化工进展 ›› 2019, Vol. 38 ›› Issue (01): 449-456.DOI: 10.16085/j.issn.1000-6613.2018-1060
刘佳奇1,2(),尚华1,2,唐轩1,2,杨江峰1,2(
),李晋平1,2
收稿日期:
2018-05-22
修回日期:
2018-09-26
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
杨江峰
作者简介:
刘佳奇(1993—),男,博士研究生,研究方向为分子筛的合成与改性。E-mail:<email>liujiaqi0550@link.tyut.edu.cn</email>。|杨江峰,副教授,研究方向为气体分离。E-mail:<email>yangjiangfeng@tyut.edu.cn</email>。
基金资助:
LIUJiaqi1,2(),Hua SHANG1,2,Xuan TANG1,2,Jiangfeng YANG1,2(
),Jinping LI1,2
Received:
2018-05-22
Revised:
2018-09-26
Online:
2019-01-05
Published:
2019-01-05
Contact:
Jiangfeng YANG
摘要:
实现CH4-N2高效分离能够极大地推动常规天然气和非常规天然气这一类绿色低碳能源的利用,分子筛基吸附剂和膜材料具有优良的气体分离特性,而且对CH4-N2的分离颇具应用潜力。本文从对N2具有优先选择性吸附的N2/CH4分离(高浓度CH4纯化脱氮)和对CH4具有优先选择性吸附的CH4/N2分离(低浓度CH4富集脱氮)两方面综述了国内外分子筛吸附剂及分子筛膜的研究进展。详细地分析了分子筛骨架和平衡阳离子与其CH4-N2吸附分离性能之间的构效关系,并结合本文作者课题组的工作,提出了电中性(近中性)骨架分子筛对CH4-N2分离具有较好的分离效果。最后总结和展望了CH4-N2分离用分子筛吸附剂及分子筛膜的未来发展趋势。
中图分类号:
刘佳奇, 尚华, 唐轩, 杨江峰, 李晋平. 分子筛基CH4-N2分离材料的研究进展[J]. 化工进展, 2019, 38(01): 449-456.
LIUJiaqi, Hua SHANG, Xuan TANG, Jiangfeng YANG, Jinping LI. Zeolite based materials for CH4-N2 separation[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 449-456.
气体 | 分子量 | 动力学直径/nm | 临界温度 /℃ | 极化率 ×1025 /cm3 | 偶极矩 ×1018 /esu·cm | 四极矩 ×1026 /esu·cm2 |
---|---|---|---|---|---|---|
CH4 | 16 | 0.38 | -82 | 25.93 | 0 | 0 |
N2 | 28 | 0.36 | -147 | 17.40 | 0 | 1.52 |
表1 CH4和N2的部分物化性质
气体 | 分子量 | 动力学直径/nm | 临界温度 /℃ | 极化率 ×1025 /cm3 | 偶极矩 ×1018 /esu·cm | 四极矩 ×1026 /esu·cm2 |
---|---|---|---|---|---|---|
CH4 | 16 | 0.38 | -82 | 25.93 | 0 | 0 |
N2 | 28 | 0.36 | -147 | 17.40 | 0 | 1.52 |
分子筛膜 | 分离系数(α) | N2渗透速率①×108 /mol·m-2 ·s-1 ·Pa-1 | 参考文献 |
---|---|---|---|
ETS-4 | 5.4 | 1 | [ |
DD3R | 20~45 | 0.01 | [ |
T② | 8.7 | 0.26 | [ |
SSZ-13 | 9 | 2 | [ |
SAPO-34 | 5~7 | 10 | [ |
SAPO-34 | 11.3 | 40 | [ |
SAPO-34 | 7.4 | 43 | [ |
SAPO-34 | 8.6 | 70 | [ |
AlPO-18 | 4.6 | 100 | [ |
表2 不同分子筛膜对N2/CH4的分离性能
分子筛膜 | 分离系数(α) | N2渗透速率①×108 /mol·m-2 ·s-1 ·Pa-1 | 参考文献 |
---|---|---|---|
ETS-4 | 5.4 | 1 | [ |
DD3R | 20~45 | 0.01 | [ |
T② | 8.7 | 0.26 | [ |
SSZ-13 | 9 | 2 | [ |
SAPO-34 | 5~7 | 10 | [ |
SAPO-34 | 11.3 | 40 | [ |
SAPO-34 | 7.4 | 43 | [ |
SAPO-34 | 8.6 | 70 | [ |
AlPO-18 | 4.6 | 100 | [ |
1 | 徐凤银, 云箭, 孟复印 . 低碳经济促进天然气与煤层气产业快速发展[J]. 中国石油勘探, 2011, 16(2): 6-11. |
XU F Y , YUN J , MENG F Y . Low carbon economy booms natural gas and CBM industry[J]. China Petroleum Exploration, 2011, 16(2): 6-11. | |
2 | RUFFORD T E , SMART S , WATSON G C Y , et al . The removal of CO2, and N2, from natural gas:a review of conventional and emerging process technologies[J]. Journal of Petroleum Science & Engineering, 2012, 94/95(9): 123-154. |
3 | 李晋平, 杨江峰 . 浅谈我国煤层气产业的发展[J]. 科技创新与生产力, 2011(8): 20-22. |
LI J P , YANG J F . Brief discussion on development of coal seam gas industry in China[J]. Taiyuan Science and Technology, 2011(8): 20-22. | |
4 | 辜敏, 鲜学福 . 煤层气变压吸附分离理论与技术[M]. 北京: 科学出版社, 2015: 85. |
GU M , XIAN X F . The theory and technology of pressure swing adsorption for coal bed gas separation[M]. Beijing: Science Press, 2015: 85. | |
5 | 郭璞, 李明 . 煤层气中CH4/N2分离工艺研究进展[J]. 化工进展, 2008, 27(7): 963-967. |
GUO P , LI M . Research progress of separation of CH4/N2 in coal-bed methane[J]. Chemical Industry and Engineering Progress, 2008, 27(7): 963-967. | |
6 | 徐如人 . 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004: 115. |
XU R R . Chemistry—zeolites and porous materials[M]. Beijing: Science Press, 2004: 115. | |
7 | SALEHI R N , SHARIFNIA S , RAHIMPOUR F . Natural gas upgrading by selective separation on zeotype adsorbents[J]. Journal of Natural Gas Science & Engineering, 2018, 54: 37-46. |
8 | ACKLEY M W , YANG R T . Adsorption characteristics of high-exchange clinoptilolites[J]. Industrial & Engineering Chemistry Research, 1991, 30(12): 2523-2530. |
9 | ACKLEY M W , YANG R T . Diffusion in ion-exchanged clinoptilolites[J]. Industrial & Engineering Chemistry Research, 1991, 30(12): 2523-2530. |
10 | JAYARAMAN A , HERNANDEZ-MALDONADO A J , YANG R T , et al . Clinoptilolites for nitrogen/methane separation[J]. Chemical Engineering Science, 2004, 59(12): 2407-2417. |
11 | JAYARAMAN A , YANG R T , CHINN D , et al . Tailored clinoptilolites for nitrogen/methane separation[J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 5184-5192. |
12 | TARAMASSO M , PEREGO G , NOTARI B . Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides: US4410501[P]. 1983-10-18. |
13 | MINTOVA S , VAHCHM V , ANGELOVA S , et a1 . Kinetic investigation of the effect of Na, K, Li and Ca on the crystallization of titanium silicate ETS-4[J].Zolites, 1997, 18(4): 269-273. |
14 | KUZNICKI S M , BELL V A , PETROVIC I , et al . Small-pored crystalline titanium molecular sieve zeolites and their use in gas separation processes: EP1042225A1[P]. 2003-02-04. |
15 | KUZNICKI S M , BELL V A , NAIR S , et al . A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules[J]. Nature, 2001, 412(6848): 720-724. |
16 | PILLAI R S , PETER S A , JASRA R V . Adsorption of carbon dioxide, methane, nitrogen, oxygen and argon in NaETS-4[J]. Microporous and Mesoporous Materials, 2008, 113(1): 268-276. |
17 | DOLAN W B , BUTWELL K F . Selective removal of nitrogen from natural gas by pressure swing adsorption: US6444012B1[P]. 2002-11-13. |
18 | SHANG J , LI G , GU Q , et al . Temperature controlled invertible selectivity for adsorption of N2 and CH4 by molecular trapdoor chabazites[J]. Chemical Communications, 2014, 50(35): 4544-4546. |
19 | REMY T , PETER S A , VAN TENDELOO L , et al . Adsorption and separation of CO2 on KFI zeolites: effect of cation type and Si/Al ratio on equilibrium and kinetic properties[J]. Langmuir,2013, 29(16): 4998-5012. |
20 | PHAM T D , HUDSON M R , BROWN C M , et al . On the structure-property relationships of cation-exchanged ZK-5 zeolites for CO2 adsorption[J]. ChemSusChem, 2017, 10 (5): 946-957. |
21 | YANG J F , KRISHNA R , LI L , et al . Experiments and simulations on separating a CO2/CH4 mixture using K-KFI at low and high pressures[J]. Microporous and Mesoporous Materials, 2014, 184: 21-27. |
22 | YANG J F , SHANG H , KRISHNA R , et al . Adjusting the proportions of extra-framework K+, and Cs+, cations to construct a“molecular gate”on ZK-5 for CO2 removal[J]. Microporous and Mesoporous Materials, 2018, 268: 50-57. |
23 | YANG J F , ZHAO Q , XU H , et al . Adsorption of CO2, CH4, and N2 on gas diameter grade ion-exchange small pore zeolites[J]. Journal of Chemical & Engineering Data, 2012, 57(12): 3701-3709. |
24 | BOWEN T C , NOBLE R D , FALCONER J L . Fundamentals and applications of pervaporation through zeolite membranes[J]. Journal of Membrane Science, 2004, 245(1): 1-33. |
25 | OCKWIG N W , NENOFF T M . Membranes for hydrogen separation[J]. Chemical Reviews, 2007, 107(10): 4078-110. |
26 | GUAN G , KUSAKABE K , MOROOKA S . Synthesis and permeation properties of ion-exchanged ETS-4 tubular membranes[J]. Microporous and Mesoporous Materials, 2001, 50(2): 109-120. |
27 | BERGH J V D , ZHU W , GASCON J , et al . Separation and permeation characteristics of a DD3R zeolite membrane[J]. Journal of Membrane Science, 2008, 316(1): 35-45. |
28 | CUI Y , KITA H , OKAMOTO K . Preparation and gas separation performance of zeolite T membrane[J]. Journal of Materials Chemistry, 2004, 14(5): 924-932. |
29 | WU T , DIAZ M C , ZHENG Y , et al . Influence of propane on CO2/CH4, and N2 /CH4, separations in CHA zeolite membranes[J]. Journal of Membrane Science, 2015, 473: 201-209. |
30 | HUANG Y , WANG L , SONG Z , et al . Growth of high-quality, thickness-reduced zeolite membranes towards N2/CH4 separation using high aspect ratio seeds[J]. Angewandte Chemie, 2015, 54(37): 10843-10847. |
31 | ZONG Z , FENG X , HUANG Y , et al . Highly permeable N2/CH4, separation SAPO-34 membranes synthesized by diluted gels and increased crystallization temperature[J]. Microporous and Mesoporous Materials, 2016, 224: 36-42. |
32 | ZONG Z , CARREON M A . Thin SAPO-34 membranes synthesized instainless steel autoclaves for N2/CH4, separation[J]. Journal of Membrane Science, 2016, 524: 117-123. |
33 |
ZONG Z , ELSAIDI S K , THALLAPALLY P K , et al . Highly permeable AlPO-18 membranes for N2/CH4 separation[J]. Industrial & Engineering Chemistry Research, 2017, 56(14). DOI:10.1021/acs.iecr.7600853.
DOI URL |
34 | TEZEL F H , APOLONATOS G . Chromatographic study of adsorption for N2, CO and CH4 in molecular sieve zeolites[J]. Gas Separation & Purification, 1993, 7(1): 11-17. |
35 | 王德超, 杨志远, 廖宏斌, 等 . CH4和N2在炭分子筛及13X沸石上的吸附分离[J]. 煤炭转化, 2017, 40(2): 73-80. |
WANG D H , YANG Z Y , LIAO H B , et al . Adsorptive separation of CH4 and N2 on carbon molecular sieve and 13X zeolite[J]. Coal Conversion, 2017, 40(2): 73-80. | |
36 | SETHIA G , SOMANI R , CHANDBAJAJ H . Adsorption of carbon monoxide, methane and nitrogen on alkaline earth metal ion exchanged zeolite-X: structure, cation position and adsorption relationship[J]. RSC Advances, 2015, 5(17): 12773-12781. |
37 | SETHIA G , SOMANI R S , BAJAJ H C . Sorption of methane and nitrogen on cesium exchanged zeolite-X: structure, cation position and adsorption relationship[J]. Industrial & Engineering Chemistry Research, 2014, 53(16): 6807-6814. |
38 | 杨江峰 . 基于低浓煤层气CH4/N2吸附分离微孔材料的合成及其性能研究[D]. 太原: 太原理工大学, 2012. |
YANG J F . Research on the properties and synthesis of microporous materials based on the CH4/N2 adsorption separation in the low enriched coalbed methane[D]. Taiyuan: Taiyuan University of Technology, 2012. | |
39 | YANG J F , LI J P , WANG W , et al . Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-membered ring hydrophobic microporous high-silica zeolites: DDR, silicalite-1, and beta[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 17856-17864. |
40 | 刘海庆, 吴一江, 杨颖, 等 . 沸石ZSM-5吸附回收低浓度煤层气中CH4 [J]. 化工学报, 2016, 67(5): 1931-1941. |
LIU H Q , WU Y J , YANG Y , et al . Adsorption and recovery of low concentration coal-bed methane by zeolite ZSM-5[J]. CIESC Journal, 2016, 67(5): 1931-1941. | |
41 | MAPLE M J , WILLIAMS C D . Separating nitrogen/methane on zeolite-like molecular sieves[J]. Microporous and Mesoporous Materials, 2008, 111(1): 627-631. |
42 | WANG C , LIU J Q , YANG J F , et al . A crystal seeds- assisted synthesis of microporous and mesoporous silicalite-1 and their CO2/N2/CH4/C2H6, adsorption properties[J]. Microporous and Mesoporous Materials, 2017, 242: 231-237. |
43 | 李晋平, 王小青, 杨江峰, 等, 一种以硅溶胶为硅源快速合成介孔Silicalite- 1分子筛的方法: ZL2016101300572[P]. 2016-06-15. |
LI J P , WAMG X Q , YANG J F , et al . A fast synthesis of mesoporous silicalite-1 molecular sieve using silica sol as silicon source: ZL2016101300572[P]. 2016-06-15. | |
44 | 李晋平, 杨江峰, 王畅, 等 . 一种以白炭黑为硅源快速合成介孔 Silicalite-1 分子筛的方法: ZL2016101300322[P]. 2016-06-08. |
LI J P , YANG J F , WANG C , et al . A fast synthesis of mesoporous silicalite-1 molecular sieve using carbon-white as silicon source: ZL2016101300322[P]. 2016-06-08. | |
45 | YANG J F , YUAN N , XU M , et al . Enhanced mass transfer on hierarchical porous pure silica zeolite used for gas separation[J]. Microporous and Mesoporous Materials, 2018, 266: 56-63. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[8] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[9] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[10] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[11] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[12] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[13] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[14] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[15] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 656
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 547
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |