zr on cyclic performance of CaO-based CO2 sorbents[J]. CIESC Journal, 2015, 66(2): 612-617. | |
20 | CHEN H , ZHANG P , DUAN Y , et al . Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol-gel process[J]. Applied Energy, 2016, 162: 390-400. |
21 | LI Y J , ZHAO C S , DUAN L B , et al . Cyclic calcination/ carbonation looping of dolomite modified with acetic acid for CO2 capture[J]. Fuel Processing Technology, 2008, 89(12): 1461-1469. |
22 | REDDY E P , SMIRNIOTIS P G . High-temperature sorbents for CO2 made of alkali metals doped on CaO supports [J]. Journal of Physical Chemistry B, 2004, 108 (23): 7794-7800. |
23 | CHEN H , ZHANG P , DUAN Y , et al . Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol-gel process[J]. Applied Energy, 2016, 162: 390-400. |
24 | SUN R , LI Y , LIU H , et al . CO2 capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle[J]. Applied Energy, 2012, 89 (1): 368-373. |
25 | LI L , KING D L , NIE Z , et al . Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO2 capture[J]. Industrial & Engineering Chemistry Research, 2009, 48(23): 10604-10613. |
26 | PARK J , YI K B . Effects of preparation method on cyclic stability and CO2 absorption capacity of synthetic CaO-MgO absorbent for sorption-enhanced hydrogen production[J]. International Journal of Hydrogen Energy, 2012, 37(1): 95-102. |
27 | LAN P Q , WU S F . Synthesis of a porous nano-CaO/MgO-based CO2 adsorbent[J]. Chemical Engineering Technology, 2014, 37 (4): 580-586. |
28 | LIU W , FENG B , WU Y , et al . Synthesis of sintering-resistant sorbents for CO2 capture[J]. Environmental Science & Technology, 2010, 44(8): 3093-3097. |
29 | LI Z S , CAI N S , HUANG Y Y , et al . Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent[J]. Energy & Fuels, 2005, 19(4): 1447-1452. |
30 | PACCIANI R , MULLER C R , DAVIDSON J F , et al . Synthetic Ca-based solid sorbents suitable for capturing CO2 in a fluidized bed[J]. The Canadian Journal of Chemical Engineering, 2008, 86(3): 356-366. |
31 | KOIRALA R , REDDY G K , SMIRNIOTIS P G . Single nozzle flame-made highly durable metal doped Ca-based sorbents for CO2 capture at high temperature[J]. Energy & Fuels, 2012, 26 (5): 3103-3109. |
32 | DENNIS J S , PACCIANI R . The rate and extent of uptake of CO2 by a synthetic, CaO-containing sorbent[J]. Chemical Engineering Science, 2009, 64 (9): 2147-2157. |
33 | ZHOU Z M , QI Y , XIE M M , et al . Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance[J]. Chemical Engineering Science, 2012, 74: 172-180. |
34 | MARTAVALTZI C S , LEMONIDOU A A . Development of new CaO based sorbent materials for CO2 removal at high temperature[J]. Microporous and Mesoporous Materials, 2008, 110 (1): 119-127. |
35 | WU S F , LI Q H , KIM J N , et al . Properties of a nano CaO/Al2O3 CO2 sorbent[J]. Industrial & Engineering Chemistry Research, 2008, 47(1): 180-184. |
36 | RADFARNIA H R , ILIUTA M C . Metal oxide-stabilized calcium oxide CO2 sorbent for multicycle operation[J]. Chemical Engineering Journal, 2013, 232: 280-289. |
37 | STENDARDO S , ANDERSEN L K , HERCE C . Self-activation and effect of regeneration conditions in CO2-carbonate looping with CaO-Ca12Al14O33 sorbent[J]. Chemical Engineering Journal, 2013, 220: 383-394. |
38 | SAYYAH M , ITO B R , ROSTAM-ABADI M , et al . CaO-based sorbents for CO2 capture prepared by ultrasonic spray pyrolysis[J]. RSC Advances, 2013, 43: 19872-19875. |
39 | KIM J N , KO C H , YI K B . Sorption enhanced hydrogen production using one-body CaO-Ca12Al14O33-Ni composite as catalytic absorbent[J]. International Journal of Hydrogen Energy, 2013, 38 (14): 6072-6078. |
40 | KIERZKOWSKA A M , POULIKAKOS L V , BRODA M , et al . Synthesis of calcium-based, Al2O3-stabilized sorbents for CO2 capture using a coprecipitation technique[J]. International Journal of Greenhouse Gas Control, 2013, 15: 48-54. |
41 | MARTAVALTZI C S , LEMONIDOU A A . Parametric study of the CaO-Ca12Al14O33 synthesis with respect to high CO2 sorption capacity and stability on multicycle operation[J]. Industrial & Engineering Chemistry Research, 2008, 47 (23): 9537-9543. |
42 | ANGELI S D , MARTAVALTZI C S , LEMONIDOU A A . Development of a novel synthesized Ca-based CO2 sorbent for multicycle operation: parametric study of sorption[J]. Fuel, 2014, 127: 62-69. |
43 | RADFARNIA H R , SAYARI A . A highly efficient CaO-based CO2 sorbent prepared by a citrate-assisted sol-gel technique[J]. Chemical Engineering Journal, 2015, 262: 913-920. |
44 | XU Y Q , DING H R , LUO C , et al . Effect of lignin, cellulose and hemicellulose on calcium looping behavior of CaO-based sorbents derived from extrusion-spherization method[J]. Chemical Engineering Journal, 2018, 334: 2520-2529. |
45 | FLORIN N H , BLAMEY J , FENNELL P S . Synthetic CaO-based sorbent for CO2 capture from large-point sources[J]. Energy & Fuels, 2010, 24(8): 4598-4604. |
46 | CHANG P H , CHANG Y P , CHEN S Y , et al . Ca-rich Ca-Al oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors: synthesis, characterization, and CO2 capture capacity[J]. ChemSusChem, 2011, 4 (12): 1844-1851. |
47 | CHANG P H , LEE T J , CHANG Y P , et al . CO2 sorbents with scaffold-like Ca-Al layered double hydroxides as precursors for CO2 capture at high temperatures[J]. ChemSusChem, 2013, 6 (6): 1076-1083. |
48 | CHANG P H , CHANG Y P , LAI Y H , et al . Synthesis, characterization and high temperature CO2 capture capacity of nanoscale Ca-based layered double hydroxides via reverse microemulsion[J]. Journal of Alloys and Compounds, 2014, 586(s1): S498-S505. |
49 | YU C T , CHEN W C . Hydrothermal preparation of calcium-aluminum carbonate sorbent for high-temperature CO2 capture in fixed-bed reactor[J]. Fuel, 2014, 122: 179-185. |
50 | KOU X C , LI C , ZHAO Y J , et al . CO2 sorbents derived from capsule-connected Ca-Al hydrotalcite-like via low-saturated coprecipitation[J].Fuel Processing Technology, 2018, 177: 210-218. |
51 | HU Y C , LIU W Q , CHEN H Q , et al . Screening of inert solid supports for CaO -based sorbents for high temperature CO2 capture[J]. Fuel, 2016, 181: 199-206. |
52 | ALBRECHT K O , WAGENBACH K S , SATRIO J A , et al . Development of a CaO-based CO2 sorbent with improved cyclic stability[J]. Industrial & Engineering Chemistry Research, 2008, 47 (20): 7841-7848. |
53 | LUO C , ZHENG Y , DING N , et al . Development and performance of CaO/La2O3 sorbents during calcium looping cycles for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2010, 49 (22):11778-11784. |
54 | KOIRALA R , REDDY G K , LEE J Y , et al . Influence of foreign metal dopants on the durability and performance of Zr/Ca sorbents during high temperature CO2 capture[J]. Separation Science and Technology, 2014, 49: 47-54. |
55 | HLAING N N , SREEKANTAN S , OTHMAN R , et al . A novel (Zr-Ce) incorporated Ca(OH)2 nanostructure as a durable adsorbent for CO2 capture[J]. Materials Letters, 2014, 133: 204-207. |
56 | GUO H X , FENG J Q , ZHAO Y J , et al . Effect of micro-structure and oxygen vacancy on the stability of (Zr-Ce)-additive CaO-based sorbent in CO2 adsorption[J]. Journal of CO2 Utilization, 2017, 19: 165-176. |
57 | GUO H X , KOU X C , ZHAO Y J , et al . Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: textural properties, electron donation, and oxygen vacancy[J]. Chemical Engineering Journal, 2018, 334: 237-246. |
58 | GUO H X , KOU X C , ZHAO Y J , et al . Role of microstructure, electron transfer, and coordination state in the CO2 capture of calcium-based sorbent by doping (Zr-Mn) [J]. Chemical Engineering Journal, 2018, 336: 376-385. |
59 | LIU F Q , LI W H , LIU B C , et al . Synthesis, characterization, and high temperature CO2 capture of new CaO based hollow sphere sorbents[J]. Journal of Materials Chemistry A, 2013, 27: 8037-8044. |
60 | BRODA M , MÜLLER C R . Synthesis of highly efficient, Ca-based, Al2O3-stabilized, carbon gel-templated CO2 sorbents[J]. Advanced Materials, 2012, 24 (22): 3059-3064. |
61 | 沈辉 . 氧化钙基吸附剂的制备及其CO2吸附性能研究[D]. 天津:天津大学,2018. |
SHEN Hui . Research on the preparation and CO2 capture performance of CaO based adsorbents[D]. Tianjin: Tianjin University, 2018. | |
62 | FENG J Q , GUO H X , WANG S P , et al . Fabrication of multi-shelled hollow Mg-modified CaCO3 microspheres and their improved CO2 adsorption performance[J]. Chemical Engineering Journal, 2017, 321: 401-411. |
63 | 赵丽娜,孔治国,王继库 .聚丙烯酸钠存在下蝶状文石型碳酸钙的合成研究[J]. 化学通报,2012,75(12):1140-1144. |
ZHAO Lina , KONG Zhiguo , WANG Jiku . Synthesis of butterfly-like aragonite calcium carbonate in the presence of sodium polyacrylate[J]. Chemistry, 2012, 75(12): 1140-1144. | |
64 | WANG S P , FAN L J , LI C , et al . Porous spherical CaO-based sorbents via PSS-assisted fast precipitation for CO2 capture[J]. ACS Applied Materials & Interfaces, 2014, 6: 18072-18077. |
[1] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[4] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[5] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[6] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[7] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[8] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
[9] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[10] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[11] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[12] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[13] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[14] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[15] | 殷成阳, 侯铭, 杨爽, 毛迪, 刘俊言. 过渡金属改性Cu-SSZ-13分子筛脱硝催化剂研究进展[J]. 化工进展, 2023, 42(6): 2963-2974. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |